Гормональная регуляция водно-солевого обмена

Обзор механизма действия антидиуретического гормона. Изучение строения ренин-ангиотензиновой системы. Оценка заболеваний, вызванных нарушением вазопрессина и регуляции выделения натрия почкой. Анализ клинических аспектов нарушения водно-солевого баланса.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 22.02.2019
Размер файла 32,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНЕСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Общая биология и биохимия»

Реферат

по дисциплине «Молекулярные механизмы биорегуляции»

на тему: «Гормональная регуляция водно-солевого обмена»

Направление подготовки - 06.03.01 - Биология

Профиль подготовки - Биохимия

Выполнил

студент: Акжигитова Карина Ирековна

Группа: 15ФБ2

Руководитель: доцент, д.б.н.

Соловьёв Владимир Борисович

Пенза, 2017

Содержание

Введение

Регуляция водно-солевого обмена

Антидиуретический гормон

Механизм действия антидиуретического гормона

Дефицит антидиуретического гормона

Альдостерон

Ренин-ангиотензиновая система

Заболевания, вызванные нарушением вазопрессина

Регуляция выделения натрия почкой

Клинические аспекты нарушения водно-солевого баланса

антидиуретический вазопрессин водный солевой

Введение

Водно-солевой обмен - совокупность процессов поступления воды и солей (электролитов) в организм, распределения их во внутренней среде и выведения. Системы регуляции водно-солевого обмена обеспечивают постоянство суммарной концентрации растворенных частиц, ионного состава и кислотно-щелочного равновесия, а также объема и качественного состава жидкостей организма.

Поддержание в норме водно-солевого обмена является важнейшей частью функционирования здорового организма. Нарушениями водно-электролитного баланса сопровождаются многие тяжелые заболевания. В свою очередь, отклонения в содержании воды и минеральных веществ представляют одно из опасных нарушений гомеостаза, которое неблагоприятно отражается на функциях всех систем и органов. Нераспознанные и не устраненные нарушения водно-электролитного обмена остаются нередкой причиной осложнений и летального исхода различных болезней. Углубленное изучение механизмов регуляции этого обмена, поможет в эффективном лечении различных патологий.

Системы регуляции водно-солевого обмена обеспечивают поддержание общей концентрации электролитов (натрия, калия, кальция, магния) и ионного состава внутриклеточной и внеклеточной жидкости на одном и том же уровне. В плазме крови человека концентрация ионов поддерживается с высокой степенью постоянства и составляет (в ммоль/л): натрия - 130-156, калия - 3,4-5,3, кальция - 2,3-2,75 (в т. ч. ионизированного, не связанного с белками - 1,13), магния - 0,7-1,2, хлора - 97-108, бикарбонатного иона - 27, сульфатного иона - 1,0, неорганического фосфата - 1-2. По сравнению с плазмой крови и межклеточной жидкостью клетки отличаются более высоким содержанием ионов калия, магния, фосфатов и низкой концентрацией ионов натрия, кальция, хлора и ионов бикарбоната. Различия в солевом составе плазмы крови и тканевой жидкости обусловлены низкой проницаемостью капиллярной стенки для белков. Точная регуляция водно-солевого обмена у здорового человека позволяет поддерживать не только постоянный состав, но и постоянный объем жидкостей тела, сохраняя практически одну и ту же концентрацию осмотически активных веществ и кислотно-щелочное равновесие.

Регуляция водно-солевого обмена осуществляется при участии нескольких физиологических систем. Сигналы, поступающие от специальных неточных рецепторов, реагирующих на изменение концентрации осмотически активных веществ, ионов и объема жидкости передаются в ЦНС, после чего выделение из организма воды и солей и их потребление организмом меняется соответствующим образом. Так, при увеличении концентрации электролитов и уменьшении объема циркулирующей жидкости (гиповолемии) появляется чувство жажды, а при увеличении объема циркулирующей жидкости (гиперволемии) оно уменьшается. Увеличение объема циркулирующей жидкости за счет повышенного содержания воды в крови (гидремия) может быть компенсаторным, возникающим после массивной кровопотери. Гидремия представляет собой один из механизмов восстановления соответствия объема циркулирующей жидкости емкости сосудистого русла. Патологическая гидремия является следствием нарушения водно-солевого обмена, например при почечной недостаточности и др. У здорового человека может развиться кратковременная физиологическая гидремия после приема больших количеств жидкости. Выведение воды и ионов электролитов почками контролируется нервной системой и рядом гормонов. В регуляции водно-солевого обмена участвуют и вырабатываемые в почке физиологически активные вещества - производные витамина D3, ренин, кинины и др.

Регуляция водно-солевого обмена

Водно-солевым обменом называют совокупность процессов поступления воды и электролитов (Na+, K+, Ca2+, Mg2+, Cl-, HCO3-, H3PO4) в организм, распределения их во внутренней среде и выделения из организма. В организме взрослого человека на воду приходится 2/3 (58 - 67%) массы тела. Около половины ее объема сосредоточено в мышцах. Потребность в воде (человек ежесуточно получает до 2,5 - 3 л жидкости) покрывается за счет поступления ее в виде питья (700-1700 мл), преформированной воды, входящей в состав пищи (800 - 1000 мл), и воды, образующейся в организме при обмене веществ - 200 - 300 мл (при сгорании 100 г жиров, белков и углеводов образуется соответственно 107,41 и 55 г воды). Вся жидкость организма разделена на внутриклеточный (67%) и внеклеточный (33%) бассейны. Внеклеточный бассейн (экстрацеллюлярное пространство) состоит из: Внутрисосудистой жидкости и Интерстициальной жидкости (межклеточная);

Трансцеллюлярной жидкости (жидкость плевральной, перикардиальной, перитонеальной полостей и синовиального пространства, цереброспинальная и внутриглазная жидкость, и др). Между бассейнами жидкости интенсивно обмениваются. Перемещение воды из одного сектора в другой происходит при изменении осмотического давления. Осмотическое давление - это давление, которое создают все растворенные в воде вещества. Осмотическое давление внеклеточной жидкости определяется главным образом концентрацией NaCl. водно-солевой баланс внеклеточной жидкости поддерживается через плазму крови с помощью органов и регулируется гормонами. Основными параметрами водно-солевого гомеостаза являются осмотическое давление, рН и объем внутриклеточной и внеклеточной жидкости. Изменение этих параметров может привести к изменению артериального давления, ацидозу или алкалозу, дегидратации и отекам. Основными гормонами, участвующими в регуляции водно-солевого баланса, являются АДГ, альдостерон и предсердный натрий-уретический фактор (ПНФ).

