Фундаментальные взаимодействия в макромире

Гравитация – универсальное фундаментальное взаимодействие между всеми материальными телами. Гравитационное взаимодействие для всех материальных объектов вне зависимости от их природы. Закон всемирного тяготения. Движение планет Солнечной системы.

Рубрика Биология и естествознание
Вид статья
Язык русский
Дата добавления 20.02.2019
Размер файла 20,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Фундаментальные взаимодействия в макромире

Петрухина И.А.,

Френкель Е.Н.

Введение

Издавна человек стремился познать и понять окружающий его физический мир. До конца XIX в. считалось, что атомы представляют собой неделимые частицы вещества. После революционных открытий в физике [1], сделанных на рубеже прошлого и нынешнего столетий, было установлено, что атомы делимы, и имеют сложное строение. Они состоят из различных более мелких частиц, взаимодействующих друг с другом, благодаря чему возможны различные атомные изменения и превращения. Эти частицы были названы элементарными.

Современные достижения физики высоких энергий всё больше укрепляют представление, что многообразие свойств Природы обусловлено взаимодействующими элементарными частицами. Оказывается, всё бесконечное разнообразие физических процессов, происходящих в нашем мире, можно объяснить существованием в природе очень малого количества фундаментальных взаимодействий. В природе лишь четыре типа фундаментальных взаимодействий: слабое, сильное, электромагнитное и гравитационное [2]. Взаимодействием их друг с другом объясняется упорядоченность расположения небесных тел во Вселенной. Именно они являются теми "стихиями", которые движут небесными телами, порождают свет и делают возможной саму жизнь.

Гравитационное взаимодействие

Гравитация (от лат. Gravitas - "тяжесть") - универсальное фундаментальное взаимодействие между всеми материальными телами.

Гравитация первым из четырех фундаментальных взаимодействий стала предметом научного исследования. В приближении малых скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона [3], которая позволила впервые осознать истинную роль гравитации как силы природы; в общем случае описывается общей теорией относительности Эйнштейна [4].

Гравитационное взаимодействие характерно для всех материальных объектов вне зависимости от их природы. Всякая частица находится под действием гравитационной силы, величина которой зависит от массы и энергии частицы.

Гравитационное взаимодействие не проявляется в микромире. Оно проявляется в макромире и, особенно, в мегамире, играя первостепенную роль в структуре последнего.

Итак, гравитационное взаимодействие заключается во взаимном притяжении тел и определяется законом всемирного тяготения: между двумя точечными телами действует сила притяжения, прямо пропорциональная произведению их масс m и обратно пропорциональна квадрату расстояния r между ними.

F = G·m1·m2 / r2,

где G - гравитационная постоянная, G = 6,673·10-11 Н·м 2·кг 2.

Для очень больших тел или же не имеющих определенной формы это выражение принимает более сложный вид.

Гравитационным взаимодействием определяется падение тел в поле сил тяготения Земли. гравитация планета тяготение

Законом всемирного тяготения описывается движение планет солнечной системы, нашей Галактики - Млечного Пути, а также других макрообъектов. Предполагается, что гравитационное взаимодействие обуславливается некими элементарными частицами. Такие гипотетические частицы называют гравитонами. Гравитон [5] не обладает собственной массой и поэтому переносимая им сила является дальнодействующей. Гравитационное взаимодействие между Солнцем и Землёй объясняется тем, что частицы, из которых состоят Земля и Солнце, обмениваются гравитонами. Несмотря на то, что в обмене участвуют лишь гипотетические частицы, создаваемый ими эффект, безусловно, поддаётся измерению, потому что этот эффект - вращение Земли вокруг Солнца. Реальные гравитоны распространяются в виде волн, но они очень слабые и их трудно зарегистрировать, поэтому существование их к настоящему времени экспериментально не подтверждено.

