Исследование путей адаптации растений к гипобарической гипоксии

Исследование направленности метаболизма в ассимилирующих тканях двух видов амаранта, различающихся содержанием бетацианина амарантина, в условиях гипобарической гипоксии. Характеристика содержания белка в проростках амаранта при нормальной аэрации.

Рубрика Биология и естествознание
Вид статья
Язык русский
Дата добавления 24.11.2018
Размер файла 33,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

68 Т.П. Астафурова, С.А. Войцековская, Г.С. Верхотурова

Размещено на http://www.allbest.ru/

ИССЛЕДОВАНИЕ ПУТЕЙ АДАПТАЦИИ РАСТЕНИЙ К ГИПОБАРИЧЕСКОЙ ГИПОКСИИ

Т.П. Астафурова, С.А. Войцековская, Г.С. Верхотурова

В ассимилирующих тканях при гипобарической гипоксии у растений амаранта сорта Валентина активируется окислительный пентозофосфатный путь и уменьшается содержание амарантина, обладающего антиоксидантными свойствами. Одновременно у амаранта сорта Кизлярец резко повышается активность алкогольдегидрогеназы, перерабатывающей этанол. Обсуждаются различные пути биохимической адаптации к недостатку кислорода у растений р. Amaranthus.

Закономерности реагирования живых систем на внешние воздействия связаны с формированием неспецифических адаптационных перестроек, индуцирующих устойчивость организма. Среди таких неспецифических ответов известно множество реакций, характерных только для отдельных видов, но интересных для познания механизмов адаптации в целом [1-5]. Более полно в настоящее время исследовано действие дефицита кислорода на корневую систему растений. Остаются недостаточно изученными вопросы структуры и функции фотосинтетического аппарата в условиях корневой гипоксии и метаболические приспособления зеленых растений, попадающих в условия кислородного голодания. Моделировать состояние гипоксии для целого растения можно в барокамерах, устройство которых позволяет создавать необходимые условия - недостаток кислорода, углекислоты и изменение атмосферного давления, т.е. формировать модель гипобарической гипоксии. Изменения в ассимилирующих органах показывают, что при корневой гипоксии и аноксии у устойчивых и неустойчивых растений сначала уменьшается только число активных реакционных центров фотосистем. Более длительная аноксия в области корней приводит к тому, что в хлоропластах листьев увеличивается число осмиофильных глобул, т.е. имеет место частичная деструкция мембранной системы тилакоидов [6]. Исследования действия гипобарической гипоксии на целое растение выявили, что в зеленых листьях развиваются компенсаторные взаимоотношения фотосинтеза и дыхания, активируются анаплеротические механизмы накопления низкомолекулярных метаболитов и образования энергетических эквивалентов [7].

В стресс-физиологии растений придается большое значение ядерноцитоплазматическим отношениям, когда нормальный онтогенез пластид является необходимым условием для правильной экспрессии ядерных стрессорных генов. Показано, что в трансдукции стрессорного сигнала принимают участие такие эндогенные компоненты, как этилен, жасмоновая кислота, углеводы, полиамины и различные антиоксиданты, к числу которых относится и амарантин. Согласно современным представлениям, он играет важную роль в фотосинтетических, метаболических и защитных реакциях растений [8]. Повышенным содержанием амарантина обладают растения рода Amaranthus, особенно высокое количество его отмечается в листьях амаранта трехцветного сорта Валентина. В литературе есть данные об отношении видов рода Amaranthus к стрессу, в частности к гипоксии [9-10], действию водного стресса [11]. В связи с этим поиск эндогенных метаболитов, обеспечивающих устойчивость растений даже в пределах одного рода или вида, является новым и перспективным направлением стресс-физиологии.

Цель работы - изучение направленности метаболизма в ассимилирующих тканях двух видов амаранта, различающихся содержанием бетацианина амарантина, в условиях гипобарической гипоксии.