Антидиуретический гормон

Антидиуретический гормон (АДГ), или вазопрессин - пептид с молекулярной массой около 1100 Д, содержащий 9 АК, соединённых одним дисульфидным мостиком. [1]

Синтез и секреция вазопрессина

АДГ синтезируется в нейронах гипоталамуса в виде предшественника препрогормона, который поступает в аппарат Гольджи и превращается в прогормон. В составе нейросекреторных гранул прогормон переносится в нервные окончания задней доли гипофиза (нейрогипофиз). Во время транспорта гранул происходит процессинг прогормона, в результате чего он расщепляется на зрелый гормон и транспортный белок - нейрофизин. Гранулы, содержащие зрелый антидиуретический гормон и нейрофизин, хранятся в терминальных расширениях аксонов в задней доле гипофиза, из которых секретируются в кровоток при соответствующей стимуляции.

Стимулом, вызывающим секрецию АДГ, служит повышение концентрации ионов натрия и увеличение осмотического давления внеклеточной жидкости. При недостаточном потреблении воды, сильном потоотделении или после приёма большого количества соли осморецепторы гипоталамуса, чувствительные к колебаниям осмолярности, регистрируют повышение осмотического давления крови. Возникают нервные импульсы, которые передаются в заднюю долю гипофиза и вызывают высвобождение АДГ. Секреция АДГ происходит также в ответ на сигналы от барорецепторов предсердий. Изменение осмолярности всего на 1% приводит к заметным изменениям секреции АДГ.

Функции: участвует в регуляции обмена воды. Действует по аденилатциклазному механизму. В мембране почечных канальцев вызывает фосфорелирование белков и изменение проницаемости мембран (активация аквапоринов, через связывание с v2 рецепторами, образование ц-амф, увеличивает активность гиалуронидазы. В результате увеличивается проницаемость почечных канальцев и реабсорбция воды, уменьшается диурез, вода задерживается в организме, стимулирует сокращение гладких мышечных волокон в стенках артерий - спазм сосудов - увеличение АД.

-активирует распад гликогена

-стимулирует превращение люкозы до ацетил-коа

-активирует синтез ЖК

-мощный антиоксидант

Механизм действия антидиуретического гормона

Для АДГ существуют 2 типа рецепторов: V1 и V2.

Рецепторы V2, опосредующие главный физиологический эффект гормона, обнаружены на базолатеральной мембране клеток собирательных трубочек и дистальных канальцев - наиболее важных клеток-мишеней для АДГ, которые относительно непроницаемы для молекул воды. В отсутствие АДГ моча не концентрируется и может выделяться в количествах, превышающих 20 л в сутки (норма 1,0-1,5 л в сутки). Связывание АДГ с V2 (рис. 11-32) стимулирует аденилатциклазную систему и активацию протеинкиназы А. В свою очередь, протеинкиназа А фосфорилирует белки, стимулирующие экспрессию гена мембранного белка - аквапорина-2. Аквапорин-2 перемещается к апикальной мембране собирательных канальцев и встраивается в неё, образуя водные каналы. Это обеспечивает избирательную проницаемость мембраны клеток для воды, которые свободно диффундируют в клетки почечных канальцев и затем поступают в интерстициальное пространство. Поскольку в результате происходит реабсорбция воды из почечных канальцев и экскреция малого объёма высококонцентрированной мочи (антидиурез), гормон называют антидиуретическим гормоном.

Рецепторы типа V1 локализованы в мембранах ГМК сосудов. Взаимодействие АДГ с рецептором V1 приводит к активации фосфолипазы С, которая гидролизует фосфатидилинозитол-4,5-бисфосфат с образованием инозитолтрифосфата и диацилглицерола. Инозитолтрифосфат вызывает высвобождение Са2+ из ЭР. Результатом действия гормона через рецепторы V1 является сокращение гладкомышечного слоя сосудов. Сосудосуживающий эффект АДГ проявляется при высоких концентрациях гормона. Поскольку сродство АДГ к рецептору V2 выше, чем к рецептору V1, при физиологической концентрации гормона в основном проявляется его антидиуретическое действие. [2]

Дефицит антидиуретического гормона

Дефицит возникает в результате дисфункции задней доли гипофиза, нарушениями в системе передачи гормонального сигнала. Это приводит к возникновению «несахарного диабета». Это заболевание характеризуется нерегулируемая экскреция воды и впоследствии опасной дегидратацией организма основными причинами центрального несахарного диабета могут быть генетические дефекты синтеза препро-АДГ в гипоталамусе, дефекты процессинга и транспорта про АДГ (наследственная форма), а также повреждения гипоталамуса или нейрогипофиза (например, в результате черепно-мозговой травмы, опухоли, ишемии). Нефрогенный несахарный диабет возникает вследствие мутации гена рецептора АДГ типа V2 (наследственная форма), следствием которого является неспособность почек реагировать на гормон. Основное проявление несахарного диабета - гипотоническая полиурияю.

Альдостерон

Альдостерон как и дезоксикортикостерон относится к минералкортикоидам. Образованный из холестерола прогестерон на пути к альдостерону подвергается последовательному окислению 21-гидроксилазой, 11-гидроксилазой и 18-гидроксилазой. В конечном итоге образуется альдостерон.

