Механизм действия активности ферментов
Общая характеристика ферментов. Механизм действия и регуляция активности ферментов. Скорость образования конечного продукта метаболического пути. Особенности механизма действия аллостерического эффектора. Сущность ковалентной модификации фермента.
Рубрика | Биология и естествознание |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 22.02.2019 |
Размер файла | 39,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Кафедра «Общая биология и биохимия»
Реферат
по дисциплине «Молекулярные механизмы биорегуляции»
на тему:
Механизм действия активности ферментов
Направление подготовки - 06.03.01 Биология
Профиль подготовки - Биохимия
Выполнил: студент
Бибарсова Галия
Пенза,2017
Содержание
Введение
1. Основная характеристика ферментов
2. Механизм действия и регуляция активности ферментов
3. Локализация ферментов в клетке
Заключение
Список литературы
Введение
Ферменты (от лат. fermentum - брожение, закваска), специфические белки, присутствующие во всех живых клетках и играющие роль биологических катализаторов. Через их посредство реализуется генетическая информация и осуществляются все процессы обмена веществ и энергии в живых организмах. Ферменты бывают простыми или сложными белками, в состав которых наряду с белковым компонентом (апоферментом) входит небелковая часть - кофермент. Эффективность действия ферментов определяется значительным снижением энергии активации катализируемой реакции в результате образования промежуточных фермент-субстратных комплексов. Присоединение субстратов происходит в активных центрах, которые обладают сходством только с определенными субстратами, чем достигается высокая специфичность (избирательность) действия ферментов. Одна из особенностей ферментов - способность к направленному и регулируемому действию. За счёт этого контролируется согласованность всех звеньев обмена веществ. Эта способность определяется пространственность структурной молекулы ферментов. Она реализуется через изменение скорости действия ферментов и зависит от концентрации соответствующих субстратов и кофакторов, рH среды, температуры, а также от присутствия специфических активаторов и ингибиторов (например, адениловых нуклеотидов, карбонильных, сульфгидрильных соединений и др.). Некоторые ферменты помимо активных центров имеют дополнительные, т.н. аллостерические регуляторные центры. Биосинтез ферментов находится под контролем генов. Различают конститутивные ферменты , постоянно присутствующие в клетках, и индуцируемые ферменты , биосинтез которых активируется под влиянием соответствующих субстратов. Некоторые функционально взаимосвязанные ферменты образуют в клетке структурно организованные полиферментные комплексы. Многие ферменты и ферментные комплексы прочно связаны с мембранами клетки или её органоидов (митохондрий, лизосом, микросом и т.д.) и участвуют в активном транспорте веществ через мембраны.
Известно более 20000 различных ферментов, из которых многие выделены из живых клеток и получены в индивидуальном состоянии. Первый кристаллический фермент (уреаза) выделен американским биохимиком Д.Самнером в 1926 г. Для ряда ферментов изучена последовательность аминокислот и выяснено расположение полипептидных цепей в трёхмерном пространстве. В лабораторных условиях осуществлен искусственный химический синтез фермента рибонуклеазы. Ферменты используют для количественного определения и получения различных веществ, для модификации молекул нуклеиновых кислот методами генной инженерии, диагностики и лечения ряда заболеваний, а также в ряде технологических процессов, применяемых в лёгкой, пищевой и фармацевтической промышленностях.
1. Общая характеристика ферментов
Ферменты или энзимы - биологические катализаторы белковой природы. Слово фермент происходит от латинского fermentum «закваска», а энзим от древнегреческого «эн зюме» - «в дрожжах».
На современном этапе учение о ферментах выделено в самостоятельную науку - энзимологию. Она стремительно развивается в тесной связи с целым рядом других наук - неорганической, органической, физической химией, физиологией, микробиологией, генетикой, фармакологией и др. Ферменты и ферментные препараты широко используются в практической ветеринарии и медицине, пищевой промышленности и других отраслях.
Ферменты являются белками, как простыми, так и сложными. Они могут иметь до 4-х уровней организации. Большинство ферментов относится к сложным белкам, имеющим помимо полипептидных цепей и небелковый компонент. Полипептидную часть фермента называют обычно апоферментом, а небелковую - кофактором. Если белковая часть молекулы феремента прочно связана со своим кофактором и эта связь не разрушается при выделении и очистке, то такой кофактор называют простетической группой. Если же эта связь непрочная и легко разрушается, то небелковую часть молекулы обозначают, обычно, как кофермент.
