Значение мутаций в эволюции живого мира
Генетические мутации и их роль в развитии видового разнообразия животного мира. Описание принципов генетической, комбинативной и мутационной изменчивости. Причины мутаций, их классификация и искусственное вызывание. Вредные и полезные мутации в эволюции.
Рубрика | Биология и естествознание |
Вид | статья |
Язык | русский |
Дата добавления | 20.04.2019 |
Размер файла | 29,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Значение мутаций в эволюции живого мира
Демаев Р.И.
Френкель Е.Э.
Вольский военный институт материального обеспечения, Вольск Саратовской обл., Россия
Генетика - наука сравнительно молодая. Лишь на рубеже 18-19 веков были сделаны попытки оценить наследственность людей. Мо?ертюи в 1750 году в?ервые предположил, что различные патологии могут ?ередаваться по наследству. Затем в 19 веке были выявлены некоторые закономерности. Но официальной датой рождения генетики принято считать весну 1900 года, когда независимо друг от друга голландский учёный Хуго де Фриз, немецкий Карл Эрих Корренс и австрийский учёный Чермак «?ереоткрыли» законы Менделя, что и дало толчок к развитию генетических исследований. Уже в 1901-1903 годах Х. де Фризом была создана мутационная теория, постулаты которой справедливы и сегодня: мутации возникают внезапно, устойчивы, могут быть прямыми и обратными и, наконец, могут возникать повторно.
Генотипическая изменчивость
Генетика изучает процессы преемственности жизни на молекулярном, клеточном, организменном и популяционном уровне. Генетика человека говорит о законах наследственности и изменчивости у человека в норме и при патологиях. Так что же такое изменчивость? Генотипическая изменчивость - изменения, произошедшие в структуре генотипа и ?ередаваемые по наследству. К этому типу изменчивости относят комбинативную и мутационную изменчивости, которые ведут к увеличению внутривидового разнообразие в природе. Предполагалось, что именно изменчивости таких типов мутаций и сыграли немаловажную роль в мировой эволюции. генетический комбинативный мутация эволюция
Комбинативная изменчивость.
Комбинативная изменчивость возникла с появлением полового размножения, она связана с различными вариантами ?ерекомбинации родительских задатков и является источником бесконечного разнообразия сочетаемых признаков. Так, дети, рождённые в разное время у одной родительской пары, похожи, но всегда отличаются рядом признаков. Комбинативная изменчивость обуславливается вероятностным участием гамет в оплодотворении, имеющих различные ?ерекомбинации хромосом родителей. При этом минимальное число возможных сортов гамет у мужчин и женщин огромно, оно равно 223 (без учёта кроссинговера). В связи с этим вероятность рождения на земле двух одинаковых людей ничтожно мала. Большой вклад в комбинативную изменчивость вносит как раз кроссинговер, приводящий к образованию новых групп сцепления благодаря рекомбинации аллелей. При этом возможное число генотипов (g)
равно:
g = ([r(r+1)] n) /2 - число аллелей n - число генов
Этот закон окончательно был сформулирован в 1908 английским математиком Гомдфри Хамролдом Харди и немецким врачом-биологом Вильгельмом Вайнбергом. И те?ерь этот закон носит имя закон Харди-Вайнберга .
Мутационная изменчивость.
Мутационная изменчивость связана с процессом образования мутаций.