Синтез и секреция альдостерона клетками клубочковой зоны непосредственно стимулируются низкой концентрацией Na+ и высокой концентрацией К+ в плазме крови. На секрецию альдостерона влияют также простагландины, АКТГ. Однако наиболее важное влияние на секрецию альдостерона оказывает ренинангиотензиновая система.

Альдостерон не имеет специфических транспортных белков, но за счёт слабых взаимодействий может образовывать комплексы с альбумином. Гормон очень быстро захватывается печенью, где превращается в тетрагидроальдостерон-3-глюкуронид и экскретируется с мочой.

Механизм действия альдостерона

В клетках-мишенях гормон взаимодействует с рецепторами, которые могут быть локализованы как в ядре, так и в цитозоле клетки. Образовавшийся комплекс гормон-рецептор взаимодействует с определённым участком ДНК и изменяет скорость транскрипции специфических генов. Результат действия альдостерона - индукция синтеза:

а) белков-транспортёров Na+ из просвета канальца в эпителиальную клетку почечного канальца;

б) Nа+,К+,-АТФ-азы, обеспечивающей удаление ионов натрия из клетки почечного канальца в межклеточное пространство и переносящей ионы калия из межклеточного пространства в клетку почечного канальца;

в) белков-транспортёров ионов калия из клеток почечного канальца в первичную мочу;

г) митохондриальных ферментов ЦТК, в частности цитратсинтазы, стимулирующих образование молекул АТФ, необходимых для активного транспорта ионов.

Суммарным биологическим эффектом индуцируемых альдостероном белков является увеличение реабсорбции ионов натрия в канальцах нефронов, что вызывает задержку NaCl в организме, и возрастание экскреции калия. внутриклеточный антидиуретический гормон секреция

Гипофункция. Причинами первичного гипоальдостеронизма могут быть туберкулез, аутоиммунное воспаление надпочечников, метастазы опухолей, резкая отмена стероидов. Как правило, это недостаточность всей коры надпочечников. Острая недостаточность может быть вызвана некрозом клубочковой зоны, кровоизлиянием или острой инфекцией. При недостаточности клубочковой зоны снижается реабсорбция натрия, воды, падает объём циркулирующей плазмы; увеличивается реабсорбция К+, Н+. В результате резко снижается АД, нарушается электролитный баланс и кислотно-щелочное равновесие, состояние опасно для жизни.

Гиперфункция. Синдром Конна (первичный альдостеронизм) - возникает при аденомах клубочковой зоны. Характеризуется триадой признаков: гипертензия, гипернатриемия, алкалоз.

Вторичный гиперальдостеронизм - гиперплазия и гиперфункция юкстагломерулярных клеток и избыточная секреция ренина и ангиотензина.

Ренин-ангиотензиновая система

Ренин-ангиотензиновая система (РАС) или ренин-ангиотензин-альдостероновая система (РААС) - это гормональная система человека и млекопитающих, которая регулирует кровяное давление и объём крови в организме.

Активация ренин-ангиотензиновой системы

Для активации этой системы существует два пусковых момента: 1)снижение давления в приносящих артериолах почек, которое определяется барорецепторами клеток юкстагломерулярного аппарата. Причиной этого может быть любое нарушение почечного кровотока - атеросклероз почечных артерий, повышенная вязкость крови, обезвоживание, кровопотери и т.п. 2) снижение концентрации ионов Na+ в первичной моче в дистальных канальцах почек, которое определяется осморецепторами клеток юкстагломерулярного аппарата. Возникает в результате бессолевой диеты, при длительном использовании диуретиков.

Постоянная и независимая от почечного кровотока секреция ренина (базовая) поддерживается симпатической нервной системой. При выполнении одного или обоих пунктов клетки юкстагломерулярного аппарата активируются и из них в плазму крови секретируется фермент ренин. Для ренина в плазме имеется субстрат - белок б2-глобулиновой фракции ангиотензиноген.

В результате протеолиза от белка отщепляется декапептид под названием ангиотензин I.

Ангиотензин I при участии ангиотензин-превращающего фермента превращается в ангиотензин II.

Главными мишенями ангиотензина II служат кровеносные сосуды и клубочковая зона коры надпочечников. Стимуляция кровеносных сосудов вызывает их спазм и восстановление артериального давления. Ангиотензин II оказывает стимулирующее действие на продукцию и секрецию альдостерона клетками клубочковой зоны коры надпочечников, который, в свою очередь, вызывает задержку ионов натрия и воды, в результате чего объём жидкости в организме восстанавливается. Кроме этого, ангиотензин II, присутствуя в крови в высоких концентрациях, оказывает мощное сосудосуживающее действие и тем самым повышает АД.

Вызывает сужение артериальных сосудов, активирует симпатическую нервную систему как на уровне центров, так и способствуя синтезу и освобождению норадреналина в синапсах, повышает сократимость миокарда, увеличивает реабсорбцию натрия и ослабляет клубочковую фильтрацию в почках, способствует формированию чувства жажды и питьевого поведения.

Из надпочечников после стимуляции секретируется альдостерон, действующий на дистальные канальцы почек. При воздействии на канальцы почек увеличивается реабсорбция ионов Na+, вслед за натрием движется вода. В результате давление в системе восстанавливается и концентрация ионов натрия увеличивается в плазме крови, а, значит и в первичной моче.

Заболевания, вызванные нарушением вазопрессина

Несахарный диабет - расстройство обмена воды, вызванное первичным нарушением выработки АДГ при инфекционном или травматическом поражении гипоталамуса или нарушении проходимости портальной системы гипофиза опухолью. Для восстановления нормального содержания жидкости в организме больные, побуждаемые чувством жажды, выпивают большие количества жидкости. Недостаточность АДГ бывает полной или частичной, что определяет степень полидипсии и полиурии. Для дифференциации недостаточной продукции АДГ (несахарный диабет) от почечной устойчивости к АДГ (почечный несахарный диабет) или избыточного употребления воды (психогенная полидипсия) проводят динамические тесты. При проведении теста с ограничением воды у больных с выраженной недостаточностью АДГ отмечается повышение осмолярности плазмы, а осмолярность мочи обычно остается ниже ее. После введения вазопрессина таким больным осмолярность мочи быстро повышается. При нерезко выраженной недостаточности АДГ и полиурии осмолярность мочи в ходе теста может быть несколько выше осмолярности плазмы, а реакция на вазопрессин ослаблена.

