Уровни организации генетического аппарата эукариот
Наследственность как свойство живых систем передавать из поколения в поколение особенности морфологии, функции и индивидуального развития в определенных условиях среды. Общая характеристика основных уровней организации генетического аппарата эукариот.
Рубрика | Биология и естествознание |
Вид | статья |
Язык | русский |
Дата добавления | 01.03.2019 |
Размер файла | 19,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Уровни организации генетического аппарата эукариот
Наследственность и изменчивость являются фундаментальными свойствами живого, так как характерны для живых существ любого уровня организации. Наука, изучающая закономерности наследственности и изменчивости, называется генетикой.
Наследственность - это свойство живых систем передавать из поколения в поколение особенности морфологии, функции и индивидуального развития в определенных условиях среды.
Изменчивость - это способность дочерних организмов отличаться от родительских форм морфологическими и физиологическими признаками и особенностями индивидуального развития.
Наследование - это способ передачи генетической информации: через половые клетки - при половом размножении, или через соматические - при бесполом, т.е. материальная основа яйцеклетка и сперматозоид, или соматическая клетка.
Наследуемость - это степень соотношения наследственности и изменчивости.
Ген - это единица наследственности и изменчивости. По современгны представлениям ген - это участок молекулы ДНК, дающий информацию о синтезе определенного полипептида. Набор генов организма, которые он получает от своих родителей, называется генотипом, а содержание генов в гаплоидном наборе хромосом - геномом.
Совокупность всех внешних и внутренних признаков организма называется фенотипом, а отдельный признак - ФЕНОМ . Например, форма носа, ушной раковины, пальцев ног и рук, цвет волос - внешние фенотипические признаки, особенности строения желудка, содержание лейкоцитов и эритроцитов в крови - внутренние фенотипические признаки.
Генетический материал - компоненты клетки, структурно-функциональное единство которых обеспечивает хранение, реализацию и передачу наследственной информации при вегетативном и половом размножении. Генетический материал обладает универсальными свойствами живого: дискретностью, непрерывностью, линейностью, относительной стабильностью.
Дискретность генетического материала, т.е. существование гена, хромосомы (группы сцепления), генома, выявляется в виде: множества аллелей, составляющих группу сцепления, множества групп сцепления, составялющих геном.
Непрерывность генетического материала (физическая целостность хромосомы) выявляют в виде сцепления множества генов между собой.
Линейность (одномерность записи генетической информации) - в определенной последовательности генов в пределах групп сцепления или сайтов в пределах гена.
Относительная стабильность или способность к конвариантной редупликации, т.е. возникновение и сохранение вариантов в ходе возспроизведения, выявляют в виде мутационной изменчивости.
Всеми этими свойствами обладают молекулы ДНК или реже РНК (у некоторых вирусов), в которых закодирована наследственная информация.
Основными свойствами генетического материала являются:
1. Ген хранит и передает информацию.
2. Ген способен к изменению генетической информации (мутации).
3. Ген способен к репарации и ее передаче от поколения к поколению (процесс восстановления природной структуры ДНК, поврежденной при нормальном биосинтезе ДНК в клетке химическими или физическими агентами).
4. Ген способен к реализации - синтезу белка, кодируемого геном при участии двух матричных процессов: транскрипции и трансляции.
5. Генетический материал обладает устойчивостью. Устойчивость генетического материала обеспечивается: - диплоидным набором хромосом; - двойной спиралью ДНК; - вырожденностью генетического кода; - повтором некоторых генов; - репарацией нарушенной структуры ДНК.
Дискретность гена заключается в наличии субъединиц. Элементарная единица изменчивости, единица мутации названа мутоном, а единица рекомбинации - РЕКОНОМ. Минимальные
размеры мутона и рекона равны 1 паре нуклеотидов и называются с а й т. Таким образом САЙТ - это структурная единица гена.
Согласно современным, уточненным представлениям, ген - это участок молекулы геномной нуклеиновой кислоты, характеризуемый специфичной для него последовательностью нуклеотидов, представляющий единицу функции, отличной от функции других генов и способный изменяться путем мутирования. Гены неоднородны. Их делят на структурные и функциональные.
Основными первичными функциями генов являются хранение и передача генетической информации. Передача генетической информации происходит при редупликации ДНК
(при размножении клеток) и от ДНК через и-РНК к белку (при обычном функционировании клеток).
Система записи генетической информации в молекулах нуклеиновых кислот в виде определенной последовательности нуклеотидов называется генетическим кодом.
Явление соответствия порядка нуклеотидов в молекуле ДНК порядку аминокислот в молекуле белка называется колинеарностью.