Необходимо отметить, что в случае сложных ферментов ферментативной активностью обладает только комплекс апофермент-кофактор, в отдельности ни тот, ни другой катализировать реакцию не могут.
Каталитическое действие связано с определенным участком белковой молекулы фермента, т.е. активным центром. Под активным центром понимают высокоспецифическую комбинацию аминокислотных остатков определенной части фермента, обеспечивающую взаимодействие его с молекулой субстрата и каталитическое действие. Обычно с активным центром связывается субстрат, т.е. вещество, которое превращается под действием фермента, хотя субстрат - связывающий участок и активный центр не обязательно совпадают. Активные центры составляют очень небольшую часть молекулы фермента. В состав активного центра входят также коферементы. фермент аллостерический эффектор ковалентный
Помимо активного центра у ферментов имеется регуляторный или аллостерический центр (от греч. alios - иной, чужой). Он называется так потому, что молекулы, связывающиеся с этим центром по строению (стерически) отличаются от субстрата, но влияют на превращение субстрата, меняя конформацию активного центра и оказывая тем самым влияние на каталитический эффект.
Обычно активный центр фермента состоит из 12-20 аминокислотных остатков полипептидной цепи. Нужно иметь в виду, что аминокислоты образующие активный центр, как правило, находятся не рядом, а в разных местах полипептидной цепи, которая так располагается в пространстве, что они сближаются и формируют активный центр.
Встает естественный вопрос, почему молекула фермента столь велика (молекулярные массы ферментов варьируют от 10000 до нескольких миллионов), если в образовании активного центра принимает участие всего лишь десяток-другой аминокислот. Дело в том, что для проявления ферментативного действия необходима определенная конформация белка, которая обеспечивает соответствующее пространственное расположение реакционноспособных групп молекулы фермента. Большинство аминокислот молекулы фермента играют чисто структурную роль, поддерживая необходимую трехмерную форму молекулы.
Считается, что аминокислоты, из которых состоят ферменты, в соответствии с той ролью, которую они играют можно разделить на 3 группы.
Некоторые аминокислоты содержат реакционные группы, действующие на субстрат в процессе осуществления ферментативной реакции (аминокислоты каталитического участка).
Другие обеспечивают присоединение субстрата к ферменту таким образом, чтобы связь была определенным образом ориентирована по отношению к активному центру (аминокислоты контактного участка).
Аминокислоты третьей группы играют чисто структурную роль и создают необходимую пространственную структуру (структурные аминокислоты). У простых ферментов, роль функциональных групп контактного и каталитического участка выполняют только боковые радикалы аминокислот. У сложных ферментов главную роль в этих процессах выполняют кофакторы. Аминокислоты в этом случае играют вспомогательную роль, обеспечивая необходимую конформацию активного центра.
2. Механизм действия и регуляция активности ферментов
Основным положением ферментативной кинетики является представление о фермент-субстратных комплексах (ES). Как в случае неорганических катализаторов, фермент обеспечивает протекание реакции по более эффективному пути, с более низкой энергией активации. Более высокая каталитическая активность ферментативной реакции обусловлена тем, что процесс идет через стадию образования ES. Скорость ферментативных реакций в 103 - 1013 раз выше скорости не каталитической реакции. Такое резкое увеличение скорости обусловлено двумя причинами - эффектом сближения, который наблюдается и в неферментных реакциях и эффектом ориентации, который исключительно результативно осуществляется именно в ферментативных реакциях.
Молекулы ферментов в отличие от других катализаторов имеют очень сложное строение. Это дает возможность реализовать такие механизмы повышения скорости реакций, которые невозможны с небиологическими катализаторами. Здесь возможны взаимодействия особого рода, отсутствующие в обычном катализе. Если допустить, что связывание субстрата на молекуле фермента происходит не в одной, а трех точках, то одно это уже резко увеличивает вероятность необходимых ориентаций и на несколько порядков повышает скорость реакции.
В образовании фермент-субстратных комплексов могут принимать участие ковалентные, ионные, водородные связи, гидрофобные взаимодействия. Каталитическая активность фермента связана с его пространственной структурой, в которой жесткие участки спиралей чередуются с гибкими эластичными линейными отрезками.
