Медиаторные системы мозга

Исследование особенностей работы головного мозга и нервных импульсов. Анализ основных функций нейротрансмиттеров. Рассмотрение химической классификации нейромедиаторов. Характеристика нейромедиаторов как одного из основных средств лечения депрессии.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 22.02.2019
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра "Общая биология и биохимия"

Реферат

по дисциплине: «Физиология животных, высшей нервной деятельности»

на тему: «Медиаторные системы мозга»

Направление подготовки - 06.03.01 Биология

Профиль подготовки - Биохимия

Выполнил студент: Верещагин М.В.

Группа: 15ФБ2

Руководитель: К.б.н., доц Сугробова Г.А.

Пенза, 2017

Содержание

Введение

1. Головной мозг и нервные импульсы

2. Нейротрансмиттеры и головной мозг

3. Нейромедиаторы: общие сведения

4. Химическая классификация нейромедиаторов

5. Нейромедиаторы как средства лечения депрессии

Список литературных источников

Введение

головной мозг нейротрансмиттер депрессия

Головной мозг человека, орган, координирующий и регулирующий все жизненные функции организма и контролирующий поведение. Все наши мысли, чувства, ощущения, желания и движения связаны с работой мозга, и если он не функционирует, человек переходит в вегетативное состояние: утрачивается способность к каким-либо действиям, ощущениям или реакциям на внешние воздействия.

Память, способность к воспроизведению прошлого опыта, одно из основных свойств нервной системы, выражающееся в способности длительно хранить информацию о событиях внешнего мира и реакциях организма и многократно вводить ее в сферу сознания и поведения.

Медиаторам - химическим посредникам в синаптической передаче информации - придается большое значение в обеспечении механизмов долговременной памяти. Основные медиаторные системы головного мозга - холинэргическая и моноаминоэргическая (включает в себя норадреноэргическую, дофаминэргическую и серотонинэргическую) - принимают самое непосредственное участие в обучении и формировании энграмм памяти. Данный реферат посвящен медиаторным системам головного мозга человека.

1. Головной мозг и нервные импульсы

Центральная нервная система (ЦНС) состоит из головного и спинного мозга. Она связана с различными частями тела периферическими нервами - двигательными и чувствительными.

Головной мозг - симметричная структура, как и большинство других частей тела. При рождении его вес составляет примерно 0,3 кг, тогда как у взрослого он - 1,5 кг. При внешнем осмотре мозга внимание, прежде всего, привлекают два больших полушария, скрывающие под собой более глубинные образования. Поверхность полушарий покрыта бороздами и извилинами, увеличивающими поверхность коры (наружного слоя мозга). Сзади помещается мозжечок, поверхность которого более тонко изрезана. Ниже больших полушарий расположен ствол мозга, переходящий в спинной мозг. От ствола и спинного мозга отходят нервы, по которым к мозгу стекается информация от внутренних и наружных рецепторов, а в обратном направлении идут сигналы к мышцам и железам. От головного мозга отходят 12 пар черепно-мозговых нервов. [3]

Внутри мозга различают серое вещество, состоящее преимущественно из тел нервных клеток и образующее кору, и белое вещество - нервные волокна, которые формируют проводящие пути (тракты), связывающие между собой различные отделы мозга, а также образуют нервы, выходящие за пределы ЦНС и идущие к различным органам. [1]

Рис 1. Различные виды глиоцитов в нервной системе человека, образующие макроглию(1-3)и микроглию (А).

Эпендимная глия (1) включает эпендимоциты (ЭЦ), выстилающие полости желудочков головного мозга и центрального канала спинного мозга, танициты (ТЦ) - специализированные клетки с базальным отростком, оканчивающимся на кровеносном капилляре (КАП), а также хороидные эпендимоциты (ХЭЦ) - клетки в области сосудистых сплетений головного мозга, участвующие в образовании СМЖ и вместе со стенкой фенестрироеанного капилляра (ФКАП) входящие в состав гематоликворного барьера. Астроцитарная глия (2) представлена протоплазматическими астроцитами (ПА) и волокнистыми астроцитами (ВА) Пластинчатые расширения отростков астроцитов, соединяясь друг с другом, образуют поверхностную пограничную глиальную мембрану (ППГМ) мозга, а также периваскулярные пограничные мембраны (ПВПМ), которые окружают КАП и служат основным компонентом ГЭБ. Олигодендроглия (3) включаетклетки-сателлиты(КС), окружающие тела нейронов (НР), а также клетки, входящие в состав нервных волокон, - леммоциты (ЛЦ) в ПНС и олигодендроциты (ОДЦ) в ЦНС. ЛЦ и ОДЦ обладают способностью к выработке миелина. Микроглия (4) - совокупность мелких удлиненных звездчатых клеток со сравнительно короткими ветвящимися отростками. Активно фагоцитирующие микроглиоциты округляются, утрачивают отростки и вакуолизируются. [4]

Клетки ЦНС называются нейронами; их функция - обработка информации. В мозгу человека от 5 до 20 млрд. нейронов. В состав мозга входят также глиальные клетки, их примерно в 10 раз больше, чем нейронов (см рис 1.). Глия заполняет пространство между нейронами, образуя несущий каркас нервной ткани, а также выполняет метаболические и другие функции. [2]

Нейрон, как и все другие клетки, окружен полупроницаемой (плазматической) мембраной. От тела клетки отходят два типа отростков - дендриты и аксоны. У большинства нейронов много ветвящихся дендритов, но лишь один аксон. Дендриты обычно очень короткие, тогда как длина аксона колеблется от нескольких сантиметров до нескольких метров. Тело нейрона содержит ядро и другие органеллы, такие же, как и в других клетках тела.