Постоянно низкие уровни АДГ в плазме свидетельствуют о выраженном нейрогенном несахарном диабете, субнормальные уровни в сочетании с гиперосмолярностью плазмы - о частичном нейрогенном несахарном диабете.

Повышение секреции АДГ наблюдается при синдроме неадекватной продукции вазопрессина или синдроме Пархона. Синдром Пархона - самый частый вариант нарушения секреции АДГ, характеризующийся олигурией, отсутствием жажды, наличием общих отеков, нарастанием массы тела. Важно отличать синдром неадекватной продукции вазопрессина от других состояний: застойной сердечной недостаточности, почечной недостаточности, дефицита глюкокортикоидов, гипотиреоза, приема лекарств, стимулирующих АДГ. У больных с синдромом неадекватной продукции вазопрессина обычно выявляют снижение натрия в плазме, высокую осмоляльность мочи по отношению к осмоляльности плазмы, снижение экскреции в ответ на водную нагрузку. [3]

Синдром неадекватной продукции вазопрессина (СНПВ) Швартца - Бартера представляет собой клинический синдром, характеризующийся независимой от факторов физиологической регуляции гиперсекрецией вазопрессина (АДГ) с формированием гипонатриемической (гипоосмолярной) гипергидратации. Избыток вазопрессина в сочетании с неограниченным приемом жидкости приводит к антидиурезу (задержка воды), выделению концентрированной мочи, гипонатриемии.

Синдром неадекватной продукции вазопрессина развивается всегда вторично по отношению к другим заболеваниям или при приеме медикаментов. Первичная гиперпродукция вазопрессина в настоящее время не описана.

При синдроме изолированного гипофиза прекращается секреция всех тропных гормонов гипофиза с развитием вторичного гипогонадизма, гипотериоза, гипокортицизма, недостаточности роста. Патогномоничным для синдрома изолированного гипофиза феноменом является гиперпролактинемия.

Эктопическая секреция АДГ встречается при самых различных опухолях APUD-системы. Наиболее часто эктопическая секреция АДГ вызывает злокачественный бронхогенный рак легкого, злокачественные опухоли поджелудочной, вилочковой желез, двенадцатиперстной кишки.

При проведении исследований необходимо учитывать, что при длительном хранении происходит значительный распад АДГ. Пробы плазмы не должны находиться при комнатной температуре.

Регуляция выделения натрия почкой

Регуляция экскреции натрия почкой является многофакторной и очень сложной. Два основных механизма, контролирующих выделение натрия почкой, в изучении которых в последние годы достигнут существенный прогресс: 1) ренин-ангиотензин-альдостероновая система, регулирующая реабсорбцию натрия почкой, и 2) семейство пептидов, стимулирующих усиленное выделение натрия.

Ренин-ангиотензин-альдостероновая система (РААС) включает следующие элементы. Ренин - протеолитический фермент, секретируемый почками в кровь, отщепляет от фрагмента a2-глобулина плазмы короткий пептид из 10 аминокислот, так называемый ангиотензин I. Под действием превращающего фермента в легких неактивный ангиотензин I переходит в активную форму - ангиотензин II. Этот низкомолекулярный (8 аминокислот) пептид представляет собой физиологически высокоактивное вещество, обладающее множественными эффектами, среди которых наиболее значимыми являются стимуляция синтеза и секреции из клубочковой зоны коры надпочечников гормона альдостерона и мощное сосудосуживающее действие. Инактивация ангиотензина II с превращением его в ангиотензин III осуществляется системой ангиотензиназ плазмы крови. Выделяющийся из надпочечников альдостерон стимулирует в почечных канальцах реабсорбцию натрия и приводит к задержке этого иона в организме. Ключевым звеном цепи является секреция почкой ренина. Фермент выделен у животных и человека в очищенном виде. Ренин образуется в особых клетках стенки приносящей артериолы клубочка в так называемом юкстагломерулярном аппарате (ЮГА), непосредственно примыкающем к клубочку. Устройство этого аппарата таково, что ренинпродуцирующие клетки чувствительны как к перепадам кровяного давления в приносящей артериоле, так и к интенсивности транспорта натрия клетками дистального канальца при изменении концентрации натрия в канальцевой жидкости. К настоящему времени достаточно хорошо изучены пути биосинтеза ренина как у животных различных видов, так и у человека. Расшифрована структура генов, продуцирующих ренин. Методом генной инженерии некоторые из них синтезированы, в том числе и ген ренина человека. К нему получены клонированные антитела, которые уже используются для диагностических целей.

Регулируемыми параметрами в РААС служат объем и давление в различных внутрисосудистых компартментах. При этом последовательность событий можно представить следующим образом. При уменьшении объема циркулирующей крови независимо от причин этого ограничивается кровенаполнение системы почечной артерии и при этом уменьшается степень растяжения стенки приносящих артериол клубочка, в которых локализованы ренинпродуцирующие клетки. Снижение напряжения стенки стимулирует секрецию ренина. Уменьшение циркуляторного объема является стимулом также для коррекции кровяного давления с барорецепторных зон дуги аорты и зоны сонной артерии, что результируется в усилении активности центров симпатической нервной системы, в том числе повышается тонус симпатических волокон, иннервирующих ЮГА. Повышение активности ренина в крови приводит к усиленному образованию ангиотензина II, который, с одной стороны, увеличивает тонус сосудов и способствует повышению кровяного давления, а с другой стороны, стимулирует выделение надпочечниками в кровь альдостерона.