Гравитация [6] - это очень слабая сила, которую мы вообще не заметили бы, если бы не её специфические свойства, отличающие её от других фундаментальных взаимодействий: гравитационные силы действуют на больших расстояниях и всегда являются силами притяжения.

Гравитационное взаимодействие в классическом представлении в процессах микромира существенной роли не играет. Однако в макропроцессах ему принадлежит определяющая роль.

Наиболее удивительной особенностью гравитации является её малая интенcивность. Гравитация является самым слабым из четырёх типов фундаментальных взаимодействий. Гравитационное взаимодействие в 1039 раз меньше силы взаимодействия электрических зарядов. Однако, поскольку оно действует на любых расстояниях, и все массы положительны, это, тем не менее, очень важная сила во Вселенной.

В частности, электромагнитное взаимодействие между телами на космических масштабах мало, поскольку полный электрический заряд этих тел равен нулю (вещество в целом электрически нейтрально). Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.

Как может такое слабое взаимодействие оказаться господствующей силой во Вселенной?

Все дело во второй удивительной черте гравитации - её универсальности. Ничто во Вселенной не может избежать гравитации. Каждая частица испытывает на себе действие гравитации и сама является источником гравитации, вызывает гравитационное притяжение. Гравитация возрастает по мере образования всё больших скоплений вещества. И хотя притяжение одного атома пренебрежимо мало, но результирующая сила притяжения со стороны всех атомов может быть значительной. Это проявляется и в повседневной жизни: мы ощущаем гравитацию потому, что все атомы Земли сообща притягивают нас.

Гравитационное взаимодействие прямопропорционально массе взаимодействующих тел. Из-за малости массы элементарных частиц гравитационное взаимодействие между частицами невелико по сравнению с другими видами взаимодействия, поэтому в процессах микромира это взаимодействие несущественно. При увеличении массы взаимодействующих тел (т.е. при увеличении числа содержащихся в них частиц) гравитационное взаимодействие между телами возрастает прямо пропорционально их массе.

Гравитация дальнодействующая сила природы [7]. Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.

В макромире при рассмотрении движения планет, звёзд, галактик, а также движения небольших макроскопических тел в их полях гравитационное взаимодействие становится определяющим.

Большие космические объекты-планеты, звёзды и галактики имеют огромную массу и, следовательно, создают значительные гравитационные поля.

Благодаря дальнодействию гравитация не позволяет Вселенной развалиться на части: она удерживает планеты на орбитах, звёзды в галактиках, галактики в скоплениях, скопления в Метагалактике.

Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты, как структура галактик, чёрные дыры и расширение Вселенной, и за элементарные астрономические явления - орбиты планет, и за простое притяжение к поверхности Земли и падения тел. Оно удерживает атмосферу, моря и всё живое и неживое на Земле, Землю, вращающуюся по орбите вокруг Солнца, Солнце в пределах Галактики.

Гравитационным взаимодействием определяется падение тел в поле сил тяготения Земли.

Гравитационное взаимодействие играет главную роль в процессах образования и эволюции звёзд. Сила гравитации, действующая между частицами, всегда представляет собой силу притяжения: она стремится сблизить частицы. Гравитационное отталкивание еще никогда не наблюдалось.

Электромагнетизм

Электромагнитное взаимодействие существует между частицами, обладающими электрическим зарядом. С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля. Электромагнитное взаимодействие проявляется и в микромире, и в макромире, и в Мегамире, но играет решающую роль в структуре макромира. Это взаимодействие в тысячу раз слабее сильного, но действует на гораздо больших расстояниях, чем оно. В результате него электроны и атомные ядра соединяются в атомы, атомы - в молекулы, молекулы - в макротела и т.д.

Электромагнитное взаимодействие связано с электрическими и магнитными полями. Электрические поля возникают при наличии электрических зарядов, а магнитные - при их движении. В природе существуют положительные и отрицательные заряды, это и определяет характер электромагнитного взаимодействия: оно действует между электрически заряженными частицами. В отличие от гравитационных сил, которые являются силами притяжения, одинаковые по знаку заряды отталкиваются, разноименные - притягиваются.