Передача информации в мозгу, как и нервной системе в целом, осуществляется посредством нервных импульсов. Они распространяются в направлении от тела клетки к концевому отделу аксона, который может ветвиться, образуя множество окончаний, контактирующих с другими нейронами через узкую щель - синапс; передача импульсов через синапс опосредована химическими веществами - нейромедиаторами.

Нервный импульс обычно зарождается в дендритах - тонких ветвящихся отростках нейрона, специализирующихся на получении информации от других нейронов и передаче ее телу нейрона. На дендритах и, в меньшем числе, на теле клетки имеются тысячи синапсов; именно через синапсы аксон, несущий информацию от тела нейрона, передает ее дендритам других нейронов.

В окончании аксона, которое образует пресинаптическую часть синапса, содержатся маленькие пузырьки с нейромедиатором. Когда импульс достигает пресинаптической мембраны, нейромедиатор из пузырька высвобождается в синаптическую щель. Окончание аксона содержит только один тип нейромедиатора, часто в сочетании с одним или несколькими типами нейромодуляторов.

2. Нейротрансмиттеры и головной мозг

Нейротрансмиттеры - это химические передатчики сигналов между нейронами и от нейронов на эффекторные (исполнительные) клетки. Именно НТ создают возможность объединения отдельных нейронов в целостный головной мозг и позволяют ему успешно выполнять все его многообразные и жизненно необходимые функции.

Нейротрансмиттеры делят на нейромедиаторы - прямые передатчики нервного импульса, дающие пусковые эффекты (изменение активности нейрона, сокращение мышцы, секрецию железы), и нейромодуляторы - вещества, модифицирующие эффект нейромедиаторов. Соотношение концентраций и активности нейромедиаторов определяет функциональное состояние большинства постсинаптических клеток. Нейромодуляторы обычно действуют более локально - в определённых зонах мозга.

Большинство нейротрансмиттеров синтезируются в нейронах. Затем они транспортируются в особые везикулы (пузырьки) в обмен на накопленные там ионы. Эти везикулы расположены в нервном окончании, нейротрансмиттеры хранятся в них в очень высоких концентрациях. Когда распространяющийся по нерву потенциал действия приходит в зону везикул, он открывает потенциалзависимые каналы, ионы входят в нервные клетки, что приводит к выбросу из них нейротрансмиттеров в синапс. Синапс - это щель шириной 10-50 нм между двумя нейронами или нейроном и другой клеткой. Встречаются, но гораздо реже (не у млекопитающих) электрические синапсы шириной всего 2 нм. В головном и спинном мозге нейроны образуют синапсы с большим количеством других нейронов, а в периферической нервной системе - с эффекторными клетками. Первая клетка (это всегда нейрон) называется пресинаптической, вторая - постсинаптической. Очевидно, что нейромедиатор образуется и выделяется в синапс пресинаптическим нейроном; нейромодулятор, вероятно, может образовываться и глией - другим типом клеток нервной системы, выполняющим защитные, поддерживающие и трофические функции; глия может также участвовать в инактивировании нейротрансмиттеров. Различают возбуждающие и ингибирующие, или тормозящие, нейротрансмиттеры, эффекты первых преобладают в состоянии бодрствования животных и высокой функциональной активности мозга, вторых - в покое и особенно во время спокойного сна без сновидений.

По химической структуре нейротрансмиттеры можно разделить на пять классов: 1) аминокислоты, 2) амины и их производные, 3) нейропептиды, 4) нуклеозиды и нуклеотиды, 5) стероиды. Последние два класса пока представлены единичными веществами.