Альдостерон относится к группе кортикоидов, производных холестерина. Ангиотензин II контролирует в клубочковой зоне превращение холестерина в прегненолон, лимитирующий этап в цепи биосинтеза кортикостероидов. Альдостерон регулирует объем внеклеточной жидкости, избирательно влияя на транспорт натрия в почке и толстом кишечнике. Помимо этого он регулирует обмен калия и кислотно-основное равновесие, и интенсивность его секреции возрастает при повышении концентрации калия в крови и при смещении рН крови в кислую сторону. Принципиальная схема механизма действия альдостерона к настоящему времени достаточно хорошо изучена, хотя и остается еще много неясных событий. Проникая в клетку, стероид взаимодействует со специфическими цитозольными белками - рецепторами. Образующейся комплекс проникает в ядро и индуцирует синтез определенных мРНК, служащих матрицей для биосинтеза определенных белков. Одним из основных альдостерониндуцирующих белков в клетках почечных канальцев является Na-K-АТФаза, непосредственно обусловливающая транспорт натрия. Поскольку усиленная реабсорбция натрия сопровождается задержкой соответствующего количества воды, это приводит к восстановлению объема жидкости, циркулирующей в кровеносной системе и интерстициальном секторе.

В настоящее время показано, что помимо описанных выше механизмов секреция ренина регулируется (или модулируется) одновременно многими факторами: хеморецепторным механизмом плотного пятна, внеклеточной концентрацией многих органических и неорганических веществ, в том числе ионами калия, магния, комплексом гормонов и биологически активных веществ, таких, как вазопрессин, простагландин и т. д. Установлено, что значительную роль в регуляции ЮГА играет отрицательная обратная связь - угнетение секреции ренина образующимися в крови ангиотензинами I и II, что повышает стабильность и эффективность работы этой системы. Многие взаимосвязи остаются неясными, и в решении проблемы регуляции РААС возникает много вопросов. Однако общая направленность реакций такова, что снижение объема внеклеточных жидкостей тела при дефиците натрия, уменьшение объема циркулирующей крови или снижение кровяного давления (гипотония) вызывают усиление секреции ренина почками и активацию всей системы, стимулирующей реабсорбцию натрия. [4]

Натрийуретические пептиды стимулируют в противоположность РААС выделение натрия почкой (натриурез) при увеличении циркуляторного объема. Поиски гуморального фактора, стимулирующего выделение натрия почкой (натриурез), начались более 30 лет назад, когда Де Варденер показал, что плазма человека или животного после внутривенного введения изотонического солевого раствора приобретает натрийуретические свойства, оказывает тормозящее действие на реабсорбцию натрия почкой. Эти свойства не могли быть объяснены изменением концентрации в крови альдостерона, ангиотензина, АДГ, катехоламинов и других веществ, влияющих на транспорт натрия в почке. Эксперименты с иммерсией, погружением человека в теплую воду до уровня шеи, позволили установить, что стимулом, который приводит к подавлению реабсорбции натрия, является усиленный приток крови к сердцу. В течение многих лет попытки идентифицировать вещество, ответственное за натрийуретический эффект, оставались безуспешными. Наконец, после открытия в 1981 году Де Болдом сильного натрийуретического, диуретического и гипотензивного эффекта в экстрактах из левого предсердия удалось выделить биологически активный предсердный пептид. Более того, за последние годы удалось расшифровать не только структуру предсердного натрийуретического пептида (ПНП) у разных видов животных и человека, но также структуру гена, кодирующего ПНП и пути его биосинтеза. Интерес к ПНП объясняется не только тем, что он является одним из факторов, регулирующих экскрецию натрия; оказалось, что этот пептид играет большую роль в регуляции сосудистого тонуса и нарушение его синтеза способствует развитию гипертонии.

ПНП синтезируется в мышечных клетках левого предсердия. У крысы и человека низкомолекулярные пептиды имеют идентичный состав из 28 аминокислот и различаются только одной аминокислотой. Основным стимулом освобождения ПНП считается увеличение объема крови и соответственно давления в левом предсердии.

Эффекты ПНП в организме включают:

- увеличение экскреции натрия почкой вследствие увеличения скорости фильтрации в клубочках из-за расширения приносящей артериолы и усиления почечного кровотока;

- снижение тонуса гладких мышц артериальных сосудов и соответственно их расширение;

- уменьшение внутрисосудистого объема вследствие увеличения проницаемости капилляров;

- торможение секреции ренина почками и альдостерона надпочечниками.

В последние годы стало очевидным, что натрийуретические пептиды вырабатываются не только в сердце, но и других органах, например в определенных зонах мозга. Мозговые натрийуретические пептиды являются аналогами ПНП, но частично отличаются аминокислотной последовательностью. В почке также вырабатывается пептид уродилатин, который содержит в N-конце на четыре аминокислоты больше, чем ПНП. Этот пептид способен оказать непосредственное тормозящее влияние на транспорт натрия в почечных канальцах и вызывает выраженный натрийуретический эффект.

Несмотря на явную способность ПНП усиливать почечную экскрецию натрия и жидкости в ответ на увеличение центрального объема крови, его физиологическое значение и механизм действия еще не поняты полностью. По-видимому, в системе регуляции кровообращения и водно-солевого обмена доминирующую роль играет РААС, а ПНП играет роль модулятора, основная функция которого - привести активность системы, обеспечивающей баланс натрия, в соответствие с потребностями кровообращения.

Клинические аспекты нарушения водно-солевого баланса

Нарушения водно-солевого обмена проявляются накоплением жидкости в организме, появлением отеков или дефицитом жидкости, понижением или повышением осмотического давления крови, нарушением электролитного баланса, т. е. уменьшением или увеличением концентрации отдельных ионов (гипокалиемией и гиперкалиемией, гипокальциемией и гиперкальциемией и др.), изменением кислотно-щелочного состояния - ацидозом или алкалозом. Знание патологических состояний, при которых меняется ионный состав плазмы крови или концентрация в ней отдельных ионов, важно для дифференциальной диагностики различных заболеваний.