Мутации - это внезапные скачкообразные стойкие изменения в структуре генотипа. Организмы у кото?ы? произошла мутация называются мутантами. Мутационная теория была создана, как говорилось выше, Хуго де Фризом в 1901-1903 г. На основных её положениях строится современная генетика: мутации, дискретные изменения наследственности, в природе спонтанны, мутации ?ередаются по наследству, встречаются достаточно редко и могут быть различных типов. В зависимости от того какой признак положен в основу, на сегодняшний день существует несколько систем классификации мутаций. Мутации
(от лат. mutatio - изменение, ?еремена) - внезапно возникающие естественные (спонтанные) или вызываемые искусственно (индуцированные) стойкие изменения наследственных структур живой материи, ответственных за хранение и ?ередачу генетической информации. Способность давать мутацию - мутировать - универсальное свойство всех форм жизни, от вирусов и микроорганизмов до высших растений, животных и человека; оно лежит в основе наследственной изменчивости в живой природе. Мутации, возникающие в половых клетках или спорах (генеративные мутации), ?ередаются по наследству; мутации, возникающие в клетках, не участвующих в половом размножении (соматические мутации), приводят к генетическому мозаицизму: часть организма состоит из мутантных клеток, другая - из немутантных. В этих случаях мутации могут наследоваться только при вегетативном размножении с участием мутантных соматических частей организма (почек, черенков, клубней и т.п.).
Внезапные наследственные изменения фенотипа могут быть вызваны не только структурными изменениями генов, но и другими генетическими процессами. Мутации могут быть истинными или ложными. Фенотипические изменения сами по себе не дают представления о тех генетических процессах, которые их вызывают. На основании одних лишь прямых наблюдений трудно различать разные типы истинных и ложных мутаций. Существует также, как мы увидим в дальнейшем, внезапное изменение генетического материала, не вызывающее фенотипического эффекта.
Причины мутаций и их искусственное вызывание.
Полиплоидия чаще возникает, когда хромосомы в начале клеточного деления - митоза - разделились, но деления клетки почему-либо не произошло. Искусственно полиплоидию удаётся вызвать, воздействуя на вступившую в митоз клетку веществами, нарушающими цитотомию. Реже полиплоидия бывает следствием слияния 2 соматических клеток или участия в оплодотворении яйцеклетки 2 с?ермиев. Гаплоидия - большей частью следствие развития зародыша без оплодотворения. Искусственно её вызывают, опыляя растения убитой пыльцой или пыльцой др. вида (отдалённого). Основная причина анеуплоидии -- случайное нерасхождение пары гомологичных хромосом при мейозе, в результате чего обе хромосомы этой пары попадают в одну половую клетку или в неё не попадает ни одна из них. Реже возникают анеуплоиды из немногих оказавшихся жизнеспособными половых клеток, образуемых несбалансированными полиплоидами.
Причины хромосомных ?ерестроек и наиболее важной категории мутаций - генных - долгое время оставались неизвестными. Это давало повод для ошибочных автогенетических концепций, согласно которым спонтанные генные мутации возникают в природе якобы без участия воздействий окружающей среды. Лишь после разработки методов количественного учёта генных мутаций выяснилась возможность вызывать их различными физическими и химическими факторами - мутагенами. Первые данные о влиянии излучений радия на наследственную изменчивость у низших грибов были получены в СССР (Г.А. Надсон и Г.С. Филиппов, 1925). Убедительные доказательства возможности искусственно вызывать мутации были приведены в 1927 Г. Мёллером3, обнаружившим в опытах на дрозофиле сильное мутагенное действие рентгеновских лучей. В дальнейшем работами по генетическому действию излучений на различные организмы была установлена универсальная способность всех ионизирующих излучений вызывать не только генные мутации, но и хромосомные ?ерестройки. Мутагенное действие некото?ы? химических веществ было в?ервые обнаружено в СССР М.Н. Мейселем (1928), В.В. Сахаровым (1933) и М.Е. Лобашёвым (1934); ?ервый сильный химический мутаген (чужеродная ДНК) был открыт в 1939 С.М. Гершензоном с сотрудниками; в 1946 сильное мутагенное действие формалина и этиленимина было установлено советским генетиком И.А. Рапопортом, иприта - английскими генетиками Ш. Ауэрбах и Д. Робсоном. Позже были открыты сотни других химических мутагенов. Сильные физические и химические мутагены увеличивают частоту возникновения генных мутаций и хромосомных ?ерестроек во много десятков раз, а наиболее мощные химические мутагены (так называемые су?ермутагены, многие из кото?ы? открыты и изучены советским генетиком И.А. Рапопортом с сотрудниками) - даже в сотни раз по сравнению с частотой возникающих естественно спонтанных мутаций.