Все нейротрансмиттеры диффундируют через синапс и на наружной стороне плазматической мембраны постсинаптической клетки связываются со своими специфическими рецепторами. Образование НТ-рецепторного комплекса изменяет функциональное состояние клетки. Следовательно, эффект нейротрансмиттера не требует его проникновения через мембрану - внутрь клетки поступает не сам нейротрансмиттер, а сигнал, возникающий при связывании нейротрансмиттера с рецептором. Восприятие, преобразование, усиление и передачу сигнала внутрь клетки и затем внутрь её органелл осуществляют сигнал-трансдукторные системы (СТС). Рецепторами нейромедиаторов являются регуляторные субъединицы быстрых ионных (Na +- или Сl - ) каналов - это ионотропные рецепторы. Эффекты нейромодуляторов реализуются намного более сложными СТС, включающими рецепторы, ГТФ-зависимые G-белки, мембранные ферменты, Са 2+- или К +- каналы, вторые посредники и их белковые рецепторы (чаще всего протеинкиназы) - это метаботропные рецепторы. Разные механизмы реализации сигналов определяют временные различия: нейромедиаторы действуют за время нервного импульса - миллисекунды (быстрые ответы клеток), модуляторы - за секунды или минуты, такие эффекты называют медленными. Действие нейротрансмиттеров в синапсе чаще всего прекращается его быстрой инактивацией путём Na +- зависимого обратного захвата пресинаптическим нейроном или глией (аминокислоты, моноамины) с последующим входом в пресинаптические везикулы в обмен на накопленные там ионы. Известна также инактивация путём ферментного метаболизма прямо в синапсе (ацетилхолин разрушается ацетилхолинэстеразой постсинаптической мембраны) или диффузии за пределы синапса (катехоламины).

3. Нейромедиаторы: общие сведения

Передача нервных импульсов через синапсы происходит химическим путем - с помощью нейромедиаторов (нейротрансмиттеров). В настоящее время известны следующие вещества, выполняющие медиаторные функции: ацетилхолин, катехоламины (адреналин, норадреналин, дофамин), аминокислоты (гамма-аминомасляная кислота, глутаминовая кислота, глицин), гистамин, нейроактивные пептиды. К числу самых важных нейромедиаторов мозга относятся ацетилхолин, норадреналин, серотонин, дофамин, глутамат, ГАМК, эндорфины и энкефалины.

Нейротрансмиттеры являются первичными мессенджерами, но их высвобождение и определение в химических синапсах сильно отличается от эндокринных сигналов. В пресинаптической клетке, везикулы, содержащие нейротрансмиттер, высвобождают собственное содержимое локально в очень маленький объем синаптической щели. Высвобожденный трансмиттер затем диффундирует через щель и связывается с рецепторами на постсинаптической мембране. Диффузия является медленным процессом, но пересечение такой короткой дистанции, которая разделяет пре- и постсинаптические нейроны (0,1 мкм или меньше), происходит достаточно быстро и позволяет осуществлять быстрые коммуникации между нервами или между нервом и мышцей. Нейротрансмиттеры включают несколько семейств, (ацетилхолин, ГАМК, допамин) и (вазопрессин, брадикинин).

В центральной нервной системе глутамат является главным возбуждающим трансмиттером, тогда как ГАМК и глицин ингибирующими. Самая выдающаяся роль ацетилхолина реализуется в нейромышечной передаче, где он является возбуждающим трансмиттером.

Медиатор образуется либо в теле нейрона (и попадает в синаптическую бляшку, пройдя через весь аксон), либо непосредственно в синаптической бляшке. В синаптической бляшке молекулы медиатора упаковываются в синаптические пузырьки, в которых они хранятся до момента высвобождения.

Известно несколько медиаторных веществ, для большинства из них описаны системы синтеза, хранения, высвобождения, взаимодействия с постсинаптическими рецепторами (из которых наиболее хорошо изучен ацетилхолиновый рецептор), инактивации, возврата продуктов их расщепления в пресинаптические окончания.

Имеются данные о том, что во всех пресинаптических окончаниях зрелого нейрона высвобождается один и тот же медиатор (принцип Дейла). Однако в процессе своего развития некоторые нейроны временно синтезируют и высвобождают более одного медиаторного вещества. Предполагают, что каждый нейрон можно отнести к категории либо возбуждающих, либо тормозных (концепция функциональной специфичности). Однако возбуждающий или тормозной характер действия медиатора определяется свойствами постсинаптической мембраны, а не самого медиатора. Таким образом, в нервной системе могло бы быть достаточно только одного медиатора, который при связывании с соответствующими постсинаптическими рецепторами вызывал бы тормозные или возбуждающие эффекты. Поэтому разнообразие медиаторных веществ заставляет предполагать, что они выполняют и другие функции, возможно, служат хемотаксическими факторами или трофическими факторами.

Нейроны, высвобождающие ацетилхолин, называются холинэргическими нейронами, а катехоламины - адренергическими нейронами.

Некоторые аминокислоты обнаружены в ЦНС в довольно высоких концентрациях, что и вызвало предположение об их медиаторной функции. Считается, что они используются в системах крупных афферентных путей и эфферентных путей (возбуждающих и тормозных), в отличие от ацетилхолина и катехоламинов, служащих медиаторами в периферической и вегетативной нервной системе.

Гамма-аминомасляная кислота синтезируется только в нервной системе из глутаминовой кислоты при посредстве глутаматдекарбоксилазы. Она встречается в ЦНС повсеместно, в самых разных концентрациях. При электофоретическом нанесении гамма-аминомасляная кислота оказывает, как правило, тормозное действие. Существуют данные о том, что эта кислота участвует в пресинаптическом торможении в качестве медиатора в аксо- аксонных синапсах. Некоторые судорожные яды (алкалоид бикукулин, пикротоксин) оказались специфическими антагонистами этой кислоты.