Различные агрегатные состояния веществ, явление трения, упругие и другие свойства вещества определяются преимущественно силами межмолекулярного взаимодействия, которые по своей природе являются электромагнитными. Электромагнитное взаимодействие описывается законом Ш. Кулона [8].

Сила взаимодействия двух точечных неподвижных заряженных тел прямо пропорциональна произведению абсолютных значений зарядов q1 и q2 и обратно пропорциональна квадрату расстояния r между телами.

F = k·q1·q2 / r2,

где k - коэффициент пропорциональности, k = 9·109 Н·м·Кл 2.

Наиболее общее описание электромагнитного взаимодействия даёт электромагнитная теория Максвелла, основанная на фундаментальных уравнениях, связывающих электрическое и магнитное поля [9].

В Мегамире электромагнитное взаимодействие звёзд пренебрежимо мало по сравнению с гравитационным: т.к. звёзды электронейтральны, а расстояние между ними очень большое. Электромагнитное взаимодействие заряженных частиц намного сильнее гравитационного, и единственная причина, по которой электромагнитное взаимодействие не проявляется с большой силой на космических масштабах - электрическая нейтральность материи, то есть наличие в каждой области Вселенной с высокой степенью точности равных количеств положительных и отрицательных зарядов.

Поскольку по величине электрические силы намного превосходят гравитационные, то в отличие от слабого гравитационного взаимодействия электрические силы, действующие между телами обычных размеров, можно легко наблюдать. Электромагнетизм известен людям с незапамятных времен (полярные сияния, вспышки молнии и др.). В течение долгого времени электрические и магнитные процессы изучались независимо друг от друга. Существование электрона (единицы электрического заряда) было твёрдо установлено в 90-е г. XIX в.

Но не все материальные частицы являются носителями электрического заряда. Электрически нейтральны, например, фотон и нейтрино. В этом электричество и отличается от гравитации. Все материальные частицы создают гравитационное поле, тогда как с электромагнитным полем связаны только заряженные частицы. Долгое время загадкой была и природа магнетизма. Как и электрические заряды, одноименные магнитные полюсы отталкиваются, а разноименные - притягиваются. В отличие от электрических зарядов магнитные полюсы встречаются не по отдельности, а только парами - северный полюс и южный. Хорошо известно, что в обычном магнитном стержне один конец действует как северный полюс, а другой - как южный. Ещё с древнейших времён известны попытки получить посредством разделения магнита лишь один изолированный магнитный полюс - монополь. Но все они заканчивались неудачей: на месте разреза возникали два новых магнита, каждый из которых имел и северный, и южный полюсы. Может быть, существование изолированных магнитных полюсов в природе исключено? Определённого ответа на этот вопрос пока не существует [10].

Электрическая и магнитная силы (как и гравитация) являются дальнодействующими, их действие ощутимо на больших расстояниях от источника. Электромагнитное взаимодействие проявляется на всех уровнях материи - в мегамире, макромире и микромире. Электромагнитное поле Земли простирается далеко в космическое пространство; мощное поле Солнца заполняет всю Солнечную систему; существуют и галактические электромагнитные поля. К нему сводятся все обычные силы: силы упругости, трения, поверхностного натяжения, им определяются агрегатные состояния вещества, оптические явления и др.

Таким образом, нашу Вселенную формируют силы всего четырёх типов. Масштаб явлений, определяемых каждой фундаментальной силой, зависит от радиуса её действия. Тяготение проявляется главным образом в астрономическом и космологическом масштабах, электромагнитные силы - в так называемом макромире, то есть в мире человеческой деятельности, от размеров Земли до расстояний порядка атомных. Короткодействующие ядерные силы, как бы велики и важны они ни были, совершенно не участвуют в явлениях на таких масштабах.