При объяснении механизма действия ферментов широкое признание получила гипотеза «индуцированного» или «вынужденного» соответствия Кошленда. В соответствии с этой гипотезой необходимое расположение функциональных групп активного центра фермента происходит под воздействием субстрата. Реакционно-способная конформация всей молекулы фермента и его активного центра возникает в результате деформирующего воздействия субстрата. При этом следует иметь в виду, что индуцированное соответствие создается не только изменением конформации фермента, но и перестройкой молекулы субстрата.
Гипотеза «вынужденного соответствия» была экспериментально подтверждена, когда было доказано изменение расположения функциональных групп активного центра в процессе присоединения субстрата. Специфичность фермента обусловлена, вероятно, возможностью конформационных перестроек активного центра. Если возможности перестройки велики, то фермент может взаимодействовать с несколькими близкими по структуре субстратами и проявляет групповую специфичность, если возможность резко ограничена, то фермент высоко специфичен.
Гипотеза индуцированного соответствия предполагает наличие между ферментом и субстратом не только пространственной комплементарности, но и электростатического взаимодействия, обусловленного противоположно заряженными группами субстрата и фермента.
В организме реализуется одновременно огромное количество биохимических реакций важных для процессов жизнедеятельности, которые должны строго регулироваться в соответствии с потребностями организма. Эта регуляция должна обеспечивать поставку необходимых компонентов в заданный отрезок времени с наименьшими затратами энергии. Так как практически любая биологически важная реакция - это ферментативная реакция, то ясно, что такая регуляция осуществляется главным образом путем контроля ферментов, катализирующих ключевые метаболические реакции.
Скорость образования конечного продукта метаболического пути может регулироваться или путем изменения активности соответствующих ферментов или путем увеличения или уменьшения числа молекул фермента (индукция или репрессия).
Регулирование активностей ферментов в клетке происходит различными путями. Для большинства ферментов, которые подчиняются уравнению Михаэлиса-Ментен, важным регуляторным фактором является концентрация субстрата. Была введена величина Км представляющая концентрацию субстрата, при которой скорость реакции составляет 50% максимальной. Так как в клетке концентрация субстратов близка к Км или несколько ниже ее, то незначительные изменения концентрации субстратов приводят к относительно большим изменениям скоростей реакций.
Регуляция активности фермента может осуществляться за счет прямого воздействия на центры связывания субстрата, например, ингибирование фермента аналогами субстрата.
Прочно связываются с активным центром фермента ингибиторы белковой природы. Например, ингибитор трипсина - белок с молекулярной массой 6000. Он обладает сильным ингибирующим эффектом, так как строго комплементарен структуре активного центра фермента.
Однако гораздо чаще встречается аллостерический (нековалентный) тип регуляции активности ферментов.
Аллостерическая регуляция характерна для ферментов, состоящих из 2 и более субъединиц и имеющих более одного субстратсвязывающего центра. Эти ферменты содержат аллостерические центры (отличные от субстратсвязывающих), которые способны связывать определенные вещества, носящие название аллостерических эффекторов. Если связывание эффектора снижает скорость ферментативной реакции, то его называют аллостерическим ингибитором, если увеличивает - аллостерическим активатором. В качестве аллостерических эффекторов ферментов выступают различные метаболиты, гормоны, коферменты. Одним из путей регуляции аллостерических ферментов является угнетение посредством «отрицательной обратной связи» или «ретроингибирование», т.е. угнетение конечным продуктом реакции. Некоторые молекулы ферментов имеют несколько аллостерических центров, одни из которых специфичны к положительным, другие к отрицательным эффекторам. Аллостеричекие центры ферментов так же, как и активные центры, могут проявлять резко выраженную специфичность, когда они могут связывать только один определенный эффектор или относительную, когда может происходить связывание сходных по структуре эффекторов.
Механизм действия аллостерического эффектора связан с изменением конформации субъединиц из которых построен фермент, что сказывается на каталитической активности фермента.
Аллостерическая регуляция является одним из самых тонких и высоко специфичных механизмов «быстрого реагирования» на те или иные процессы в окружающей среде и используется для точной настройки метаболических систем. Эффектор может действовать только в одной или нескольких тканях организма и быть связанным со строго определенным звеном метаболизма.