Широко распространенная аминокислота глицин также, видимо, служит медиатором в некоторых случаях постсинаптического торможения в спинном мозге. Специфическим антагонистом глицина является стрихнин.

Глутаминовая кислота при электрофоретическом нанесении обладает возбуждающим действием. Так как глутаминовая кислота обнаружена в ЦНС повсюду, весьма вероятно, что она не только является предшественником гамма-аминомасляной кислоты, но, кроме того, сама действует как медиатор.

Гистамин образуется путем декарбоксилирования аминокислоты гистидина. Довольно высокие концентрации гистамина обнаружены в гипофизе и в соседнем срединном возвышении гипоталамуса. В остальных отделах ЦНС уровень гистамина очень низок.

Молекулы нейроактивных пептидов представляют собой более или мене длинные цепи аминокислот. Предполагается, что вещество, которое служит медиатором в первичных афферентных волокнах в спинном мозге, является нейроактивным пептидом. Некоторые из нейроактивных пептидов представляют собой нейрогормоны, т.е. вещества, которые высвобождаются из нервных клеток, а затем переносятся кровотоком к их мишеням (не являющимся нейронами). К таким пептидам относятся либерины (рилизинг - гормоны), которые действуют на аденогипофиз, антидиуретический гормон (вазопрессин) и окситоцин, которые синтезируются в гипоталамусе и хранятся в нейрогипофизе.

Нейромедиаторы - это вещества, которые характеризуются следующими признаками.

Накапливаются в пресинаптической структуре в достаточной концентрации.

Освобождаются при передаче импульса.

Вызывают после связывания с постсинаптической мембраной изменение скорости метаболических процессов и возникновение электрического импульса.

Имеют систему для инактивации или транпортную систему для удаления из синапса, обладающие к ним высоким сродством.

Таким образом, нейромедиаторы играют важную роль в функционировании нервной ткани, обеспечивая синаптическую передачу нервного импульса. Их синтез происходит в теле нейронов, а накопление - в особых везикулах, которые постепенно перемещаются с участием систем нейрофиламентов и нейротрубочек к кончикам аксонов.

4. Химическая классификация нейромедиаторов

Аминокислоты (и их производные). К ним относят таурин, норадреналин, ДОФАминГАМК, глицин, ацетилхолин, гомоцистеин и некоторые другие (адреналин, серотонин, гистамин, серотонин).

Таурин. Таурин образуется из аминокислоты цистеина. Сначала происходит окисление серы в SH-группе до остатка серной кислоты (процесс идет в несколько стадий), а затем происходит декарбоксилирование. Таурин - это необычная кислота, в которой нет карбоксильной группы, а имеется остаток серной кислоты.

Таурин принимает участие в проведении нервного импульса в процессе зрительного восприятия.

Ацетилхолин. Для синтеза холина требуются аминокислоты серин, метионин. Этаноламин может быть использован и в готовом виде. Но, как правило, из крови в нервную ткань поступает уже готовый холин. Второй же предшественник этого нейромедиатора - Ацетил-КоА, синтезируется в нервных окончаниях.

Продукт этой реакции ацетилхолин участвует в синаптической передаче нервного импульса. Он накапливается в синаптических пузырьках, образуя комплексы с отрицательно заряженным белком везикулином. Передача возбуждения с одной клетки на другую осуществляется с помощью специального синаптического механизма.

Синапс - это функциональный контакт специализированных участков плазматических мембран двух возбудимых клеток. Синапс состоит из пресинаптической мембраны, синаптической щели и постинаптической мембраны. Мембраны клеток в месте контакта имеют утолщения в виде бляшек - нервных окончаний. Нервный импульс, достигший нервного окончания, не в состоянии преодолеть возникшее перед ним препятствие - синаптическую щель. После этого электрический сигнал преобразуется в химический. Пресинаптическая мембрана содержит специальные канальные белки, подобные белкам, формирующим натриевый канал в мембране аксона. Они тоже реагируют на мембранный потенциал, изменяя свою конформацию и формируют канал. В результате ионы Са2+ проходят через пресинаптическую мембрану по градиенту концентраций в нервное окончание. Градиент концентраций Са2+ создается работой Са2+-зависимой.

АТФазы - кальциевым насосом. Повышение концентрации Са2+ внутри нервного окончания вызывает слияние 200-300 имеющихся там везикул, заполненных ацетилхолином, с плазматической мембраной. Далее ацетилхолин секретируется в синаптическую щель путем экзоцитоза, и присоединяется к рецепторным белкам, расположенным на поверхности постсинаптической мембраны.

Ацетилхолиновый рецептор представляет собой трансмембранный олигомерный гликопротеиновый комплекс, состоящий из 6 субъединиц: 2-бета, 1-гамма и 1-дельта. Плотность расположения белков-рецепторов в постсинаптической мембране очень велика - около 20000 молекул на 1 мкм2. Пространственная структура рецептора строго сооответствует конформации медиатора.