Объектами исследования являлись 24-суточные проростки двух видов амаранта: амарант тёмный (Amaranthus hypochondriacus L.) сорта Кизлярец и амарант трёхцветный (Amaranthus tricolor L.) сорта Валентина, который отличается высоким содержанием амарантина [8]. Амарант характеризуется высокой урожайностью, а благодаря его высокому адаптационному потенциалу обладает уникальной способностью приспосабливаться к различным условиям внешней среды. Зерно и зеленая масса амаранта могут широко использоваться в пищевых, кормовых и технических целях. По качественным показателям - содержанию белка, аминокислот, витаминов, макро- и микроэлементов, биологически активных веществ, масла - он превосходит основные традиционные кормовые и пищевые культуры [8-10].

Растения выращивали на дерново-луговой почве под люминесцентными лампами (интенсивность 40 Вт/м2, фотопериод 12 ч) при температуре 25°С. Для создания анаэробных условий образцы помещали в барокамеры с пониженным парциальным давлением кислорода (Р = 8 кПа, РО2 = 2 кПа) на 16 ч в темноту (для исключения фотосинтеза). Контрольные растения находились в это время в условиях нормальной аэрации (Р = 101 кПа, РО2 = 21 кПа) и при нормальном атмосферном давлении в темноте. Особенности гипобарической среды характеризуются одновременным снижением парциального давления газов, среди которых наибольшее значение для растений имеют О2 и СО2 . В отличие от других типов гипо- и аноксии (затопление, вытеснение воздуха инертными газами и т.д.) действие гипобарической гипоксии можно изучать на автотрофных тканях, которые в условиях разреженной атмосферы непосредственно взаимодействуют с воздухом, обедненным кислородом.

Эксперименты проводились в 4 биологических повторностях, были продублированы 4 раза. Для опытов использовали взрослые листья предпоследнего яруса 24-дневных растений амаранта. Гомогенизацию производили при пониженной температуре на льду в 8 мл охлажденной среды выделения следующего состава: трис-HCl буфер (pH 7,8) - 0,05 М, аскорбат натрия - 5 мМ, цистеин - 3 мМ, MgCl2 - 1 мМ и дитиотрейтол - 5 мМ [12]. Гомогенат отжимали через 4 слоя капрона и центрифугировали при 10 000 об./мин в течение 20 мин на холоде (центрифуга К-24, Германия). Состав среды выделения и реакционных сред для определения активности ферментов подбирали согласно специфике объекта. В работе использовали реактивы фирм «Sigma» (США) и «Реахим» (Россия).

Ферментативную активность алкогольдегидрогеназы (К.Ф. 1.1.1.1, НАДАДГ и НАДН-АДГ) определяли в окислительно-восстановительных превращениях НАД+ или НАДН+ в реакционных средах: трис-HCl буфер (рH 7,5) - 0,2 М; НАДН - 2 мкМ; ацетальдегид - 50 мкМ или НАД - 15 мМ и этанол - 50 мМ [13]. Активность НАД-малатдегидрогеназы (К.Ф. 1.1.1.37, НАД-МДГ) определяли по восстановлению НАД в присутствии малата. Реакционная среда для НАД-МДГ содержала трис-HCl (рН 9,1) - 0,1 М; малат Na - 1,93 М и НАД - 11 мМ [12]. Реакционная смесь для НАДФ-глюкозо-6-фофатдегидрогеназы (К.Ф. 1.1.1.49; НАДФ-ГФДГ) содержала трис-HCl (рH 7,4) - 0,03 М; глюкозо-6-фосфат Na соль - 0,12 мМ; MgCl2·6 H2O - 0,25 М и HAДФ - 11 мМ [14]. Активность ферментов определяли спектрофотометрически (Shimadzu UV-2100, Shimadzu Corp., Япония) по изменению оптической плотности при 340 нм и рассчитывали в мкМ НАДН/мин на 1 мг белка и на 1 г сырой массы. Содержание растворимого белка определяли по Бредфорду [15], количество амарантина - по поглощению при 537 нм [16, 17], содержание пигментов в спиртовой вытяжке - спектрофотометрически [19]. Результаты обрабатывали статистически, различия между сравниваемыми средними считали при р < 0,05 [18].