На расстояниях настолько ничтожных, что атомное ядро по сравнению с ними - все равно, что Галактика по сравнению с обычными человеческими размерами, в игру снова вступает тяготение. На таких расстояниях сама геометрия нашего мира никогда не остаётся в покое - она непрерывно флуктуирует, "дышит". Но геометрия мира, его пространственно-временная кривизна - это и есть гравитация. Поэтому у известного американского физика Ш. Глэшоу [11] четыре фундаментальные силы, которые формируют всю нашу Вселенную, ассоциируются со змеей, кусающей себя за хвост.

Заключение

Многие основополагающие концепции современного естествознания прямо или косвенно связаны с описанием фундаментальных взаимодействий. Согласно современным представлениям, различают взаимодействия: гравитационное, электромагнитное, сильное, слабое. Все встречающиеся в природе взаимодействия являются либо проявлением одного из указанных вида взаимодействия либо их комбинацией, на которых базируется взаимосвязь всех материальных объектов микро-, макро- и Мегамира. От радиуса действия сил зависит масштаб явлений, в которых те или иные силы играют основную роль. И ни одно из них не является излишним. Все они в равной мере необходимы для "нормального функционирования" Вселенной.

Гравитационное взаимодействие - фундаментальное взаимодействие, которое не проявляется в микромире, а проявляется в макромире и Мегамире, играет решающую роль в структуре Мегамира и лежит в основе образования, эволюции и движения мегаобъектов (планет, звёзд, галактик и т.п.), так как представляет собой не что иное, как всемирное тяготение (взаимное притяжение огромных космических объектов - планет и звёзд). Расстояние, на котором оно действует, неограниченно.

Большинство элементарных частиц имеют заряд, с которым связано электромагнитное взаимодействие, в природе существуют два типа заряда (положительный и отрицательный). Именно электромагнитные силы ответственны за стабильность атомов, они же определяют строение молекул и протекание химических реакций.

Если бы не взаимодействия, то частицы материи двигались бы независимо; "не подозревая" о существовании других частиц. Благодаря взаимодействиям частицы как бы обретают способность распознавать другие частицы и реагировать на них, в результате чего рождается коллективное поведение. Однако, если принять во внимание всё многообразие свойств окружающего нас Мира, то кажется совершенно удивительным, что в Природе есть только четыре фундаментальных взаимодействия, ответственных за все явления Природы.

Ведутся поиски других типов фундаментальных взаимодействий, как в явлениях микромира, так и в космических масштабах, однако пока какого-либо другого типа фундаментального взаимодействия не обнаружено. В Википедии была опубликована статья "Пятая сила", которая была удалена автором 1 августа 2016 г.

Список использованных источников

1. Революция в науке // Википедия [Электронный ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D0%B2%D0%BE%D0%BB%D1 %8E%D1%86%D0%B8%D1%8F_%D0%B2_%D0%BD%D0%B0%D1%83%D0% BA%D0%B5.

2. Фундаментальные взаимодействия // Википедия [Интернет-ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%B4%D0%B0%D0 %BC%D0%B5%D0%BD%D1%82%D0%B0%D0%BB%D1%8C%D0%BD%D1%8 B%D0%B5_%D0%B2%D0%B7%D0%B0%D0%B8%D0%BC%D0%BE%D0%B4 %D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D1%8F.

3. Классическая теория тяготения Ньютона // Википедия [Интернетресурс]. Режим доступа: https://ru.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D1%81%D0 %B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D1%82%D0%B

5%D0%BE%D1%80%D0%B8%D1%8F_%D1%82%D1%8F%D0%B3%D0%BE% D1%82%D0%B5%D0%BD%D0%B8%D1%8F_%D0%9D%D1%8C%D1%8E%D1 %82%D0%BE%D0%BD%D0%B0.

4. Теория относительности // Википедия [Интернет-ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1 %8F_%D0%BE%D1%82%D0%BD%D0%BE%D1%81%D0%B8%D1%82%D0%B 5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D0%B8.