При взаимодействии с ацетилхолином белок-рецептор так изменяет свою конформацию, что внутри него формируется натриевый канал. Катионная селективность канала обеспечивается тем, что ворота канала сформированы отрицательно заряженными аминокислотами. Таким образом, повышается проницаемость постсинаптической мембраны для натрия и возникает новый импульс (или сокращение мышечного волокна). Деполяризация постсинаптической мембраны вызывает диссоциацию комплекса «ацетилхолин-белок-рецептор» и ацетилхолин освобождается в синаптическую щель. Как только ацетилхолин оказывается в синаптической щели, он за 40 мкс подвергается быстрому гидролизу под действием фермента ацетилхолинэстеразы.

Во время гидролиза ацетилхолина образуется промежуточный фермент-субстратный комплекс, в котором ацетилхолин связан с активным центром фермента через серин.

Необратимое ингибирование холинэстеразы вызывает смерть. Ингибиторами холинэстеразы являются фосфорорганические соединения (хлорофос, дихлофос, табун, зарин, зоман, бинарные яды). Эти вещества связываются ковалентно с серином в активном центре фермента. Некоторые из них синтезированы в качестве инсектицидов, а некоторые - в качестве боевых отравляющих веществ (нервно-паралитические яды). Смерть наступает в результате остановки дыхания.

Обратимые ингибиторы холинэстеразы используются как лечебные препараты. Например, при лечении глаукомы и атонии кишечника.

Катехоламины: норадреналин и дофамин. Адренэргические синапсы встречаются в постганглионарных волокнах, в волокнах симпатической нервной системы, в различных отделах головного мозга. Катехоламины в нервной ткани синтезируются по общему механизму из тирозина. Ключевой фермент синтеза - тирозингидроксилаза, ингибируемая конечными продуктами.

Норадреналин - медиатор в постганглионарных волокнах симпатической и в различных отделах ЦНС.

Дофамин - медиатор проводящих путей, тела нейронов которого расположены в отделе мозга, который отвечает за контроль произвольных движений. Поэтому при нарушении дофаминэргической передачи возникает заболевание паркинсонизм.

Катехоламины, как и ацетилхолин, накапливаются в синаптических пузырьках и тоже выделяется в синаптическую щель при поступлении нервного импульса. Но регуляция в адренэргическом рецепторе происходит иначе. В пресинаптической мембране здесь имеется специальный регуляторный белок - ахромогранин (Мм = 77 кДа), который в ответ на повышение концентрации медиатора в синаптической щели связывает уже выделившийся медиатор и прекращает его дальнейший экзоцитоз. Фермента, разрушающего медиатор, в адренэргических синапсах нет. После передачи импульса молекулы медиатора перекачивается специальной транспортной системой путем активного транспорта с участием АТФ обратно через пресинаптическую мембрану и включается вновь в везикулы. В пресинаптическом нервном окончании излишек медиатора может быть инактивирован моноаминоксидазой, а также катехоламин-О-метилтрансферазой путем метилирования по оксигруппе. Кокаин тормозит активный транспорт катехоламинов.

Передача сигнала в адренэргических синапсах протекает по механизму, известному Вам из лекций по теме «Биохимия гормонов» с участием аденилатциклазной системы. Связывание медиатора с постсинаптическим рецептором почти мгновенно вызывает повышение концентрации ц-АМФ, что приводит к быстрому фосфорилированию белков постсинаптической мембраны. В результате изменяется генерация нервных импульсов постсинаптической мембраной (тормозится). В некторых случаях непосредственной причиной этого является повышение проницаемости постсинаптической мембраны для калия, либо снижением проводимости для натрия (эти события приводят к гиперполяризации).

ГАМК - тормозной медиатор. Повышает проницаемость постсинаптических мембран для ионов калия. Это ведет к изменению мембранного потенциала.

Глицин - тормозной медиатор, по вызываемым эффектам подобен гамк.

Пептиды. Имеют в своем составе от трех до нескольких десятков аминокислотных остатков. Функционируют только в высших отделах нервной системы.

Эти пептиды, как и катехоламины, выполняют функцию не только нейромедиаторов, но и гормонов. Передают информацию от клетки к клетке по системе циркуляции.

Сюда относятся:

нейрогипофизарные гормоны (вазопрессин, либерины, статины). Эти вещества одновременно и гормоны и медиаторы;

гастроинтестинальные пептиды (гастрин, холецистокинин). Гастрин вызывает чувство голода, холецистокинин вызывает чувство насыщения, а также стимулирует сокращение желчного пузыря и функцию поджелудочной железы;

опиатоподобные пептиды (или пептиды обезболивания). Образуются путем реакций ограниченного протеолиза белка-предшественника проопиокортина. Взаимодействуют с теми же рецепторами, что и опиаты (например, морфин), тем самым имитируют их действие. Общее название - эндорфины - вызывают обезболивание. Они легко разрушаются протеиназами, поэтому их фармакологический эффект незначителен;

пептиды сна. Их молекулярная природа не установлена. Известно лишь, что их введение животным вызывает сон;

пептиды памяти (скотофобин). Накапливается в мозге крыс при тренировке на избегание темноты;

пептиды - компоненты ренин-ангиотензиновой системы. Показано, что введение ангиотензина-II в центр жажды головного мозга вызывает появление этого ощущения и стимулирует секрецию антидиуретического гормона.