Амарант, подобно кукурузе, просо и сорго, обладает С4-путём фотосинтеза и относится к аспартатным С4-растениям, отличающимся высоким содержанием лизина. Он также характеризуется большой скоростью фиксации углекислоты в расчёте на единицу поверхности листа, обладает мощной продуктивностью в условиях высокой инсоляции и температуры. В условиях 16-часовой гипобарической гипоксии повышается содержание белка в листьях 24-суточных проростков обоих видов рода амарант (табл. 1). Обычно при анаэробиозе содержание белка в растениях понижается вследствие усиления его распада и торможения синтеза. В литературе имеются указания и на увеличение содержания белка при ограничении аэрации [1, 3]. Это может объясняться, с одной стороны, медленной утилизацией белка в обмене веществ в данных условиях, с другой - синтезом анаэробных белков, многие из которых идентифицированы как ферменты анаэробного обмена. Они участвуют в трансформации дыхательных путей при адаптации растений к недостатку кислорода.

амарант белок гипоксия

Т а б л и ц а 1

Содержание белка в проростках амаранта при нормальной аэрации (контроль) и в условиях гипобарической гипоксии (опыт) (Р = 8 кПа, РО2 = 2 кПа, время экспозиции 16 ч)

Объект

Варианты

Содержание белка, мг/г сырой массы

Амарант тёмный, сорт Кизлярец

Контроль

6,23±0,16

Опыт

7,63±0,16

Амарант трёхцветный, сорт Валентина

Контроль

6,45±0,29

Опыт

8,29±0,20

Примечание. Все различия между контролем и опытом достоверны при р < 0,05.

В листьях амаранта после 16-часового воздействия гипобарической гипоксии наблюдаются изменения содержания фотосинтетических пигментов (табл. 2). При этом у опытных растений сорта Валентина количество зеленых пигментов выше, чем в контроле, а содержание каротиноидов не изменяется.

Т а б л и ц а 2

Содержание пигментов в листьях амаранта при действии гипобарической гипоксии (Р= 8 кПа, РО2 = 2 кПа, 16 ч), мкг/г сырой массы

Вари- анты опыта

Хлоро- филл а

Хлоро- филл b

Сумма

хл а + хл b

хл а/

хл b

Кароти- ноиды

хл а + хл b каротиноиды

Сорт Валентина

Контроль

1701,3 ± 89,7

640,0 ± 20,9

2476,4 ± 81,9

2,9

1394,2 ± 38,04

1,91

Опыт

2361,3 ± 92,3*

711,9 ± 17,9*

3141,5 ± 161,5*

3,0

1363,1 ± 36,7

1,87

Сорт Кизлярец

Контроль

1868,3 ± 116,9

584,8 ± 30,8

2589,0 ± 80,4

3,1

944,3 ± 83,0

2,13

Опыт

1992,2 ± 75,8

689,3 ± 34,6

1946 ± 75,5

3,0

1465,6 ± 131,4*

1,6

* Различия между контролем и опытом достоверны при p < 0,01.

В то же время у амаранта сорта Кизлярец уровень зеленых пигментов при гипоксии не изменяется, но увеличивается количество каротиноидов. Подобное увеличение зеленых пигментов известно [20] и укладывается в представление о том, что при недостатке кислорода замедляется окисление хлорофилла. Обнаруженные особенности в содержании фотосинтетических пигментов являются, вероятно, результатом определенных метаболических изменений.