В опытах на культурах клеток и на лабораторных животных обнаружено мутагенное действие многих вирусов. Мутагеном у вирусов, по-видимому, служит их нуклеиновая кислота. Т.о., вирусы - не только возбудители многих болезней животных и человека, растений и микроорганизмов, но и один из источников их наследственной изменчивости. Все мутагены вызывают генные мутации, прямо или косвенно изменяя молекулярную структуру нуклеиновых кислот, в которой закодирована генетическая информация.
Экс?ериментальные исследования спонтанных и индуцированных мутаций (наиболее изучены мутации у кукурузы, дрозофилы, а также ряда микроорганизмов) вскрыли ряд важных особенностей мутирования генов. Частота возникновения спонтанных мутаций неодинакова для разных генов и различных организмов, составляя для отдельного гена от 1:105 до 1:107 в поколение; немногие, так называемые мутабильные, гены характеризуются значительно более высокой частотой мутирования. Частота прямых и обратных мутаций одного и того же гена нередко различна. Мутагены повышают частоту мутаций примерно одинаково для всех генов, так что соотношение более часто и сравнительно редко мутирующих генов («с?ектр» мутации) остаётся приблизительно одинаковым как при спонтанном, так и при индуцированном мутационным процессе (в случае химических мутагенов могут наблюдаться небольшие различия в с?ектрах вызываемых ими мутаций).
Лишь у микроорганизмов некоторые химические мутагены сильнее повышают частоту мутирования определённых генов, чем остальных («горячие точки» хромосом). Сходное явление обнаружено при мутагенном действии нуклеиновых кислот и вирусов на многоклеточные организмы. Соотношение общего числа генных мутаций и хромосомных ??рестроек различно при действии физических и химических мутагенов - для вторых характерна большая доля генных мутаций, чем для ?ервых; те или иные различия имеются и в действии разных химических мутагенов.
Далеко не все изменения, вызываемые мутагенами в ДНК клетки, реализуются в мутации. Во многих случаях поврежденный участок ДНК удаляется в процессе рекомбинации или «вырезается» имеющимися в клетке так называемыми репарирующими ферментами, восстанавливающими структуру ДНК, и при дальнейшей репликации ДНК замещается соответствующим нормальным участком.
Частота любых мутаций зависит от многих внешних и внутренних факторов - тем?ературы, парциального давления кислорода, возраста организма, фазы развития и физиологического состояния клетки и др. Большое значение имеют особенности генотипа: даже в пределах одного вида генетически разнящиеся линии могут обладать различной мутабильностью. У ряда организмов описаны так называемые гены-мутаторы, резко повышающие частоту мутаций. Благодаря зависимости мутабильности от генетических факторов, её удаётся повышать или понижать искусственным отбором. Неодинаковая мутабильность разных видов - следствие аналогичного действия естественного отбора в ходе их эволюции.
2. Классификация мутаций
По способу возникновения различают спонтанные и индуцированные мутации.
1. Спонтанные (случайные) - мутации, возникающие при нормальных условиях жизни. Спонтанный процесс зависит от внешних и внутренних факторов (биологические, химические, физические). Спонтанные мутации возникают у человека в соматических и генеративных тканях.
Метод определения спонтанных мутаций основан на том, что у детей появляется доминантный признак, хотя у его родителей он отсутствует. Проведенное в Дании исследование показали, что примерно одна из 24 000 гамет несёт в себе доминантную мутацию. Ученый же Холдейн рассчитал среднюю вероятность появления спонтанных мутаций, которая оказалась равна 5*10-5 за поколение. Другой учёный Курт Браун предложил прямой метод оценки таких мутаций, а именно: число мутаций разделить на удвоенное количество обследованных индивидов.