Образование пептидов происходит в результате реакций ограниченного протеолиза, разрушаются также под действием протеиназ.

5. Нейромедиаторы как средства лечения депрессии

Психотерапевтические средства лечения депрессии хороши не только для лечения, но и для профилактики. Не допустить возникновения заболевания куда лучше, чем потом с ним отчаянно бороться. Но уж если случилось, если проглядели, если подловила нас депрессия, опускать руки и вовсе нельзя. Депрессия - враг серьезный, но извести его можно. И для этих целей кроме психотерапевтических средств требуются зачастую и средства лекарственные, то есть антидепрессанты. Ничего страшного в антидепрессантах нет, и это хорошо понимаешь, если тебе известно, что они из себя представляют.

Следует понимать, что всякий психический механизм не живет в нашей голове просто так, у него есть материальный субстрат, а именно - состояние нашей мозговой ткани. В целом мозг напоминает собой, с одной стороны, маленькую электростанцию, а с другой - сложно организованную информационную сеть, нечто среднее между телефонной компанией и Интернетом. Собственно мозговая ткань - это скопления связанных друг с другом нервных клеток, а все наши психические процессы, то есть то, что мы ощущаем, думаем, чувствуем, - это биологическое электричество, бегающее от одной нервной клетки к другой по определенным траекториям. Это биологическое электричество имеет химическую природу, здесь велика роль разнообразных ионов, и самое главное - химических веществ, называемых нейротрансмиттерами (буквально - «передающие нервный импульс»), или нейромедиаторами.

Имена этих нейромедиаторов - серотонин (его еще называют «гормоном радости»), норадреналин и дофамин. В целом, норадреналину приписываются функции поддержания нас в бодрствующем состоянии, то есть, чтобы мы не клевали носом целый день напролет. Без него не обходится и наша сообразительность, которая может пропасть при его недостатке. Серотонин обеспечивает наше настроение, половую активность, аппетит, сон, чувствительность к боли и многое другое. Дофамину исследователи вменяют роль регулятора мышечных движений, считается, что он принимает участие в формировании наших поведенческих реакций, отвечает за депрессивную ангедонию (то есть утрату способности испытывать удовольствие). Иными словами, какой бы симптом депрессии мы ни взяли, можно с большой точностью сказать, с каким именно нейромедиатором у нас возникли проблемы. То ли это нарушения сна и дневная сонливость, то ли наша вялость и несообразительность, то ли само сниженное настроение и чувство тревоги - всё это имеет свой материальный субстрат, а именно: проблему недостатка какого-то из перечисленных нейромедиаторов. Они не передают нужные импульсы в нужном месте и в нужном объеме, а потому наш мозг просто не справляется с возложенными на него обязанностями - и вот уже депрессия...

В результате острого или хронического стресса все системы нашего мозга перенапрягаются, и достаточно быстро развивается недостаток нейромедиаторов, ресурсы истощаются и нервные импульсы, которые прежде бегали от одной нервной клетки к другой, как часы, теперь встают, тормозятся, а то и вовсе отказываются возникать. По сути дела, во время стресса мы осуществляем своеобразный перерасход веществ, переносящих в мозгу биологическое электричество. Кроме прочего, на этом фоне изменяется и состояние самих нервных клеток - они становятся менее чувствительны к нейромедиаторам. И теперь мы имеем не только психологическую, не только физиологическую проблему (преобладание нервных процессов торможения над процессами возбуждения), но и биологическую. Вот почему в ряде случаев эффективность лечения депрессии может быть обеспечена только комплексным подходом, когда мы используем и психотерапевтические техники, и лекарственные препараты, то есть антидепрессанты.

У нас почему-то думают, что принимать психотропные средства (в частности, антидепрессанты) - это признак слабости. Подобные, с позволения сказать, умозаключения свидетельствуют о крайней неосведомленности граждан в этом вопросе. Наш мозг - это орган, даже, можно сказать, система органов, и он тоже ломается, выходит из строя. И в этом смысле ничем не отличается от нашего же скелета. Если же следовать представленной выше логике, то человек, сломавший ногу, не должен позволять врачу накладывать себе гипс, не должен малодушничать! Пусть ходит со сломанной ногой и без гипса - это, наверное, даже закаляет! Визит к врачу-психотерапевту многими продолжает восприниматься как нечто зазорное. Мы словно бы боимся потерять уважение, боимся осуждения.