Определение содержания бетацианина амарантина в листьях 24-дневных растений амаранта совпадает с данными о более высоком его количестве в растениях сорта Валентина [8]. Под действием 16-часовой гипоксии содержание амарантина в листьях амаранта темного сорта Кизлярец не изменяется и достоверно уменьшается в листьях амаранта трехцветного сорта Валентина (табл. 3). Такие количественные изменения амарантина с учетом его защитной функции дают основание для дальнейшего рассмотрения путей метаболизма у этих растений при действии кислородной недостаточности.

В листьях растений на свету при недостатке кислорода тормозится работа цикла Кребса [7], что подтверждают и данные исследования. Активность НАД-МДГ уменьшается в листьях обоих видов амаранта (табл. 3). Заключительный этап обмена ди- и трикарбоновых кислот в листьях амаранта темного ингибируется на 22%, а в листьях амаранта трехцветного - на 41% в пересчете на 1 г сырой массы. Одновременное изучение преобразования глюкозы по окислительному пентозофосфатному пути показало, что активность НАДФ-глюкозо-6-фосфатдегидрогеназы в листьях амаранта трехцветного сорта Валентина возрастает на 33% по сравнению с контролем (табл. 4).

В листьях амаранта темного сорта Кизлярец после гипоксической экспозиции активность фермента достоверно не изменяется как в пересчете на 1 г сырой массы, так и на 1 мг белка.

Т а б л и ц а 3

Влияние гипобарической гипоксии (Р = 8 кПа, Р О2 = 2 кПа, 16 ч) на содержание бетацианина амарантина в 24-дневных растениях двух видов амаранта

Объект

Условия опыта

Содержание амарантина

мкг/г сырой массы

%

Амарант темный, сорт Кизлярец

Аэрация

115,6 ± 9,3

100

Гипоксия

99,7 ± 9,8

87

Амарант трехцветный, сорт Валентина

Аэрация

375,02 ± 6,43

100

Гипоксия

288,16 ± 27,2*

76

* Различия между контролем и опытом достоверны при р < 0,01.

Т а б л и ц а 4

Изменение активности НАД-малатдегидрогеназы и глюкозо-6-фосфатдегидрогеназы в листьях 24-суточного амаранта под влиянием гипобарической гипоксии (Р=8 кПа, РО2=2 кПа, при 16 ч)

Объект

Условия опыта

Активность ферментов

НАД-малатдегидрогеназы

Глюкозо-6фосфатдегидрогеназы

Е/г сырой массы

мЕ/мг

белка

мЕ/г сырой массы

мЕ/мг

белка

Амарант тёмный, сорт Кизлярец

Аэрация

2,93 ± 0,27

501,8 ± 35,48

34,17 ± 1,43

5,85 ± 0,26

Гипоксия

2,87 ± 0,28

390,0 ± 39,83*

29,53 ± 1,51*

5,78 ± 0,18

Амарант трёхцветный, сорт Валентина

Аэрация

3,28 ± 0,25

503,3 ± 27,25

51,74 ± 2,34

7,66 ± 0,24

Гипоксия

2,34 ± 0,16*

296,8 ± 18,30*

92,21 ± 3,75*

10,19 ± 0,43*

* Различия между контролем и опытом достоверны при р < 0,05.

Определение активности НАДН-зависимой алкогольдегидрогеназы, функционирующей в сторону восстановления ацетальдегида, выявило различный характер работы фермента у изучаемых сортов (табл. 5). В листьях сорта Кизлярец активность НАДН-АДГ уменьшается под действием 16-часовой гипоксии, а в листьях сорта Валентина в этих же условиях наблюдается резкая активация фермента, что косвенно может свидетельствовать о накоплении этанола. В то же время изменение активности НАД-АДГ имеет противоположный характер: возрастает при гипоксии в листьях сорта Кизлярец и уменьшается в ассимилирующих тканях сорта Валентина.