Для аллостерических ферментов характерно явление кооперативности. Оно проявляется в том, что каталитические центры субъединиц взаимодействуют не автономно, а взаимосвязано. Взаимодействие с субстратом или эффектором одного из таких центров усиливает способность к взаимодействию остальных активных центров (положительная кооперативность). В некоторых случаях связывание одним активным центром субстрата понижает способность к связыванию остальных центров (отрицательная кооперативность).
Наиболее хорошо положительная кооперативность изучена на примере молекулы гемоглобина, которая имеет четыре связывающих 02 участка (группы гема). Связывание молекулы кислорода одним центром, приводит к усиленному взаимодействию с кислородом остальных участков. Сродство гемоглобина к 02 к последней (четвертой) группе более чем в 100 раз больше, чем к первой. Так как связывающие кислород участки разделены в молекуле большими расстояниями, то они не могут взаимодействовать непосредственно. Очевидно, при оксигенировании меняется конформация молекулы в целом, что приводит к изменению сродства связывающих участков.
Кооперативность также является одним из путей регуляции активности ферментов.
Активность фермента может изменяться и в результате, так называемой ковалентной (посттрансляционной) модификации, при которой происходит или отщепление части молекулы или присоединение к ферменту небольших групп. В обоих случаях эти модификации молекулы фермента связаны с разрывом или образованием ковалентных связей.
Известно, что протеолитические ферменты желудочно-кишечного тракта (пепсин, трипсин, химотрипсин) синтезируются в виде неактивных предшественников - проферментов. Регуляция активности фермента в этом случае заключается в том, что под действием специфических веществ (ферментов) неактивная форма превращается в активную. Так, например, трипсин синтезируется в поджелудочной железе в виде трипсиногена, который, попадая в тонкий кишечник, под действием фермента энтерокиназы превращается в трипсин. При этом от трипсиногена отщепляется гексапептид. Трипсин в свою очередь разрывает одну пептидную связь в химотрипсиногене, что приводит к структурным изменениям в активном центре и превращает его в активный химотрипсин.
Превращение пепсиногена в активную форму пепсин также связано с отщеплением пептида от молекулы неактивного пепсиногена. Синтез протеолитических ферментов в виде проферментов имеет важное значение в процессе регулирования процесса пищеварения в желудочно-кишечном тракте.
Регулирование активности протеолитических ферментов в желудочно-кишечном тракте происходит не только превращением профермента в активный фермент, но и путем связывания ферментов с естественными ингибиторами. В слизистой оболочке желудка и кишечника были найдены низкомолекулярные белки, ингибирующие действие пепсина и трипсина. Весьма активный ингибитор пепсина был выделен из желудка свиньи, а ингибитор трипсина из поджелудочной железы.
Ковалентная модификация фермента с изменением его активности может происходить не только в результате разрыва пептидных связей, а путем присоединения к молекуле фермента специфической группы. Например, регуляция активности фермента гликогенсинтетазы, играющего основную роль в тонкой регуляции синтеза гликогена осуществляется путем фосфорилирования и дефосфорилирования его.
Фосфорилирование с участием протеинкиназ является распространенной формой регуляции активности ферментов путем ковалентной модификации. Активность большого числа ферментов и интенсивность соответствующих процессов обмена веществ определяется соотношением фосфорилированных и дефосфо - рилированных форм этих ферментов.
Регуляция ферментативной активности может осуществляться за счет усиления синтеза уже имеющихся ферментов или даже новых ферментов в ответ на изменившиеся условия существования (появление новых пищевых факторов, химических веществ).
При воздействии специфических веществ «индукторов» или «репрессоров» происходит соответственно инициация или подавление процесса транскрипции. Эта регуляция, осуществляемая в процессе биосинтеза фермента, может приводить к изменению концентрации фермента, изменению типов имеющихся в клетке ферментов и изоферментного состава.
Этот путь регуляции более медленный, так как связан с изменением биосинтеза белка. Поэтому между сигналом о необходимости изменения концентрации фермента и установлением его нового содержания пройдет определенное время - от нескольких часов, до нескольких дней. Следовательно, путем изменения концентрации фермента, быстрого регулирования скоростей реакций добиться нельзя. Однако, в тех случаях, когда необходимо не быстрое изменение метаболизма, а продолжительная регуляция метаболического процесса этот путь приобретает важное значение.