К сожалению, это свидетельствует о нашей чрезвычайно низкой психологической культуре. Ведь подлинная внутренняя культура человека не в том, что он научится скрывать от специалистов свои проблемы, а в том, что в случае необходимости он своевременно обратится за помощью, поскольку без нее он будет страдать сам и заставит страдать окружающих. Как она должна выглядеть, эта психологическая культура, в идеале? Вчитайтесь в фразу, принадлежащую одному из самых известных американских журналистов - Майку Уоллесу: «Я буду принимать антидепрессант всю оставшуюся жизнь. И сделаю это очень охотно. Я не хочу потерять уважение других людей». В России же пока эта фраза звучит с точностью до наоборот: «Я не буду принимать антидепрессанты, потому что я не хочу потерять уважение других людей». И это отчаянная глупость. Когда уважением в нашем обществе будет пользоваться не тот, кто скрывает свои психологические проблемы, не тот, кто остаётся пассивным и бездеятельным в отношении этих проблем, но тот, кто готов решать свои проблемы и бороться с ними всеми имеющимися в распоряжении современной науки средствами, наше общество наконец-то станет по-настоящему цивилизованным.

Заключение

Нейротрансмиттеры - химические передатчики сигналов нейронов - разделяются на нейромедиаторы и нейромодуляторы. Первые прямо передают нервные импульсы, вторые модифицируют действие медиаторов. Главные медиаторы головного мозга - возбуждающие (глутамат, аспартат) и ингибирующие (ГАМК, глицин) аминокислоты, соотношение их концентраций и активности в основном определяет функциональное состояние большинства нейронов. Нейромодуляторы обычно действуют более локально - в определённых зонах мозга и создают дополнительные вариации, обогащающие спектр физиологического состояния нейронов. В целом множественность нейротрансмиттеров и многообразие их действия, включая как совпадение, так и противоположность эффектов, обеспечивают функционирование самого сложного органа нашего организма - центральной нервной системы, объединение отдельных нейронов в целостный головной мозг и успешное выполнение всех его разнообразных и жизненно необходимых функций.

Передача нервных импульсов через синапсы происходит химическим путем - с помощью нейромедиаторов (нейротрансмиттеров). В настоящее время известны следующие вещества, выполняющие медиаторные функции: ацетилхолин, катехоламины (адреналин, норадреналин, дофамин), аминокислоты (гамма-аминомасляная кислота, глутаминовая кислота, глицин), гистамин, нейроактивные пептиды. К числу самых важных нейромедиаторов мозга относятся ацетилхолин, норадреналин, серотонин, дофамин, глутамат, ГАМК, эндорфины и энкефалины.

Психотерапевтические средства лечения депрессии хороши не только для лечения, но и для профилактики. Не допустить возникновения заболевания куда лучше, чем потом с ним отчаянно бороться. Но уж если случилось, если проглядели, если подловила нас депрессия, опускать руки и вовсе нельзя. Депрессия - враг серьезный, но извести его можно. И для этих целей кроме психотерапевтических средств требуются зачастую и средства лекарственные, то есть антидепрессанты, а именно нейромедиаторы. Имена этих нейромедиаторов - серотонин (его еще называют «гормоном радости»), норадреналин и дофамин.

Список литературных источников

1. «Базовые понятия нейробиологии». [электронный ресурс] // «antipsychiatry.ru». URL: http://antipsychiatry.ru/viewtopic.php?f=14&t=5022#p9127 (Дата обращения: 23.12.2017)

2. «головной мозг человека [электронный ресурс] // «encyclopaedia.biga.ru». URL: http://encyclopaedia.biga.ru/enc/medicine/GOLOVNO_MOZG_CHELOVEKA.html (Дата обращения: 23.12.2017)

3. «ЛИКБЕЗ ПО СТРОЕНИЮ ЧЕЛОВЕЧЕСКОГО МОЗГА .». [электронный ресурс] // «www.liveinternet.ru». URL: http://www.liveinternet.ru/users/m007kuzya/post90833095 (Дата обращения: 23.12.2017)

4. Быков В. Л . «Цитология и общая гистология .» // учебник для студентов медицинских институтов. - 2002 .- 498 стр.

Размещено на Allbest.ru

...

Подобные документы

  • Изучение особенностей строения и функций головного мозга высших позвоночных - центрального органа нервной системы, который состоит из ряда структур: коры больших полушарий, базальных ганглиев, таламуса, мозжечка, ствола мозга. Стадии эмбриогенеза мозга.

    реферат [21,9 K], добавлен 07.06.2010

  • Исследование расположения и отделов головного мозга человека. Изучение функций промежуточного, среднего и продолговатого мозга. Строение мозжечка. Особенности развития головного мозга у детей первых лет жизни. Органы зрения и слуха у новорожденных детей.

    презентация [1,7 M], добавлен 18.03.2015

  • Исследование расположения и функций мозжечка, отдела головного мозга позвоночных, отвечающего за координацию движений, регуляцию равновесия и мышечного тонуса. Описания процесса обработки нервных сигналов, поступающих от органов чувств, их корректировки.