Полученные результаты позволяют выявить механизмы изменения метаболизма в ассимилирующих органах растений амаранта, находящихся в темноте в условиях гипобарической гипоксии. При недостатке кислорода в листьях амаранта количество амарантина уменьшалось только у одного из изучаемых видов - амаранта трехцветного сорта Валентина. Этот сорт отличался повышенным содержанием амарантина (300-500 мкг/г сырой массы) по сравнению с амарантом темным сорта Кизлярец (90-130 мкг/г сырой массы).

Т а б л и ц а 5

Активность алкогольдегидрогеназы у 24-дневных растений амаранта при нормальной аэрации (Р = 101 кПа, РО2 = 2кПа) и в условиях гипобарической гипоксии (Р = 8 кПа, РО2 = 2 кПа, при 16 ч)

Условия

Активность фермента

Субстрат, фермент

опыта

мЕ/мг

белка

мЕ/г сырой массы

Сорт Кизлярец

Ацетальдегид, НАДН-АДГ

Аэрация

27,58 ± 3,6

61,38 ± 5,40

Гипоксия

21,71 ± 2,77

46,47 ± 4,08

Этанол, НАД-АДГ

Аэрация

6,28 ± 0,84

16,58 ± 1,71

Ггипоксия

9,30 ± 1,09

22,06 ± 2,48

Ацетальдегид, НАДН-АДГ

Сорт Валентина

Аэрация

36,67 ± 2,51

66,86 ± 5,94

Гипоксия

87,63 ± 8,85

138,26 ± 22,84

Этанол, НАД-АДГ

Аэрация

11,39 ± 1,19

25,82 ± 2,44

Гипоксия

6,38 ± 0,98

17,2 ± 0,90

Примечание. Все различия между контролем и опытом достоверны при р < 0,01.

Соотношение путей дыхательного метаболизма при кратковременной гипоксии у амаранта трехцветного сорта Валентина заключается в снижении энзиматической активности цикла Кребса и увеличении активности АДГ по восстановлению ацетальдегида в этанол. Это сопровождается усилением доли альтернативного пентозофосфатного пути окисления углеводов, что вместе с высоким содержанием биологически активного алкалоида амарантина может обеспечивать его устойчивость к недостатку кислорода. Пентозофосфатный путь поставляет НАДФН, который используется как восстановитель в биосинтетических процессах, в условиях, когда не происходит образование НАДФН при фотосинтезе. Поэтому он имеет особенно большое значение в нефотосинтезирующих тканях, прорастающих семенах, а также в часы темнового периода. При функционировании этого пути окисления углеводов образуется рибозо-5-фосфат, необходимый для синтеза нуклеотидов и нуклеиновых кислот. При недостатке кислорода количество амарантина уменьшается только у сорта Валентина, что, по-видимому, может восполняться также через продукты, образующиеся в окислительном пентозофосфатном пути. Известно, что синтез амарантина происходит через образование шикимовой кислоты путем конденсации эритрозо-4-фосфата из пентозофосфатного пути и фосфоэнолпирувата из гликолиза [21]. Способность бетацианина амарантина образовывать комплексы с ионами переменной валентности, в частности с железом, медью, цинком, которые регулируют и катализируют свободнорадикальные процессы [8], активизирующиеся в растениях при гипоксическом стрессе [3, 22], приводит к его расходованию и обеспечивает устойчивость к гипоксии растений сорта Валентина. Усиление работы окислительного пентозофосфатного пути, которое отмечается в исследовании, характерно для более приспособленных к дефициту кислорода растений [3].

В листьях растений сорта Кизлярец, судя по активности НАД-АДГ, при недостатке кислорода происходит усиление работы фермента, а следовательно, имеет место обращение конечных этапов спиртового брожения и окисление образующихся восстановленных коферментов, необходимых для поддержания высокой скорости гликолитического пути. Одновременно в листьях амаранта сорта Кизлярец в условиях гипобарической гипоксии снижается активность малатдегидрогеназы, работающей на заключительных этапах цикла ди- и трикарбоновых кислот и не происходит активация окислительного пентозофосфатного пути, судя по активности глюкозо-6-фосфатдегидро-геназы.