Дефицит воды и ионов электролитов, в основном ионов Na+, К+ и Cl-, возникает при потере организмом жидкостей, содержащих электролиты. Отрицательный баланс натрия развивается при его выведении, превышающем поступление, в течение длительного времени. Потеря натрия, приводящая к патологии, может быть экстраренальной и ренальной. Экстраренальная потеря натрия происходит главным образом через желудочно-кишечный тракт при неукротимой рвоте, профузных поносах, кишечной непроходимости, панкреатите, перитоните и через кожу при повышенном потоотделении (при высокой температуре воздуха, лихорадке и др.), ожогах, муковисцидозе, массивной кровопотере.

Большая часть желудочно-кишечных соков почти изотонична плазме крови, поэтому если возмещение жидкости, потерянной через желудочно-кишечный тракт, проводится правильно, изменения осмоляльности внеклеточной жидкости обычно не наблюдаются. Однако если жидкость, теряемая при рвоте или поносе, возмещается изотоническим раствором глюкозы, развивается гипотоническое состояние и в качестве сопутствующего явления - уменьшение концентрации ионов К+ во внутриклеточной жидкости. Наиболее часто потеря натрия через кожу происходит при ожогах. Потеря воды в этом случае относительно выше, чем потеря натрия, что приводит к развитию гетеросмоляльности внеклеточной и внутриклеточной жидкостей с последующим уменьшением их объемов. Ожоги и другие повреждения кожи сопровождаются увеличением проницаемости капилляров, приводящим к потере не только натрия, хлора и воды, но и белков плазмы.

Почки способны экскретировать больше натрия, чем это необходимо для поддержания постоянства водно-солевого обмена, при нарушении механизмов регуляции реабсорбции натрия в почечных канальцах или при угнетении транспорта натрия в клетки почечных канальцев. Значительная ренальная потеря натрия при здоровых почках может происходить при увеличении диуреза эндогенного или экзогенного происхождения, в т. ч. при недостаточном синтезе минералокортикоидов надпочечниками или введении диуретиков. При нарушении функции почек (например, при хронической почечной недостаточности) потеря натрия организмом происходит в основном вследствие нарушения его реабсорбции в почечных канальцах. Наиболее важными признаками дефицита натрия являются циркуляторные расстройства, в т. ч. коллапс.

Дефицит воды с относительно небольшой потерей электролитов возникает за счет усиленного потоотделения при перегревании организма или при тяжелой физической работе. Вода теряется при длительной гипервентиляции легких, после приема мочегонных средств, не обладающих салуретическим эффектом.

Относительный избыток электролитов в плазме крови образуется в период водного голодания - при недостаточном обеспечении водой больных, находящихся в бессознательном состоянии и получающих принудительное питание, при нарушении глотания, а у грудных детей - при недостаточном потреблении ими молока и воды. Относительный или абсолютный избыток электролитов при уменьшении общего объема воды в организме приводит к увеличению концентрации осмотически активных веществ во внеклеточной жидкости и обезвоживанию клеток. Это стимулирует секрецию альдостерона, который тормозит выведение натрия почками и ограничивает выведение воды из организма. [5]

Восстановление количества воды и изотоничности жидкости при патологическом обезвоживании организма достигается питьем больших количеств воды или внутривенным введением изотонического раствора хлорида натрия и глюкозы. Потерю воды и натрия при повышенном потоотделении возмещают питьем подсоленной (0,5% раствор хлорида натрия) воды.

Избыток воды и электролитов проявляется в виде отеков. К основным причинам их возникновения относится избыток натрия во внутрисосудистом и интерстициальном пространствах, чаще при заболеваниях почек, хронической печеночной недостаточности, повышении проницаемости сосудистых стенок. При сердечной недостаточности избыток натрия в организме может превосходить избыток воды. Нарушенный водно-электролитный баланс восстанавливают ограничением натрия в диете и назначением натрийуретических мочегонных средств.

Избыток воды в организме с относительным дефицитом электролитов (так называемое водное отравление, или водная интоксикация, гипоосмолярная гипергидрия) образуется при введении в организм большого количества пресной воды или раствора глюкозы при недостаточном выделении жидкости; избыточное количество воды может поступить в организм также в виде гипоосмотической жидкости при проведении гемодиализа. При водном отравлении развивается гипонатриемия, гипокалиемия, нарастает объем внеклеточной жидкости. Клинически это проявляется тошнотой и рвотой, усиливающейся после питья пресной воды, причем рвота не приносит облегчения; видимые слизистые оболочки у больных повышено влажные. Оводнение клеточных структур мозга проявляется сонливостью, головной болью, подергиванием мышц, судорогами. В тяжелых случаях водного отравления развиваются отек легких, асцит, гидроторакс. Водную интоксикацию можно устранить внутривенным введением гипертонического раствора хлорида натрия и резким ограничением потребления воды.

Дефицит калия является в основном следствием его недостаточного поступления с пищей и потери при рвоте, длительных промываниях желудка, профузных поносах. Потеря калия при заболеваниях желудочно-кишечного тракта (опухоли пищевода и желудка, стеноз привратника, кишечная непроходимость, свищи и т. д.) связана в значительной степени с развивающейся при этих заболеваниях гипохлоремией, при которой резко возрастает общее количество калия, выделяемого с мочой. Значительные количества калия теряют больные, страдающие повторными кровотечениями любой этиологии. Дефицит калия возникает у больных, продолжительно леченных кортикостероидами, сердечными гликозидами, мочегонными и слабительными средствами. Велики потери калия при операциях на желудке и тонкой кишке. В послеоперационном периоде гипокалиемию чаще отмечают при вливании изотонического раствора хлорида натрия, т. к. ионы Na+ являются антагонистами ионов К+. Резко увеличивается выход ионов К+ из клеток во внеклеточную жидкость с последующим выведением их через почки при усиленном распаде белков; существенный дефицит калия развивается при болезнях и патологических состояниях, сопровождающихся нарушением трофики тканей и кахексией (обширные ожоги, перитонит, эмпиема, злокачественные опухоли). Дефицит калия в организме не имеет специфических клинических признаков. Гипокалиемия сопровождается сонливостью, апатией, нарушениями нервной и мышечной возбудимости, снижением мышечной силы и рефлексов, гипотонией поперечнополосатых и гладких мышц (атонией кишечника, мочевого пузыря и т. д.). Важно оценить степень снижения содержания калия в тканях и клетках путем определения его количества в материале, полученном при биопсии мышцы, определения концентрации калия в эритроцитах, уровня экскреции его с суточной мочой, т. к. гипокалиемия не отражает всей степени дефицита калия в организме. Гипокалиемия имеет относительно четкие проявления на ЭКГ (снижение интервала Q-Т, удлинение отрезка Q-Т и зубца Т, уплощение зубца Т).