5. Гравитон // Википедия [Интернет-ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/%D0%93%D1%80%D0%B0%D0%B2%D0%B8%D1 %82%D0%BE%D0%BD.

6. Гравитация // Википедия [Интернет-ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/%D0%93%D1%80%D0%B0%D0%B2%D0%B8%D1 %82%D0%B0%D1%86%D0%B8%D1%8F.

7. Дальнодействие и короткодействие // Википедия [Интернет-ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/%D0%94%D0%B0%D0%BB%D1%8C%D0%BD%D0 %BE%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D0%B5 _%D0%B8_%D0%BA%D0%BE%D1%80%D0%BE%D1%82%D0%BA%D0%BE %D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D0%B5.

8. Закон Кулона // Википедия [Интернет-ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_% D0%9A%D1%83%D0%BB%D0%BE%D0%BD%D0%B0.

9. Френкель, Е.Н. Концепции современного естествознания: физические, химические и биологические концепции: учеб. пособие / Е.Н. Френкель. - Ростов н/Д : Феникс, 2014. - 246 с. - С. 57-58.

10. Магнитный монополь // Википедия [Интернет-ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1 %82%D0%BD%D1%8B%D0%B9_%D0%BC%D0%BE%D0%BD%D0%BE%D0 %BF%D0%BE%D0%BB%D1%8C.

11. Глэшоу, Шелдон Ли // Википедия [Интернет-ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/%D0%93%D0%BB%D1%8D%D1%88%D0%BE%D1%83, _%D0%A8%D0%B5%D0%BB%D0%B4%D0%BE%D0%BD_%D0%9B%D0%B8.

Размещено на Allbest.ru

...

Подобные документы

  • Фундаментальные взаимодействия: гравитационное, электромагнитное, сильное, слабое; их понятие и краткая история. Взаимосвязь всех материальных объектов микро, макро и мегамира. Электромагнитное взаимодействие между телами в космических масштабах.

    реферат [332,4 K], добавлен 10.07.2011

  • Поле всемирного тяготения, гравитационное взаимодействие и постулаты общей теории относительности Эйнштейна - теории пространства, времени, материи, тяготения и движения. Идея построения материального мира из элементарных, фундаментальных "кирпичиков".

    реферат [888,7 K], добавлен 07.01.2010

  • Характеристика зависимости сил взаимодействия между молекулами от расстояния между ними. Ввзаимодействие агрегатных состояний вещества. Закон трех взаимодействий. Отражение трех первоначал Творения Вселенной. Активная, пассивная и нейтрализующая сила.

    контрольная работа [28,2 K], добавлен 30.09.2010

  • Зависимость сил взаимодействия между молекулами от расстояния между ними. Взаимодействие агрегатных состояний вещества, характер движения молекул в газах, жидкостях и твердых телах. Закон трех взаимодействий (активной, пассивной и нейтрализующей сил).

    контрольная работа [29,1 K], добавлен 11.10.2010

  • Современная научная картина мира. Фундаментальные воздействия и фундаментальные законы в материальном мире. Геофизическое строение и эволюция Земли. Уникальность планеты Земля в ряду других планет Солнечной системы. Концепция устойчивого развития.

    контрольная работа [23,4 K], добавлен 10.06.2015

  • Общая характеристика концепции современного естествознания. Земли отличий от других планет Солнечной системы. Анализ работы В.И. Вернадского по соотношению форм движения материи. Понятие и сущность ноосферы и биосферы, их работа и взаимодействие.

    контрольная работа [34,2 K], добавлен 20.12.2008

  • Слабое взаимодействие, или слабое ядерное взаимодействие, — одно из четырёх фундаментальных взаимодействий в природе, его переносчики. Отличительные свойства слабого взаимодействия, его характеристика интенсивности. Операция пространственной инверсии.