Таким образом, выявлены особенности функционирования отдельных этапов дыхательного обмена в ассимилирующих тканях в темноте при гипобарической гипоксии у двух видов амаранта, отличающихся по содержанию антиоксиданта амарантина. Выполняя протекторную функцию в растениях, амарантин обеспечивает наряду с другими защитными реакциями устойчивость сорта Валентина к кислородной недостаточности. Он снижает уровень свободнорадикальных процессов в клетках, а одновременное усиление использования глюкозы по окислительному пентозофосфатному пути повышает устойчивость этих растений к недостатку кислорода, обеспечивает восполнение амарантина и восстановление коферментов. Устойчивость растений сорта Кизлярец при неизменном, но более низком содержании амарантина в условиях недостатка кислорода обеспечивается усилением окисления продуктов брожения за счет активации алкогольдегидрогеназы, работающей от этанола.

Литература

1. Чиркова Т.В. Пути адаптации растений к гипоксии и аноксии. Л.: Изд-во Ленинград. ун-та, 1988. 244 с.

2. Сrawford R.M.M. Metabolic Adaptation to Anoxia / In Hook D.D., Сrawford R.M.M., eds / Plant Life in Anaerobic Environments // Ann. Arbor. Science, 1978. P. 119-136.

3. Чиркова Т.В. Физиологические основы устойчивости растений. Л.: Изд-во СПб. унта, 2002. 240 с.

4. Вартапетян Б.Б. Учение об анаэробном стрессе растений - новое направление в экологической физиологии, биохимии и молекулярной биологии растений // Физиология растений. 2005. Т. 52. С. 931-953.

5. Ершова А.Н. Метаболическая адаптация растений к гипоксии и повышенному содержанию диоксида углерода. Воронеж: Изд-во Воронеж. ун-та, 2007. 263 с.

6. Ладыгин В.Г. Влияние корневой гипоксии и аноксии на функциональную активность и структуру хлоропластов листьев Pisum sativum и Glycine max // Физиология растений. 1999. Т. 46, № 2. С. 246-258.

7. Астафурова Т.П. Взаимосвязь фотосинтеза и дыхания при адаптации растений к условиям гипобарической гипоксии: Автореф. дис. … д-ра биол. наук. Томск, 1997. 40 с.

8. Гинс М.С. Биологически активные вещества амаранта. Амарантин: свойства, механизмы действия и практическое использование. М.: Изд-во РУДН, 2002. 184 с.

9. Чиркова Т.В., Белоногова В.А., Магомедов И.М. Оценка устойчивости различных видов амаранта к недостатку О2 // Вестник СПб. ун-та. 1992. Вып. 3, № 17. С. 79-82.

10. Чиркова Т.В. Амарант - культура XXI века // Соросовский образовательный журнал. 1999. № 10. С. 23-27.

11. Голик К.Н., Гуляев Б.И., Зубцова А.Я., Антонец А.Н. Обмен СО2 у амаранта при различном водообеспечении // Физиология и биохимия культурных растений. 1993. Т. 25, № 6. С. 540-545.

12. Юзбеков А.К. Спектрофотометрические способы определения активности ключевых ферментов фотосинтетического метаболизма у С3 и С4-растений: Метод. пособие. Киев: Институт физиологии растений и генетики АН УССР, 1990. 44 с.

13. Методы биохимического анализа растений. Л.: Изд-во Ленинград. ун-та, 1978. 192 с.

14. Гавриленко В.Ф., Ладыгина М.Е., Хандобина Л.М. Большой практикум по физиологии растений. Фотосинтез. Дыхание: Учеб. пособие. М.: Высш. шк., 1975. 392 с.

15. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-due binding // Analytical biochemistry. 1976. Vol. 72. P. 248.

16. Муравьева Д.А., Бубенчикова В.Н., Беликов В.В. Спектрофотометрическое определение суммы антоцианов в цветках василька синего // Фармация. 1984. Т. 36, № 5. С. 28-29.