Генетический код - система записи, свойственная всем живым организмам
Свойства генетического кода:
1) универсальность - один триплет кодирует одну и ту же аминокислоту у всех живых существ;
2) триплетность - т.е. одной аминокислоте соответствуют три рядом расположенных нуклеотида;
3) неперекрываемость - один нуклеотид не может входить одновременно в два и больше триплета;
4) вырожденность (избыточность) - одну аминокислоту могут кодировать несколько триплетов;
5) без разделительных знаков.
1. Генетика - наука о наследственности и изменчивости - фундаментальных свойствах живого.
2. Общие понятия генетического материала и его свойствах.
3. Первичные функции генов. Генетический код и его свойства.
4. Уровни структурной организации наследственного материала: генный, хромосомный, геномный.
5. Генная система клеток про- и эукариот. Роль ядра и цитоплазмы в передаче наследственного материала.
Триплет является элементарной функциональной единицей гена, а пара нуклеотидов - его структурной единицей.
Различают следующие уровни структурно-функциональной организации наследственного материала: генный, хромосомный и геномный.
Элементарной структурой ГЕННОГО уровня организации служит ген. На этом уровне изучается структура молекулы ДНК, биосинтез белка и др. Благодаря относительной независимости генов возможно дискретное (раздельное) и независимое наследование (III закон Менделя) и изменение (мутации) отдельных признаков.
Гены клеток эукариот распределены по хромосомам, образуя ХРОМОСОМНЫЙ уровень организации наследственного материала. Этот уровень организации служит необходимым условием сцепления генов и перераспределения генов родителей у потомков при половом размножении (кроссинговер).
Вся совокупность генов организма в функциональном отношении ведет себя как целое и образует единую систему, называемую ГЕНОМОМ. Один и тот же ген в разных генотипах может проявлять себя по-разному. Геномный уровень организации объясняет взаимодействие генов как в одной, так и в разных хромосомах.
В современном мире жизни материальным носителем свойств наследственности и изменчивости является ДНК, «выигравшая» историко-эволюционное «соревнование» у РНК. Этому способствовали ее большая химическая стабильность и особенности макромолекулярной и надмолекулярной организации. ДНК - высокомолекулярное полимерное соединение. Независимая комбинация по длине макромолекул троек из четырех нуклеотидов-мономеров, строящих ДНК, позволяет записать необходимый объем биоинформации, а надмолекулярная организация в виде двойной спирали делает возможным матричный синтез. Он составляет основу тиражирования (репликация ДНК - см. п. 2.4.5.3) биоинформации для передачи в ряду поколений или копирование
(транскрипция информационной или матричной РНК - см. п. 2.4.5.5) этой информации для использования в организации процессов жизнедеятельности. Участки макромолекул ДНК могут быть химически модифицированы (например, метилированы), что в процессе эволюции стало механизмом регуляции генетической активности. ДНК образует химические связи с белками, что также было использовано эволюцией для создания тонких механизмов регуляции генетических функций. Напомним, что в эукариотических клетках ДНК присутствует в виде комплекса с гистоновыми (основными по химической характеристике) белками, выполняющими роль ингибиторов генетической активности, а негистоновые (кислые по химической характеристике) белки, ослабляя указанное действие гистонов путем взаимодействия с ними, обусловливают возможность использования биоинформации, присутствующей в ДНК, причем в клетках многоклеточных организмов частями.
Несмотря на химическую стабильность, нуклеотидные последовательности в макромолекулах ДНК могут быть изменены. При этом такие изменения сохраняются в структуре биополимера при его репликации.
Решение задач, которые жизнедеятельность ставит перед эукариотическими клетками, особенно у многоклеточных форм, требует большой точности и надежности биологических механизмов. Возможно, что, по крайней мере, отчасти в связи с этим, их генетический аппарат (аппарат наследственности и изменчивости) претерпел в эволюции изменения в сторону его усложнения.
В генетическом аппарате эукариотической клетки (эукариотических организмов, включая человека) выделяют три уровня структурной и одновременно функциональногенетической организации: генный, хромосомный и геномный. На каждом из них решаются свои специфические задачи, с одной стороны, наследственности, а с другой, - биологической изменчивости с целью требуемого биоинформационного обеспечения процессов жизнедеятельности, размножения, индивидуального (онтогенез) и исторического (филогенез, эволюция) развития.
Наряду с такими понятиями, как «ген», «хромосома» и «геном», существуют важные генетические понятия «генотип» и «кариотип», имеющие непосредственное отношение к структурно-функциональной организации генетического аппарата эукариот.
Структура ДНК, свойства и функции.