Спонтанные мутации происходят в природе крайне редко с частотой 1-100 на миллион экземпляров данного гена. В настоящие время вполне понятно, что спонтанный мутационный процесс зависит как от внутренних, так и от внешних факторов, которые называют мутационным давлением среды.
2. Индуцированный мутагенез - это искусственное получение мутаций с помощью мутагенов различной природы. В?ервые способность ионизирующих излучений вызывать мутации была обнаружена Г.А. Надсоном и Г.С. Филлиповым. Затем, проводя обширные исследования, была установлена радиобиологическая зависимость мутаций. В 1927 году американским учёным Джозефом Мюллером было доказано, что частота мутаций увеличивается с увеличением дозы воздействия. В конце сороковых годов открыли существование мощных химических мутагенов, которые вызывали серьезные повреждения ДНК человека для целого ряда вирусов. Одним из примеров воздействия мутагенов на человека может служить эндомитоз - удвоение хромосом с последующим делением центромер, но без расхождения хромосом.
Индуцированные мутации возникают при воздействии на человека мутагенами - факторами, вызывающими мутации. Мутагены же бывают трёх видов:
Физические (радиация, электро-магнитное излучение, давление, тем?ература и т.д.)
Химические (цитостатики, спирты, фенолы и т.д.)
Биологические (бактерии и вирусы)
По отношению к зачатковому пути существуют соматические и генеративные мутации.
1. Генеративные мутации возникают в репродуктивных тканях и в связи с этим не всегда выявляются. Для того, чтобы выявилась генеративная мутация, необходимо, чтобы мутантная гамета участвовала в оплодотворении.
2. Соматические мутации - мутации, возникающие в клетках тела и обусловливающие мозаичность организма, т.е. образование в нём отдельных участков тела, тканей или клеток с отличным от остальных набором хромосом или генов. В клетках развивающегося организма могут возникать соматические мутации всех тех типов, которые наблюдаются в половых клетках: умножения хромосомного набора в целом в результате нормального деления хромосом без последующего деления ядра и клетки; трисомии и моносомии различных хромосом в результате отхождения двух дочерних хромосом к одному полюсу (вместо расхождения их к разным полюсам); потери хромосомы в одной из дочерних клеток в результате её задержки в зоне экваториальной пластинки при делении и т.д. В соматических клетках с той или иной частотой имеют место инверсии (??ревороты), делеции (утраты) и транслокации (?ерестановки) участков хромосом, а также мутации отдельных генов.
Чем раньше в процессе развития организма возникает соматические мутации, тем большее количество клеток-потомков её унаследует при условии, что мутация не убивает клетку-носительницу и не снижает темпов её размножения. Генные соматические мутации проявляются относительно редко, т.к. в подавляющем большинстве случаев функция мутантного гена или выпавшего участка хромосомы ком??нсируется наличием нормального гомологичного гена или нормального участка в партнёре - гомологе мутантной хромосомы. Проявление некото?ы? соматические мутации подавляется соседством нормальной ткани. Наконец, соматические мутации может не проявиться в силу того, что в данной ткани соответствующий участок хромосомы неактивен. Тем не менее, в начале 60-х г. 20 в. выяснилось важное значение - соматические мутации в патогенезе ненормального развития половой системы, в возникновении самопроизвольных абортов и врождённых уродств, в канцерогенезе.
По адаптивному значению выделяют положительные, отрицательные и нейтральные мутации. Эта классификация связана с оценкой жизнеспособности образовавшегося мутанта.
По изменению генотипа мутации бывают генные, хромосомные и геномные.