17. Гинс М.С., Кононков П.Ф., Гинс В.К., Лысенко Г.Г., Дэсалень Т.Л., Бравова Г.Б. Физико-химические свойства и биологическая активность амарантина из растений Amaranthus tricolor L. // Прикладная биохимия и микробиология. 1998. Т. 34. С. 450-454.

18. Кузнецов В.К. Ускоренный метод статистической обработки результатов наблюдений при сравнении средних // Социально-гигиенические исследования: Тр. II Моск. мед. ин-та. 1973. Т. 19, № 3. С. 253.

19. Шлык А.А. Определение хлорофиллов и каротиноидов в экстрактах зеленых листьев // Биохимические методы в физиологии растений. 1971. С. 154-170.

20. Астафурова Т.П., Зайцева Т.А., Зотикова А.П., Рябчук Ю.А. Формирование пигментного аппарата в проростках ячменя в условиях гипобарической гипоксии // Физиология растений. 1996. Т. 43, № 6. С. 900-905.

21. Гудвин Т., Мерсер Э. Введение в биохимию растений. М.: Мир, 1986. Т. 2. 312 с.

22. Ershova A.N. Enzyme activity of antioxidative system in plants with different tolerance under hypoxia and CO2-media // Acta Physiology Plantarum. 2004. Vol. 26. Р. 224-225.

Размещено на Allbest.ru

...

Подобные документы

  • Дефицит кислорода как стрессовый фактор для растений. Энергетическое состояние клетки в условиях гипоксии. Проведение полимеразной цепной реакции в реальном времени. Динамика активности фумаратгидротазы в зеленых листья кукурузы в условиях гипоксии.

    курсовая работа [325,9 K], добавлен 09.08.2016

  • Исследование параметров митоКАТФ у крыс с различной устойчивостью к гипоксии. Гомология структуры исследуемого белка. Получение поликлональных антител на белок-канал с м.м. 55 кДа. Ингибиторный анализ АТФ-чувствительного транспорта калия в нативных МХ.

    дипломная работа [4,7 M], добавлен 12.02.2011

  • Типовые нарушения белкового обмена. Несоответствие поступления белка потреблению. Нарушение расщепления белка в ЖКТ и содержания белка в плазме крови. Расстройство конечных этапов катаболизма белка и метаболизма аминокислот. Нарушения липидного обмена.

    презентация [201,8 K], добавлен 21.10.2014

  • Этиология, патогенез и клиника плацентарной недостаточности. Хроническая внутриутробная гипоксия плода. Гормоны плаценты при физиологически протекающей беременности и при хронической внутриутробной гипоксии плода. Катепсины - ферменты класса гидролаз.

    дипломная работа [121,1 K], добавлен 15.12.2008

  • Физиологический механизм адаптации организма к условиям высокогорья, причины гипоксии (кислородной недостаточности). Аэробный и анаэробный пути добычи энергии, свободные радикалы. Различия адаптивных стратегий, гипоксическая тренировка, гипокситерапия.

    курсовая работа [43,7 K], добавлен 03.02.2012

  • Структура молекулы тайтина. Структура и функции молекул С-белка, Х-белка и Н-белка. Белки семейства тайтина в норме, при адаптации и патологии. Амилоидозы. Современные представления о строении, формировании амилоидных фибрилл. Патологические проявления.

    дипломная работа [975,8 K], добавлен 15.12.2008

  • Экологические группы растений. Адаптации к стрессовым условиям обитания. Типы ареалов и факторы, обусловливающие их границы. Ботаническая и экологическая характеристика дикорастущих видов растений (Гравилат речной Geum rivale) семейство (Розоцветные).