Например, в случаях необходимости стимуляции глюконеогенеза происходит повышение концентрации таких ферментов как глюкозо - 6 - фосфатаза, фруктозо -1,6 - бисфосфатаза и фосфоенолпируваткарбоксилаза. Потребность в повышенных количествах этих ферментов обусловлена тем, что они катализируют реакции в обход физиологически необратимых этапов прямого цикла.
Показано, что при метаболическом ацидозе у животных усиливается синтез глутаминазы. Это связано с необходимостью нейтрализации аммиаком накапливающихся в организме кислых продуктов.
Имеющиеся в литературе данные говорят о том, что индукция или репрессия ферментов могут вызываться диэтическими факторами.
Введение глюкозы крысам, предварительно голодавшим в течение 5 дней, вызвало резкое повышение активности глюкокиназы. Так как инъекция пуромицина или актимицина Д подавляли эту активацию, был сделан вывод о том, что причина повышения активности фермента объясняется увеличением его синтеза (пуромицин тормозит синтез белка, а актиномицин - синтез мРНК).
Хорошо известна зависимость между активностью ферментов цикла мочевинообразования и количеством белка в рационе. Повышение содержания белка в рационе сопровождается повышением активности этих ферментов, причем это повышение пропорционально интенсивности синтеза мочевины. Не было обнаружено изменения кинетических свойств ферментативных молекул, наличие каких-либо ингибиторов или активаторов, что позволило сделать заключение, что увеличение активности связано с повышеным синтезом соответствующих ферментов.
Велико значение индукции ферментов при патологии. Индукция ферментов часто сопряжена с развитием защитных процессов при возникновении патологических состояний организма. В то же время следует иметь в виду, что в некоторых случаях усиленный синтез ферментов в ответ на изменение внешних условий среды может привести к развитию патологического процесса.
В ряде случаев при поступлении в организм лекарственных или других чуждых ему веществ также происходит индукция ферментов. Однако это не всегда способствует адаптации организма к новому для него веществу и не всегда обеспечивает более благоприятные условия для жизнедеятельности организма, так как продукт ферментативного превращения может быть более токсичен, чем исходное вещество. В этом случае эффект будет отрицательный.
Способностью индуцировать образование ферментов, как установлено, обладают многие лекарственные вещества - барбитураты, летучие анастетики, гипогликемические вещества, анальгетики, инсектициды и др. Этим явлением можно объяснить наблюдающиеся часто привыкание к некоторым лекарственным веществам при их длительном применении.
Например, при экспериментальном введении собакам фенилбутазона у животных повышалось его содержание в крови и наблюдалось явление интоксикации. Повторное введение этого препарата уже не вызывало столь резко выраженного повышения его в крови и токсического эффекта.
Индукция ферментов фармакологическими веществами часто не является узкоспецифической. Часто образуются ферменты, способствующие превращению не только данного вещества - индуктора, но некоторых других лекарственных веществ. Например, введение в организм пентабарбитурата приводит к усилению метаболизма не только этого вещества, но вызывает усиленное окисление и гексабарбитурата и даже веществ, не относящихся к группе барбитуратов.
Говоря о метаболизме лекарственных веществ в организме нужно иметь в виду, что он может осуществляться не только за счет индукции ферментов, но также путем аллостерической и ковалентной модификации ферментов.
3. Локализация ферментов в клетке
Одним из принципиальных отличий ферментов от катализаторов небиологического происхождения является кооперативный характер их действия . На уровне одиночной молекулы фермента кооперативный принцип реализуется в тонком взаимодействии субстратного, активного и аллостерического центров. Однако гораздо большее значение имеет кооперативное осуществление реакций на уровне ансамблей ферментов. Именно благодаря наличию систем ферментов - в виде мультиэнзимных комплексов или еще более сложных образований - метаболонов , обеспечивающих каталитические превращения всех участников единого метаболического цикла - в клетках с большой скоростью осуществляются многостадийные процессы как распада, так и синтеза органических молекул. Ферментативный катализ в многостадийных реакциях идет без выделения промежуточных продуктов: только возникнув, они тут же подвергаются дальнейшим преобразованиям.