ДНК состоит из нуклеотидов, в состав которых входят сахар -- дезоксирибоза, фосфат и одно из азотистых оснований - аденин, гуанин, тимин, цитозин. Молекулы ДНК включают две полинуклеотидные цепи, связанные между собой определенным образом.
Уотсон и Крик предположили, что эти цепи соединяются друг с другом водородными связями между их азотистыми основаниями по принципу комплементарности. Аденин одной цепи соединяется двумя водородными связями с Тимином другой цепи, а между гуанином и цитозином разных цепей образуются три водородные связи. Такое соединение азотистых оснований обеспечивает прочную связь двух цепей и сохранение равного расстояния между ними на всем протяжении. Другой важной особенностью двух полинуклеотидных цепей в молекуле ДНК является их антипараллельность:5-конец одной цепи соединяется с 3-концом другой и наоборот. Данные рентгеноструктурного анализа показали, что молекула ДНК, состоящая из двух цепей, образует спираль, закрученную вокруг своей оси. Диаметр спирали 2 нм, длина шага 3,4 нм. В каждый виток входит 10 пар нуклеотидов. Т.о. в структурной организации молекулы ДНК можно выделить первичную структуру -- полинуклеотидную цепь, вторичную -- две комплементарные и антипараллельные цепи и третичную
Структуру -- трехмерную спираль.
ДНК способна к самокопированию -- репликация. В процессе репликации на каждой полинуклеотидной цепи материнской молекулы ДНК синтезируется комплементарная ей цепь. В итоге из одной двойной спирали ДНК образуются две идентичные двойные спирали. Такой способ удвоения молекул, при котором каждая дочерняя молекула одну материнскую и одну вновь синтезированную цепь, называется полуконсервативным. Для осуществления репликации материнской ДНК должны быть отделены друг от друга, чтобы стать матрицами, на которых будут синтезироваться комплементарные цепи дочерних молекул.
С помощью фермента геликазы двойная спираль ДНК в отдельных зонах расплетается. Образующиеся при этом одноцепочечные участки связываются специальными дестабилизирующими белками. Молекулы этих белков выстраиваются вдоль полинуклеотидных цепей, растягивая их остов и делая азотистые основания доступными для связывания с комплементарными нуклеотидами. Области расхождения полинуклеотидных цепей в зонах репликации называют репликационными вилками. В каждой такой области при участии фермента ДНК-полимеразы синтезируется ДНК двух новых дочерних молекул. В процессе синтеза репликационная вилка движется вдоль материнской спирали, захватывая все новые зоны. Конечным результатом репликации является образование двух молекул ДНК, нуклеотидная последовательность которых идентична таковой в материнской двойной спирали ДНК.
Список литературы
поколение генетический наследственность
1.Биология: учебник: в 2 т. / под ред. В. Н. Ярыгина. - 2011. - Т. 1. - 736 с.: ил.
2.http://yamedik.org/?p=79&c=biologiya/bio_yar_1.
3.https://studfiles.net/preview/4455852/.
4.http://licey.net/free/6-biologiya/73genetika_i_selekciya_teoriya_zadaniya_otvety/stages/4408-genom_eukariot.html 5) http://alexmed.info/2017/07/27/организация-наследственного-материа/.
Размещено на Allbest.ru
...Подобные документы
Фундаментальные свойства живого: наследственность и изменчивость. История формирования представлений об организации материального субстрата наследственности и изменчивости. Свойства генетического материала и уровни организации генетического аппарата.
дипломная работа [2,8 M], добавлен 30.07.2009Свойства генетического материала и уровни организации генетического аппарата. Химическая организация и свойства гена. Структура и функции дезоксирибонуклеиновой и рибонуклеиновая кислот. Уровни упаковки генетического материала. Биосинтез белка в клетке.
курсовая работа [41,7 K], добавлен 07.02.2015Уровни организации живой материи. Структура и функции цитоплазматической мембраны. Хроматин: структура, функции, уровни укладки. Генный уровень организации наследственного материала. Особенности структурной и функциональной организации генов эукариот.
курс лекций [3,9 M], добавлен 27.11.2014Положения клеточной теории. Особенности электронной микроскопии. Детальная характеристика строения и функции клеток, их связи и отношения в органах и тканях у многоклеточных организмов. Гипотеза тяготения Роберта Гука. Сущность строения клетки эукариот.
презентация [1,6 M], добавлен 22.04.2015Трансляция – синтез белка на матрице-РНК. Различие в рибосомах про- и эукариот. Процесс образования аминоацил-тРНК. Этапы трансляции, их сущность и краткая характеристика. Сопряженность с транскрипцией в прокариотических и эукариотических клетках.