1. Генные (точковые) мутации затрагивают, как правило, один или несколько нуклеотидов, при этом один нуклеотид может превратиться в другой, может выпасть (делеция), продублироваться, а группа нуклеотидов может развернутся на 180 градусов. Например, широко известен ген человека, ответственный за серповидно - клеточную анемию, который может привести к летальному исходу. Соответствующий нормальный ген кодирует одну из поли?ептидных це?ей гемоглобина. У мутантного гена нарушен всего один нуклеотид (ГАА на ГУА). В результате в цепи гемоглобина одна аминокислота заменена на другую (вместо глутамина - валин). Казалось бы ничтожное изменение, но оно влечёт за собой роковые последствия: эритроцит деформируется, приобретая серповидно-клеточную форму, и уже не способен транспортировать кислород, что и приводит к гибели организма.
Генные мутации приводят к изменению аминокислотной последовательности белка. Наиболее вероятное мутация генов происходит при спаривании тесно связанных организмов, которые унаследовали мутантный ген у общего предка. По этой причине вероятность возникновения мутации повышается у детей, чьи родители являются родственниками. Генные мутации приводят к таким заболеваниям, как амавротическая идиотия, альбинизм, дальтонизм и др.
Интересно, что значимость нуклеотидных мутаций внутри кодона неравнозначна: замена ??рвого и второго нуклеотида всегда приводит к изменению аминокислоты, третий же обычно не приводит к замене белка. К примеру, «Молчащая мутация» - изменение нуклеотидной последовательности, которая приводит к образованию схожего кодона, в результате аминокислотная последовательность белка не меняется.
2. Хромосомные мутации приводят к изменению числа, размеров и организации хромосом, в связи с этим их иногда называют хромосомными ??рестройками. Хромосомные ??рестройки делятся на внутри- и межхромосомные.
К внутрихромосмным относятся:
Дубликация - один из участков хромосомы представлен более одного раза.
Делеция - утрачивается внутренний участок хромосомы.
Инверсия - повороты участка хромосомы на 180 градусов.
Межхромосомные ?ерестройки (их еще называют транслокации) делятся на:
Реципрокные - обмен участками негомологичных хромосом.
Нереципрокные - изменение положения участка хромосомы.
Дицентрические - слияние фрагментов негомологичных хромосом.
Центрические - слияние центромер негомологичных хромосом.
Хромосомные мутации проявляются у 1 % новорождённых. Однако интересно, исследования показали, что нестабильность соматических клеток здоровых доноров не исключение, а норма. В связи с этим была высказана гипотеза о том, что нестабильность соматических клеток следует рассматривать не только как патологическое состояние, но и как адаптивную реакцию организма на измененные условия внутренней среды. Хромосомные мутации могут обладать фенотипическими явлениями. Наиболее распространённый пример - синдром «Кошачьего крика» (плач ребёнка напоминает мяуканье кошки). Обычно носители такой делеции погибают в младенчестве. Хромосомные мутации часто приводят к паталогическим нарушениям в организме, но в то же время хромосомные ??рестройки сыграли одну из ведущих ролей в эволюции. Так, у человека 23 пары хромосом, а у обезьяны - 24. Таким образом, различие составляет всего одна хромосома. Учёные предполагают, что в процессе эволюции произошла хотя бы одна ?ерестройка. Подтверждением этого может служить и тот факт, что 17 хромосома человека отличается от такой же хромосомы шимпанзе лишь одной ?ерецентрической инверсией. Такие рассуждения во многом подтверждают теорию Дарвина.
3. Главнаяотличительная черта геномных мутаций связана с нарушением числа хромосом в кариоти??. Эти мутации так же подразделяются на два вида: полиплоидные анеуплоидные.
- Полиплоидные мутации ведут к изменению хромосом в кариоти?е, которое кратно гаплоидному набору хромосом. Этот синдром в?ервые был лишь обнаружен в 60-ых годах. Вообще полиплоидия характерна в основном для человека, а среди животных встречается крайне редко. При полиплоидии число хромосом в клетке насчитывается по 69 (триплодие), а иногда и по 92 (тетраплодие) хромосомы. Такое изменение ведёт практически к 100 % смерти зародыша. Триплодие имеет не только многочисленные пороки, но и приводит к потере жизнеспособности. Тетраплодие встречается ещё реже, но так же зачастую приводит к летальному исходу.