    контрольная работа [1,3 M], добавлен 09.04.2019

  • Анализ особенностей механизма образования льда в тканях разных растений. Процессы, происходящие при медленном промерзании в межклеточниках и клеточных стенках. Сжатие цитоплазмы кристаллами льда. Факторы, влияющие на степень морозоустойчивости растений.

    презентация [245,3 K], добавлен 04.06.2014

  • Процессы энергетического метаболизма и основные энергетические параметры эритроцитов. Выяснение условий, при которых может происходить переход метаболизма эритроцитов из одной устойчивой точки в другую. Анализ строения и функций гемоглобина, эритроцитов.

    дипломная работа [3,5 M], добавлен 17.10.2012

  • Характеристика основных групп растений по отношению к воде. Анатомо-морфологические приспособления растений к водному режиму. Физиологические адаптации растений, приуроченных к местообитаниям разной увлажненности.

    курсовая работа [20,2 K], добавлен 01.03.2002

  • Особенности изучения проблемы интродукции, акклиматизации, вопросов устойчивости и адаптации растений в городских зеленых насаждениях. Обзор свойств декоративных, диких растений семейства цветковых. Морфогенез микроспор в культуре пыльников подсолнечника.

    реферат [22,2 K], добавлен 12.04.2010

  • Определение влияния гипотермии на содержание водорастворимых белков в тканях высших растений, бактерий и водорослей. Применение электрофореза для разделения растительных белков. Влияние развития морозоустойчивости на синтез белков, изменение экспрессии.

    реферат [22,1 K], добавлен 11.08.2009

  • Исследование основных жизненных форм растений. Описание тела низших растений. Характеристика функций вегетативных и генеративных органов. Группы растительных тканей. Морфология и физиология корня. Видоизменения листа. Строение почек. Ветвление побегов.

    презентация [21,1 M], добавлен 18.11.2014

  • Гипотезы о возникновении электричества в живых тканях. Теория Дюбуа-Реймона, теоретическое объяснение потенциала повреждения. Исследование осмоса, проявление "жизненной силы" растений. Мембранная теория биопотенциалов Ю. Бернштейна и ее доказательства.

    реферат [712,7 K], добавлен 08.08.2009

  • Рассмотрение и анализ основных групп факторов, способных вызвать стресс у растений. Ознакомление с фазами триады Селье в развитии стресса у растений. Исследование и характеристика физиологии стрессоустойчивости растений с помощью защитных систем.

    контрольная работа [194,8 K], добавлен 17.04.2019

  • Общая характеристика клеточного строения и его функции разных групп растений. Клеточные оболочки водорослей, грибов, высших споровых растений. Особенность одноклеточных форм. Молекулы белка и липидов. Форма, размеры и местоположение ядра в клетке.

    курсовая работа [1,8 M], добавлен 27.05.2013

  • Определение понятий "засуха" и "засухоустойчивость". Рассмотрение реакции растений на засуху. Изучение типов растений по отношению к водному режиму: ксерофитов, гигрофитов и мезофитов. Описание механизма приспособления растений к условиям внешней среды.

    реферат [998,2 K], добавлен 07.05.2015

  • Закаливание растений. Сущность закаливания растений и его фазы. Закалка семян. Закаливание рассады. Реакция адаптации корневых систем, воздействуя на них температурами закаливания. Холодостойкость растений. Морозоустойчивость растений.

    курсовая работа [43,4 K], добавлен 02.05.2005

  • Исследование роли зелёных насаждений в условиях урбоэкосистем. Определение видового состава древесных растений парков. Диагностика жизненного состояния дендрофлоры парков. Изучение объектов дендрофлоры ключевых парковых зон города Приморско-Ахтарска.

    дипломная работа [982,4 K], добавлен 18.07.2014

  • Основные формы фитохрома, характеристика их свойств. Физиологические процессы, которые регулируются в растениях светом с помощью фитохромной системы. Принципы фоторегулирования метаболизма растений и регуляторное действие красного цвета на фотосинтез.

    контрольная работа [586,9 K], добавлен 28.06.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.