    презентация [2,9 M], добавлен 25.11.2011

  • Изучение расположения, строения и основных функций головного мозга человека, который координирует и регулирует все жизненные функции организма и контролирует поведение. Отделы головного мозга. Сколько весит головной мозг человека. Заболевания и поражения.

    презентация [3,1 M], добавлен 28.10.2013

  • Строение и функционирование головного мозга человека. Влияние параметров головного мозга на его работу. Причины отклонений деятельности головного мозга. Особенности хранения информации. Существование без головного мозга. Упражнения для остроты ума.

    реферат [664,0 K], добавлен 02.06.2012

  • Строение головного мозга человека, гистология его сосудистой оболочки. Функции желез мозга: эпифиза, таламуса, гипоталамуса, гипофиза. Характеристика ассоциативных зон коры больших полушарий мозга и их участие в процессах мышления, запоминания и обучения.

    презентация [6,8 M], добавлен 03.11.2015

  • Общий обзор строения больших полушарий головного мозга человека, его доли и их функциональные особенности. Архитектоника коры больших полушарий. Строение промежуточного мозга, ствола мозга, мозжечка и продолговатого мозга, его ретикулярная формация.

    контрольная работа [5,2 M], добавлен 04.04.2010

  • Развитие головного мозга человека. Функции отделов мозга: лобной, теменной, затылочной, височной доли, островка. Общий обзор головного мозга, строение и функции ромбовидного, среднего и промежуточного мозга. Морфологические особенности конечного мозга.

    реферат [33,4 K], добавлен 03.09.2014

  • Понятие и классификация нейромедиаторов, их разновидности и функции. Синтез и биологическая роль серотонина, ацетилхолина, аминомасляной кислоты. Другие медиаторы ЦНС: глицин, глутамат, характер и специфика их действия на основные системы организма.

    реферат [360,0 K], добавлен 03.06.2014

  • Иерархический принцип управления функциями организма. Характеристика общего строения головного мозга человека. Особенности функций среднего мозга, его структура, роль в регуляции мышечного тонуса, осуществлении установочных и выпрямительных рефлексов.

    контрольная работа [16,8 K], добавлен 13.03.2009

  • Строение ствола мозга, основные функции его тонических рефлексов. Особенности функционирования продолговатого мозга. Расположение варолиева моста, анализ его функций. Ретикулярная формация мозга. Физиология среднего и промежуточного мозга, мозжечка.

    презентация [751,7 K], добавлен 09.10.2016

  • Основные анатомические закономерности в деятельности центральной нервной системы. Распространение нервных импульсов. Анатомия спинного и головного мозгов. Характеристика проводящих путей спинного мозга. Клеточные элементы нервной ткани, типы нейронов.

    презентация [7,6 M], добавлен 17.12.2015

  • Строение и структура головного мозга. Мозговой мост и мозжечок. Промежуточный мозг как основа сенсорных, двигательных и вегетативных реакций. Функции головного мозга. Отличительные черты и задачи спинного мозга как части центральной нервной системы.

    реферат [27,1 K], добавлен 05.07.2013

  • Рассмотрение физиологии и основных функций промежуточного мозга: таламуса (зрительного бугра) и гипоталамуса (подбугорной области). Характеристика гипоталамо-гипофизарной системы. Онтогенез и психофизиология речи, ее связь с мыслительной деятельностью.

    курсовая работа [49,4 K], добавлен 20.05.2012

  • Состав белого вещества головного мозга. Строение и функции ствола. Анатомические особенности мозжечка. Функции большого мозга. Вертикальная и горизонтальная организация коры. Аналитико-синтетическая деятельность коры полушарий. Лимбическая система мозга.

    реферат [38,9 K], добавлен 10.07.2011

  • Определение наследственности как передачи родительских признаков детям. Исследование генетики роста, расы и экологические условия. Характеристика процесса развития головного мозга: рост мозга и развитие интеллекта. Влияние экологии и принципы эволюции.

    контрольная работа [21,4 K], добавлен 12.02.2011

  • Общие сведения о человеческом мозге, его связь с телом. Проблемы на пути развития способностей головного мозга. Паранормальные способности человеческого разума, которые наука объяснить не может. Удивительные истории необычных возможностей мозга.

    реферат [575,7 K], добавлен 19.12.2013

  • Несимметричное распределение ролей между симметричными парными полушариями головного мозга. Виды взаимодействий между полушариями. Характеристика распределения психических функций между левым и правым полушариями. Последовательная обработка информации.

    презентация [1,3 M], добавлен 15.09.2017

  • Анатомия серого вещества, расположенного по периферии полушарий большого мозга, его роль в осуществлении высшей нервной деятельности. Борозды и извилины верхнелатеральной поверхности. Цитоархитектонические поля, филогенез и онтогенез коры головного мозга.

    презентация [1,1 M], добавлен 05.12.2013

  • Исследование выраженности предпочтения к использованию правой или левой руки у учащихся гуманитарных классов. Обзор функциональной асимметрии больших полушарий головного мозга. Анализ проявления асимметрии мозга в разных областях человеческого организма.

    реферат [204,7 K], добавлен 26.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.