презентация [832,8 K], добавлен 05.12.2012Организация наследственного материала прокариот. Химический состав эукариот. Общая морфология митотических хромосом. Структура, ДНК, химия и основные белки хроматина. Уровни компактизации ДНК. Методика дифференцированного окрашивания препаратов хромосом.
презентация [7,4 M], добавлен 07.01.2013Изучение строения гена эукариот, последовательности аминокислот в белковой молекуле. Анализ реакции матричного синтеза, процесса самоудвоения молекулы ДНК, синтеза белка на матрице и-РНК. Обзор химических реакций, происходящих в клетках живых организмов.
презентация [666,1 K], добавлен 26.03.2012Транскрипция – процесс переноса генетической информации от ДНК к РНК. Природа информационной связи между ДНК и белками. Строение и организация единиц транскрипции у прокариот и эукариот. Синтез РНК - выделение стадий инициации, элонгации и терминации.
лекция [27,1 K], добавлен 21.07.2009Симметрия - фундаментальная особенность природы, охватывающая все формы движения и организации материи: понятие, принципы и методологическая роль в науке. Функциональная биосимметрика: преобразование живых систем; круговая таблица генетического кода.
реферат [195,8 K], добавлен 18.01.2011История изучения нуклеиновых кислот как биополимеров, мономерами которых являются нуклеотиды, функции и значение в жизнедеятельности организма. Правила Чаргаффа. Первичная и вторичная структура ДНК. Особенности репликации у эукариот, ее разновидности.
презентация [533,6 K], добавлен 05.11.2014Регуляция на уровне транскрипции у прокариот. Этапы процессинга РНК у эукариот. Энхансеры, сайленсеры, инсуляторы. РНК-интерференция. Упаковка генетического материала. Роль эпигенетических модификаций. Гистоновый код, его структура и принципы построения.
презентация [1,7 M], добавлен 14.04.2014Процессинг молекул первичных РНК в ядре клеток человека. Канонический и альтернативный сплайсинг, его механизм и значение в жизнедеятельности организма, взаимосвязь и оценка пластичности. Основные факторы сплайсинга: разнообразие, строение и функции.
курсовая работа [513,7 K], добавлен 11.05.2015Описание аппарата Гольджи: структура и функции. Анализ деятельности аппарата Гольджи в клетке. Сущность и особенности фибриллярных структур. Сортировка белков и передача сигнала. Общая характеристика молекулярного механизма функционирования аппарата.
реферат [371,7 K], добавлен 13.12.2008Характеристика уровней организации жизни живых систем. Строение систем и органов человека. Понятие и роль центральной и вегетативной нервной системы. Высшая нервная деятельность и безусловные рефлексы. Сущность и биологическая роль гормонов тимуса.
контрольная работа [29,0 K], добавлен 23.12.2010Одноклеточные живые организмы, не обладающие оформленным клеточным ядром. Строение и размножение прокариот. Основные группы прокариот: фототрофы, хемоавтотрофы, органотрофы и бактерии-паразиты. Сравнительная характеристика прокариот и эукариот.
презентация [748,9 K], добавлен 01.02.2011Структура и поведение ДНК, ее компоненты и соединяющие их химические связи. Альтернативные формы двойной спирали ДНК. Размер молекул и разнообразие форм. Денатурация и ренатурация ДНК. Гибридные спирали ДНК-РНК. Конформация белка, уровни его структуры.
реферат [36,7 K], добавлен 26.07.2009Теория прыгающих генов Б. Мак-Клинток, транспозоны как последовательности ДНК, способные к перемещению. Типы мобильных элементов и их свойства, значение в жизни организма. Транспозирующиеся элементы прокариот. Подвижные генетические элементы у эукариот.
лекция [38,5 K], добавлен 21.07.2009Изучение химических основ наследственности. Характеристика строения, функций и процесса репликации рибонуклеиновой и дезоксирибонуклеиновой кислот. Рассмотрение особенностей распределение генов. Ознакомление с основными свойствами генетического кода.
контрольная работа [38,4 K], добавлен 30.07.2010Докембрийский этап развития Земли. Условия, необходимые для возникновения и начала развития жизни на Земле. Возникновение жизни согласно гипотезе академика А.И. Опарина. Первые формы жизни на планете. Основные теории появления и развития эукариот.
реферат [231,5 K], добавлен 25.07.2010Электромагнитные взаимодействия как определяющий уровень организации материи. Сущность живого, его основные признаки. Структурные уровни организации живой материи. Предмет биологии, ее структура и этапы развития. Основные гипотезы происхождения жизни.
лекция [28,4 K], добавлен 18.01.2012