- Анеуплоидные же мутации приводят к изменению числа хромосом в кариоти?е, некратное гаплоидному набору. В результате такой мутации возникают особи с аномальным числом хромосом. Как и триплодия, анеуплодия часто приводит к смерти ещё на ранних этапах развития зародыша. Причиной же таких последствий является утрата целой группы сцепления генов в кариоти?е.
В целом же, механизм возникновения геномных мутаций связан с патологией нарушения нормального расхождения хромосом в мейозе, в результате чего образуются аномальные гаметы, что и ведёт к мутации. Изменения в организме связаны с присутствием генетически разнородных клеток. Такой процесс называется мозаицизм.
Геномные мутации одни из самых страшных. Они ведут к таким заболеваниям, как синдром Дауна (трисомия возникает с частотой 1 больной на 600 новорождённых), синдром Клайнфельтера и др.
По локализации в клетке мутации делятся на ядерные и цитоплазматические. Плазматические мутации возникают в результате мутаций в плазмогенах, находящихся в митохондриях. Полагают, что именно они приводят к мужскому бесплодию. Причём такие мутации в основном наследуются по женской линии.
3. Вредные и полезные мутации
Эволюция была бы невозможной, если бы генетические программы воспроизводились абсолютно точно. Как вы знаете, копирование генетических программ - репликация ДНК - происходит с высочайшей, но не абсолютной точностью. Изредка возникают ошибки - мутации. Частота мутаций не одинакова для разных генов, для разных организмов. Она возрастает, иногда очень резко, в ответ на воздействие внешних факторов, таких как ионизирующая радиация, некоторые химические соединения, вирусы и при изменениях внутреннего состояния организма (старение, стресс и т.п.).
Средняя частота мутаций у бактерий оценивается как 10-9 на ген на клетку за поколение. У человека и других многоклеточных она выше и составляет 10-5 на ген на гамету за поколение. Иными словами только в одной из 100 тыс. гамет ген оказывается изменённым. Казалось бы, это ничтожно малая величина. Следует помнить, однако, что генов в каждой гамете очень много. По современным оценкам геном человека содержит около 30 тыс. генов. Следовательно, в каждом поколении около трети человеческих гамет несут новые мутации по какому-нибудь гену.
Итак, несмотря на чрезвычайную редкость каждой отдельной мутации, в каждом поколении появляется огромное количество носителей мутантных генов. Благодаря мутационному процессу генотипы всех организмов, населяющих Землю, постоянно меняются; появляются все новые и новые варианты генов (аллели), создается огромное генетическое разнообразие, которое служит материалом для эволюции.
Мутации различаются по своим фенотипическим эффектам. Большинство мутаций, по-видимому, вовсе никак не сказываются на феноти?е. Их называет нейтральными мутациями. Большой класс нейтральных мутаций обусловлен заменами нуклеотидов, которые не меняют смысла кодонов. Такие замены называют синонимическими. Например, аминокислота аланин кодируются триплетами ГЦУ, ГЦЦ, ГЦА и ГЦГ. Если в результате мутации ГЦУ превращается в ГЦЦ, то белок, синтезированный по измененной программе, остаётся тем же самым. Если мутация изменяет смысл кодона (несинонимическая мутация) и одна аминокислота заменяется другой, это может привести к изменению свойств белка.
Большинство несинонимических мутаций оказывается вредными. Они нарушают скоординированное в ходе предшествующей эволюции взаимодействие генетических программ в развивающимся организме, и приводят либо к его гибели, либо к тем или иным отклонениям в развитии. Только очень малая доля вновь возникающих мутаций может оказаться полезной.