Это возможно лишь потому, что в клеточном содержимом ферменты распределены не хаотически, а строго упорядоченно. С современной точки зрения клетка представляется высокоорганизованной системой, в отдельных частях которой осуществляются строго определенные биохимические процессы. В соответствии с приуроченностью их к определенным субклеточным частицам или отсекам (компартментам) клетки в них локализованы те или иные индивидуальные ферменты, мультиэнзимные комплексы, полифункциональные ферменты или сложнейшие метаболоны.
Разнообразные гидролазы и лиазы сосредоточены преимущественно в лизосомах. Внутри этих сравнительно небольших (несколько нанометров в диаметре) пузырьков, ограниченных мембраной от гиалоплазмы клетки, протекают процессы деструкции различных органических соединений до тех простейших структурных единиц, из которых они построены. Сложные ансамбли окислительно-восстановительных ферментов, такие, например, как цитохромная система, находятся в митохондриях. В этих же субклеточных частицах локализован набор ферментов цикла дикарбоновых и трикарбоновых кислот. Ферменты активирования аминокислот распределены в гиалоплазме, но они же есть и в ядре. В гиалоплазме присутствуют многочисленные метаболоны гликолиза, структурно объединенные с таковыми пентозофосфатного цикла, что обеспечивает взаимопереключение дихотомического и апотомического путей распада углеводов. В то же время ферменты, ускоряющие перенос аминокислотных остатков на растущий конец полипептидной цепи и катализирующие некоторые другие реакции в процессе биосинтеза белка, сосредоточены в рибосомальном аппарате клетки. Нуклеотидилтрансферазы, ускоряющие реакцию переноса нуклеотидных остатков при новообразовании нуклеиновых кислот, локализованы в основном в ядерном аппарате клетки. Таким образом, системы ферментов, сосредоточенные в тех или иных структурах, участвуют в осуществлении отдельных циклов реакций. Будучи тонко координированы друг с другом, эти отдельные циклы реакций обеспечивают жизнедеятельность клеток, органов, тканей и организма в целом.
Заключение
В результате проделанной работы я узнал, что ферменты это белки, катализирующие определённые химические реакции, входящие в процессы обмена веществ, отличаются чрезвычайно высокой эффективностью и специфичностью своего действия. По своему составу ферменты разделяют на простые ферменты, состоящие только из молекул белка, и сложные ферменты, состоящие из белка и небелкового компонента (простетические группы, коферменты). Каталитическое действие ферментов определяется главным образом, частью молекулы - активным центром. Действие всех ферментов происходит через стадию образования промежуточного соединения с молекулой субстрата. Ферменты играют важную роль в организме, в науке, в хозяйственной деятельности человека. Открытие разнообразных наук позволяет шире использовать ферменты.
Список литературы
1. Власова З.А. Биология. Справочник школьника. М., Всероссийское слово, 1995 г.
2. Хомченко Г.Л. Химия для поступающих в ВУЗы. Учебное пособие. М., Высшая школа, 1993 г.
3. Г. А. Смирнова, Основы биохимии.
Размещено на Allbest.ru
...Подобные документы
Классификация ферментов, их функции. Соглашения о наименовании ферментов, структура и механизм их действия. Описание кинетики односубстратных ферментативных реакций. Модели "ключ-замок", индуцированного соответствия. Модификации, кофакторы ферментов.
презентация [294,1 K], добавлен 17.10.2012Химический состав, природа и структура белков. Механизм действия ферментов, виды их активирования и ингибирования. Современная классификация и номенклатура ферментов и витаминов. Механизм биологического окисления, главная цепь дыхательных ферментов.
шпаргалка [893,3 K], добавлен 20.06.2013Локализация ферментов в клетке и изменение его количества. Протеолитические ферменты пищеварительного тракта. Закон действия масс. Сохранение сбалансированности катаболических и анаболических процессов. Химическая модификация и аллостерическая регуляция.
презентация [142,2 K], добавлен 15.03.2014Изучение ферментов, их свойств и механизма биологического действия. Проведение исследования современных представлений о механизме ферментативного трансаминирования. Разработка общей теории пиридоксалевого катализа. Строение фермент-субстратного комплекса.
реферат [189,0 K], добавлен 14.03.2015Уникальные свойства ферментов как биокатализаторов, их высокая каталитическая активность и избирательность действия. Определение наличия и активности фермента в препарате. Факторы, влияющие на биосинтез ферментов, интенсификация процесса роста и синтеза.