    реферат [46,2 K], добавлен 27.03.2015

  • Рассмотрение возможности создания общей теории мироздания на основе классической физики. Основной закон природы. Строение атома и обоснование понятия гравитации. Теория звездообразования и образования планет. Энтропия и жизнь, социум и сознание.

    доклад [654,6 K], добавлен 10.03.2012

  • Понятие научной революции. Гравитационное взаимодействие и его роль на различных уровнях организации материи. Белки, липиды, углеводы, их структура и роль в живых организмах. Сильное взаимодействие и его роль в микромире. Систематическая теория эволюции.

    контрольная работа [395,7 K], добавлен 08.11.2012

  • Специфическое взаимодействие антитела с антигенами, роль силы гидрофобного взаимодействия. Степень соответствия между антигенной детерминантой и антигенсвязывающей областью активного центра антитела. Взаимодействие антигена с субпопуляцией антител.

    контрольная работа [254,3 K], добавлен 19.09.2009

  • Понятие и структура Солнечной системы. Характеристика и сущность закона всемирного тяготения. Описание самых главных химических элементов для жизни: магний, углерод, кислород, марганец. Анализ основных причин глобального изменения климата на Земле.

    контрольная работа [220,7 K], добавлен 26.04.2012

  • Симметрия и ее значения: пропорциональное (сбалансированное) и равновесие. Симметрия природы в физике, ее фундаментальные теории. Законы сохранения: закон изменения и закон сохранения полной энергии, закон сохранения импульса, закон сохранения заряда.

    реферат [24,0 K], добавлен 05.01.2008

  • Понятие и биологическое значение мембран в клетках организма, функции: структурные и барьерные. Их значение во взаимодействия между клетками. Десмосома как один из типов контакта клеток, обеспечивающие их взаимодействие и прочное соединение между собой.

    реферат [20,2 K], добавлен 03.06.2014

  • Основные типы взаимодействия неаллельных генов. Комплементарное взаимодействие на примере наследования формы гребня у кур. Расщепление по фенотипу. Эпистатическое взаимодействие генов. Доминантный эпистаз на примере наследования масти у лошадей.

    презентация [121,3 K], добавлен 12.10.2015

  • Рассмотрение основных научных революций в истории развития естествознания. Закон всемирного тяготения И. Ньютона как одно из величайших научных достижений ХVII-ХVIII веков. Особенности математического анализа Ньютона, характеристика законов механики.

    реферат [31,4 K], добавлен 27.08.2012

  • Гравитационное и электромагнитное взаимодействия. Краткая сводка основных формул классической (неквантовой) электродинамики. Уровни организации живой материи и их характеристика. Пример нескольких каталитических реакций. Принцип действия катализатора.

    контрольная работа [34,0 K], добавлен 17.07.2010

  • Понятие и виды взаимодействия микроорганизмов с высшими растениями, влияние фитопатогенных микроорганизмов на их жизнедеятельность. Место и роль знаний о взаимодействия микроорганизмов с высшими растениями в школьном курсе биологии, их применение.

    дипломная работа [11,0 M], добавлен 02.02.2011

  • Теория эволюционного развития звезд из газово-пылевой материи в результате гравитационной неустойчивости и сил взаимодействия. Происхождение Земли и других планет Солнечной системы. Аксиома сознания и психики человека. Принцип максимизации мощи.

    контрольная работа [17,1 K], добавлен 28.05.2010

  • Распределение материи во вселенной. Теория большого взрыва. Гипотезы формирования планет и образования их спутников. Сущность явления аккреции небесного тела. Модели происхождения Меркурия, Венеры, Земли, Марска. Объяснение эволюции Урана и Нептуна.

    реферат [286,7 K], добавлен 19.10.2016

  • Фундаментальные законы сохранения (закон сохранения энергии, закон сохранения импульса, закон сохранения момента импульса). Связь законов сохранения с симметрией пространства и времени. Симметрия как основа описания объектов и процессов в микромире.

    реферат [227,7 K], добавлен 17.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.