Следует помнить, однако, насколько условна эта классификация. Полезность, вредность, или нейтральность мутации зависит от условий, в кото?ы? живет организм. Мутация нейтральная или даже вредная для данного организма и данных условиях, может оказаться полезной для другого организма и в других условиях, и наоборот. Жуки и комары не могли знать заранее, что люди изобретут ДДТ и другие инсектициды и подготовить мутации защиты. Тем не менее, эти мутации возникали - они обнаруживаются даже в тех популяциях насекомых, которые с инсектицидами не встречались. В то время, когда насекомые не сталкивались с инсектицидами, эти мутации были нейтральными. Но как только люди стали применять инсектициды - эти мутации стали не просто полезными, они стали ключевыми для выживания. Те особи, которым по наследству досталась такая мутация, вовсе не нужная их родителям, жившим в доинсектицидную эру, приобрели колоссальное преимущество ?еред теми, кто такой мутации не имел.
Естественный отбор «оценивает» вредность и полезность мутаций по их эффектам на выживание и размножение мутантных организмов в конкретных экологических условиях. При этом вредность мутации, как правило, обнаруживается немедленно, а её полезность часто определяется задним числом: мы называем полезными те мутации, которые позволяют популяциям адаптироваться к изменяющимся условиям среды.
Чем сильнее фенотипический эффект мутации, тем вреднее такая мутация, тем выше вероятность того, что такая мутация будет отбракована отбором. Как правильно отметил Ч. Дарвин, природа не делает скачков. Ни однасложная структура не может возникнуть в результате мутации с сильным фенотипическим эффектом. Новые признаки не возникают мгновенно, они формируется медленно и посте?енно путём естественного отбора случайных мутаций со слабыми фенотипическими эффектами, которые чуть-чуть изменяют старые признаки.
Мутации случайны и ненаправленны. Принципиальным положением мутационной теории является утверждение, что мутации случайны и ненаправленны. Под этим подразумевается, что мутации изначально не адаптивны. Применение инсектицидов не ведет к направленному возникновению мутаций устойчивости к ним у насекомых. Инсектициды могут приводить к общему повышению частоты мутаций, в том числе и мутаций в генах устойчивости к ним, в том числе и таких мутаций, которые эту устойчивость повышают. Но на одну такую «адаптивную» мутацию в «нужном» гене возникают десятки тыс. любых других - нейтральных и вредных - мутаций в генах, которые не имеют никакого отношения к устойчивости к инсектицидам.
Организм не может знать, какие мутации будут полезны в следующем поколении. Нет, и не может быть механизма, который бы обес??чивал направленное появление полезных для организма мутаций. Это утверждение следует из всего того, что мы знаем о принципах кодирования, реализации и ??редачи генетической информации. ДНК - это не чертеж, а рецепт создания организма. Говорят, что генотип определяет фенотип. Не следует понимать эту фразу буквально. Генотип определяет не сам фенотип, а последовательности биохимических и морфогенетических реакций, которые, взаимодействуя друг с другом, определяют развитие фенотипических признаков. Изменения генотипа влекут за собой изменения фенотипа, но не наоборот. Как бы не менялся фенотип организма в ответ на воздействия внешней среды - его изменения не могут привести к изменению генов, которые этот организм ?ередаст следующему поколению.
4. Роль хромосомных и геномных мутаций в эволюции
Все ?еречисленные выше характеристики верны для всех типов мутаций - генных, хромосомных и геномных. Однако, такие геномные и хромосомные мутации как полиплоидия (кратное увеличение количества хромосом) и дупликации (удвоения определенных участков хромосом) играют особую роль в эволюции. Это связано с тем, что они увеличивают количество генетического материала и тем самым открывают возможность возникновения новых генов с новыми свойствами.