Дефицит калия возмещают введением в рацион продуктов, богатых калием: кураги, чернослива, изюма, абрикосового, персикового и вишневого сока. При недостаточности обогащенной калием диеты калий назначают внутрь в виде хлорида калия, панангина (аспаркама), внутривенных вливаний препаратов калия (при отсутствии анурии или олигурии). При быстрой потере калия его возмещение следует проводить в темпе, близком к темпу выведения ионов К+ из организма. Основные симптомы передозировки калия: артериальная гипотензия на фоне брадикардии, повышение и заострение зубца Т на ЭКГ, экстрасистолия. В этих случаях прекращают введение препаратов калия и назначают препараты кальция - физиологического антагониста калия, мочегонные средства, жидкость. [1]

Гиперкалиемия развивается при нарушении выделения калия почками (например, при анурии любого генеза), выраженном гиперкортицизме, после адреналэктомии, при травматическом токсикозе, обширных ожогах кожи и других тканей, массивном гемолизе (в т. ч. после массивных переливаний крови), а также при усиленном распаде белков, например при гипоксии, кетоацидотической коме, при сахарном диабете и др. Клинически гиперкалиемия, особенно при ее быстром развитии, что имеет большое значение, проявляется характерным синдромом, хотя выраженность отдельных признаков зависит от генеза гиперкалиемии и тяжести основного заболевания. Отмечаются сонливость, спутанность сознания, боль в мышцах конечностей, живота, характерна боль в языке. Наблюдают вялые мышечные параличи, в т. ч. парез гладких мышц кишечника, снижение АД, брадикардию, расстройства проводимости и ритма сердца, сердечные тоны приглушены. В фазе диастолы может наступить остановка сердца. Лечение гиперкалиемии состоит в диете с ограничением продуктов, богатых калием, и внутривенном введении бикарбоната натрия; показано внутривенное введение 20% или 40% раствора глюкозы с одновременным введением инсулина и препаратов кальция. Наиболее эффективен при гиперкалиемии гемодиализ.

Нарушение водно-солевого обмена играет большую роль в патогенезе острой лучевой болезни. Под влиянием ионизирующего излучения уменьшается содержание ионов Na+ и К+ в ядрах клеток вилочковой железы и селезенки. Характерной реакцией организма на воздействие больших доз ионизирующего излучения является перемещение воды, ионов Na+ и Cl- из тканей в просвет желудка и кишечника. При острой лучевой болезни значительно повышается выведение калия с мочой, связанное с распадом радиочувствительных тканей. При развитии желудочно-кишечного синдрома происходит «утечка» жидкости и электролитов в просвет кишечника, лишенного в результате действия ионизирующего излучения эпителиального покрова. В лечении этих больных применяется весь комплекс мер, направленных на восстановление водно-электролитного баланса.

Заключение

Поддержание стабильности объема жидкостных секторов, содержание в них натрия и воды, осуществляется многокомпонентной системой. Рецепторы этой системы реагируют на отклонение концентрации натрия, осмоляльности плазмы крови и давления крови. Водный обмен в организме тесно связан с солевым обменом, прежде всего с натриевым. Поддержание водно-солевого гомеостаза жизненно необходимо для осморегуляции, обеспечения оптимальных объемов внутри- и внеклеточной жидкостей. Поддержание в норме водно-солевого обмена является важнейшей частью функционирования здорового организма. Нарушениями водно-электролитного баланса сопровождаются многие тяжелые заболевания.

Очевидно, что поддержание стабильности таких жизненно важных гомеостатических показателей, как объем жидкостных секторов, содержание в них натрия и воды, осуществляется многокомпонентной системой. Информационный блок этой системы представлен рецепторами различной природы, реагирующими на отклонение концентрации натрия, осмоляльности плазмы крови и давление в артериальной и венозной части системы кровообращения. Сенсорные механизмы локализуются как в мозгу, так и в периферических частях тела. Информация анализируется, и для коррекции отклонений регулируемых параметров используются как нервные, так и гормональные механизмы. Объектом этих воздействий является мультифункциональный орган - почка, способная быстро и точно менять экскрецию воды и солей. Адекватная реакция почек при постоянной и чрезвычайно изменчивой потере воды и натрия внепочечным путем и большой неравномерности потребления воды и солей обеспечивается этой сложной системой, сформировавшейся в процессе длительной эволюции. Регуляторные механизмы, вовлекаемые в стабилизацию объема и осмоляльности внеклеточной жидкости, тесно взаимодействуют друг с другом.

Список использованной литературы

1. Биохимия: Учебник Под ред. Е.С. Северина.

2. Анисимов А.А «Водносолевой обмен. Основы биохимии»

3. Коровкин Б.Ф Меньшиков В.В «Водносолевой обмен. Распределение воды в организме.// Биохимические исследования в клинике.»

4. Розен В. Б. Основы эндокринологии. -- 3-е изд., перераб. и доп. -- М.: Медицина

5. Кравчинский Б. Д., Физиология водно-солевого обмена жидкостей тела, Л., 1963

Размещено на Allbest.ru

...

Подобные документы

  • Химическая природа и классификация гормонов. Биороль простагландинов и тромбоксанов. Регуляция секреции гормонов. Гормональная регуляция углеводного, липидного, белкового и водно-солевого обмена. Роль циклазной системы в механизме действия гормонов.