реферат [19,5 K], добавлен 19.04.2010Ферменты (энзимы) – каталитические белки. Характеристика, функция и принципы строения ферментов. Условия максимальной активности, кофакторы и коферменты. Распределение ферментов в организме. Диагностическое значение маркерных, секреторных и изоферментов.
презентация [27,2 K], добавлен 28.11.2015Общая характеристика и основные типы ферментов. Химические свойства ферментов и катализируемых ими реакций. Селективность и эффективность ферментов. Зависимость от температуры и от среды раствора. Активный центр фермента. Скорость ферментативных реакций.
презентация [1,8 M], добавлен 06.10.2014Характеристика ферментов, органических катализаторов белковой природы, которые ускоряют реакции, необходимые для функционирования живых организмов. Условия действия, получение и применение ферментов. Болезни, связанные с нарушением выработки ферментов.
презентация [2,6 M], добавлен 19.10.2013Кинетические исследования ферментативных реакций для определения ферментов и сравнения их скоростей. Образование из фермента и субстрата фермент-субстратного комплекса за счет сил физической природы. Факультативные организмы, автотрофы и гетеротрофы.
контрольная работа [858,4 K], добавлен 26.07.2009Исследование биологической роли ферментов в механизмах взаимодействия адренергической и пептидергической систем. Определение активности ферментов флюорометрическим методом. Изучение гипофиза, гипоталамуса, больших полушарий и четверохолмия самцов крыс.
статья [14,0 K], добавлен 01.09.2013Биологическое значение, классификация, изучение и регуляция каталитической активности ферментов биологической мембраны, их отличия от растворимых ферментов. Методы реконструкции белка. Функции липидов и методы изучения их влияния на мембранные ферменты.
курсовая работа [21,9 K], добавлен 13.04.2009Понятие ферментов как глобулярных белков, которые состоят из одной или нескольких полипептидных цепей. Особенности строения простых и сложных ферментов. Субстратный, аллостерический и каталитический центры в строении простых и сложных ферментов.
презентация [76,4 K], добавлен 07.02.2017Ферменты: биохимическое строение и физиологическая роль. Анализ методики определения активности ферментов и ферментативного спектра в жидкостях организма. Основные ферменты в моче в норме и при патологии. Ферментный спектр мочи при заболеваниях почек.
доклад [153,2 K], добавлен 10.03.2015Ускорение химических реакций с помощью катализаторов. Особенности ферментов (энзимов) как высокоспецифичных белков, выполняющих функции биологических катализаторов. Строение ферментов, их специфичность и классификация. Этапы ферментативного катализа.
презентация [3,4 M], добавлен 20.11.2014Определение ферментов как специфических белков, присутствующих во всех живых клетках биологических катализаторов. Пространственность структурной молекулы ферментов, процесс биосинтеза оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы.
контрольная работа [13,5 K], добавлен 27.01.2011Изучение методов получения и выделения внеклеточных и внутриклеточных ферментов. Описание процессов осаждения органическими растворителями и высаливания ферментов. Понятие коагуляции и флокуляции. Принцип работы центрифуг с роторами трубчатого типа.
курсовая работа [59,2 K], добавлен 30.11.2010Биообъекты растительного происхождения, используемые в культуре ткани для получения лекарственных веществ. Ферменты, используемые в генетической инженерии, механизм их действия. Сущность метода иммобилизации ферментов путем включения в структуру геля.
контрольная работа [617,9 K], добавлен 14.02.2013Катализ и энергия активации. Кофакторы ферментов и неорганические ионы, их разновидности и свойства. Скорость ферментных реакций и основные факторы, влияющие на нее. Ингибирование ферментов, его этапы и закономерности, биологическое обоснование.
реферат [602,0 K], добавлен 27.02.2017Ферменты, или энзимы - белковые молекулы или их комплексы, ускоряющие химические реакции в живых системах; коферменты и субстраты: история изучения, классификация, номенклатура, функции. Структура и механизм действия ферментов, их биомедицинское значение.
презентация [2,2 M], добавлен 07.12.2014Классификация, свойства, строение и номенклатура ферментов. Факторы, влияющие на их активность. Характеристика представителей гликозидазы, аептидгидролазы. Изучение особенностей метаболизма, анаболизма и катаболизма. Исследование структуры кофермента.
презентация [594,2 K], добавлен 25.12.2014