    курсовая работа [769,0 K], добавлен 18.02.2010

  • Исследование процесса регуляции водно-солевого обмена и локального истинного кровообращения в организме человека. Изучение особенностей кровоснабжения почки, строения и регенерации коркового и юкстамедуллярного нефронов, работы эндокринного отдела почки.

    реферат [15,2 K], добавлен 04.12.2011

  • Строение кожи, ее участие в регуляции водно-солевого обмена за счет потоотделения и в обмене веществ. Волосы, их строение; выпадение при неблагоприятных условиях. Строение молочных желез и соска. Формирование секреторных отделов при половом созревании.

    реферат [14,5 K], добавлен 02.12.2011

  • Растворы и жидкости в отношении их кислотности. Показатель водно-солевого баланса в тканях и крови организма - pH-фактор. Закисление организма, повышенное содержание щёлочи в организме (алкалоз). Концентрация буферных систем. Защита от перекислений.

    презентация [1,2 M], добавлен 18.03.2015

  • Понятие о гормонах, их основных свойствах и механизме действия. Гормональная регуляция обмена веществ и метаболизма. Гипоталамо-гипофизарная система. Гормоны периферических желез. Классификация гормонов по химической природе и по выполняемым функциям.

    презентация [5,9 M], добавлен 21.11.2013

  • Структурные элементы питания рыб. Взаимосвязь обмена веществ рыб и химического состава воды. Поддержание солевого баланса и система осмотической регуляцииу рыб. Зависимость обмена веществ у рыб от температуры воды, влияния растворенных в воде газов.

    курсовая работа [84,9 K], добавлен 14.10.2007

  • Пространственная структура мембранных липидов. Структура и термодинамика водно-липидных систем. Смеси липидов с водой и полиморфизм. Изучение пространственного строения липидов в кристаллах. Основные типы структурной организации водно-липидных систем.

    реферат [2,9 M], добавлен 30.07.2009

  • Теория функциональной системы П. Анохина. Узлы и компоненты функциональной системы. Афферентный и эфферентный сигналы. Гормональная регуляция функций. Гипоталамо-гипофизарная система. Тканевые гормоны. Гормоны вилочковой железы. Энкефалины и эндорфины.

    реферат [20,8 K], добавлен 23.11.2008

  • Общая характеристика желез внутренней секреции. Исследование механизма действия гормонов. Гипоталамо-гипофизарная система. Основные функции желез внутренней секреции. Состав щитовидной железы. Аутокринная, паракринная и эндокринная гормональная регуляция.

    презентация [1,2 M], добавлен 05.03.2015

  • Контуры регуляции функций. Схема локальной регуляция функции. Состав внутренней среды. Схема гомеостатического механизма. Формирование систем регуляции. Понятие о функциональном элементе ткани по А.М. Чернуху. Механизм взаимосвязи между клетками.

    презентация [290,4 K], добавлен 15.02.2014

  • Гормональная регуляция обмена веществ. Биохимические механизмы регуляции пищеварения. Характеристика гастроинтестинальных гормонов. Центральные рефлекторные влияния в верхней части пищеварительного тракта. Процесс переваривания белков и поступление пищи.

    презентация [282,9 K], добавлен 22.02.2017

  • Поддержание концентраций растворенных веществ — важное условие жизни. Содержание и роль воды в организме, процесс водного обмена. Минеральные элементы, присутствующие в живом организме. Биологическая роль кальция, фосфора, натрия. Обезвоживание организма.

    реферат [46,3 K], добавлен 11.05.2011

  • Освобождение организма от продуктов обмена, которые не могут использоваться организмом. Роль почек в регуляции системного артериального давления, эритропоэза, гемокоагуляции. Механизмы образования мочи и ее выделения, регуляция канальцевой секреции.

    контрольная работа [1,2 M], добавлен 12.09.2009

  • Характеристика основных гормонов поджелудочной железы. Изучение этапов синтеза и выделения инсулина. Анализ биохимических последствий взаимодействия инсулина и рецептора. Секреция и механизм действия глюкагона. Исследование процесса образования C-пептида.

    презентация [72,8 K], добавлен 12.05.2015

  • Роль гормонов в нормальном функционировании клеток организма. Заболевания, возникающие в результате нарушения фосфорно-кальциевого обмена в организме. Описание действия препаратов параткогмона и кальцитонина для лечения подобных заболеваний в медицине.

    реферат [536,6 K], добавлен 27.06.2009

  • Основные системы регуляции метаболизма. Функции эндокринной системы по регуляции обмена веществ посредством гормонов. Организация нервно-гормональной регуляции. Белково-пептидные гормоны. Гормоны - производные аминокислот. Гормоны щитовидной железы.

    презентация [5,3 M], добавлен 03.12.2013

  • Физико-географическая характеристика Благовещенского района: описание границ, гидрография, климат, рельеф и почвы, растительность, животный мир. Классификация водно-болотных угодий. Пойменно-озёрные комплексы Зеи и Амура. Худинское охотничье хозяйство.

    курсовая работа [1,6 M], добавлен 24.01.2010

  • История открытия гормона роста соматотропина, адренокортикотропного гормона и пролактина. Общая характеристика тропных гормонов; изучение их химического состава, строения, химических процессов, протекающих с участием гормонов в живых организмах.

    курсовая работа [557,1 K], добавлен 30.05.2015

  • Рассмотрение глюкозы как одного из основных энергетических ресурсов живого организма. Регулирование гормонами, вырабатываемыми разными железами, обмена глюкозы в организме и поддержании ее нормального уровня в крови. Сахарный диабет и гипогликемия.

    курсовая работа [1,0 M], добавлен 21.04.2012

  • Классификация различных регуляторных механизмов сердечно-сосудистой системы. Влияние автономной (вегетативной) нервной системы на сердце. Гуморальная регуляция сердца. Стимуляция адренорецепторов катехоламинами. Факторы, влияющие на тонус сосудов.

    презентация [5,6 M], добавлен 08.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.