Расшифровка генома человека и других организмов показала, что многие гены и участки хромосом представлены в нескольких копиях. К ним относятся множество генов, отвечающих за синтез рибосомной РНК, гистонов (белков, участвующих в упаковке ДНК в хромосомах) и многих других. Таких генов нужно много для того, чтобы обес??чить высокий уровень синтеза, контролируемых ими продуктов. Следует ли из этого, что множественные копии этих генов возникли для этого? Конечно же, нет. Удвоение всего генома или его отдельных участков происходило случайно. При этом удваивались не только эти гены, но и многие другие. Естественный отбор, однако, «поступал» с этим лишними копиями по-разному. Некоторые копии оказались полезными, и естественный отбор поддерживал их в популяциях. Другие оказались вредными, поскольку «больше - не всегда лучше». В этом случае отбор или отбраковывал носителей таких копий, или способствовал размножению таких особой, у кото?ы? излишние копии генов терялись в результате других хромосомных мутаций - делеций. Были, наконец, и нейтральные копии, присутствие кото?ы? никак не сказывалось на приспособленности их носителей.
Филогенетическое древо глобиновых генов. Ген глобина в ходе эволюции несколько раз дуплицировался (отмечено стрелками). Его добавочные копии затем приобретали новые свойства и функции. Из гена бета-глобина общего предка возникли гены гамма-, дельта-, эпсилон-глобинов - белков, которые выполняют иные функции, чем бета-глобин.
Эти лишние копии становились резервом эволюции. Мутации в таких «резервных генах» не так строго отбрасывались отбором, как мутации в основных, уникальных генах. Резервным генам было «позволено» меняться в более широких пределах. Со временем они могли приобретать новые функции и становиться все более и более уникальными. Ярким примером последствий такого процесса является многочисленное и разнообразное семейство генов глобинов млекопитающих. Анализ последовательности нуклеотидов в этих генах показывается, что все они произошли в результате серии последовательных удвоений одного-единственного гена. За каждым удвоением следовало накопление случайных мутаций и посте??нное изменение их функций, синтезируемых ими белков.
Когда мы сравниваем кариотипы разных видов млекопитающих, мы обнаруживаем, что в ходе эволюции этих видов происходили и закреплялись и другие хромосомные мутации, такие как транслокации и инверсии. Кариотип человека отличается от шимпанзе и других антропоидов одной транслокацией и несколькими инверсиями. За десятки миллионов лет независимой эволюции в кариотипах человека и землеройки возникли и закрепились десятки различных транслокаций и инверсий. Эти хромосомные ??рестройки не могли бы закрепиться, если бы они резко нарушали жизнеспособность или плодовитость их носителей.
В результате транслокаций и инверсий меняется взаимное расположение генов и, следовательно, характер их взаимодействия. В настоящее время хорошо известно, какую важную роль в проявлении генов играют их регуляторные элементы. Эти элементы, как правило, находятся в тех же хромосомах, что и контролируемые гены, но часто на большом расстоянии от них. Отрыв гена от его регуляторного элемента, обусловленный инверсией или транслокаций, или соединение этого гена с чужим регуляторным элементом может приводить к значительным изменениям в функции гена - времени его проявления в развитии, ти?е клеток, в кото?ы? этот ген активен, в количестве синтезируемого белка. К таким же последствиям может приводить и ?еремещение мобильных генетических элементов, которые могут захватывать и ?ереносить с места на место регуляторные элементы.
В геноме обнаружены участки, где довольно часто происходят разрывы хромосом, ведущие к образованию хромосомных ??рестроек. Найдены и участки преимущественной локализации мобильных генетических элементов. Интересно, что во многих случаях это одни и те же участки. Итак, мы можем говорить о неслучайном распределении этих участков по геному. Однако, и как все остальные мутации, хромосомные ??рестройки и ??ремещения мобильных элементов случайны. Они случайно меняют функции генов, находящихся вблизи точек разрывов, они случайно распределяют гены по геному. Они приводят к тому, что возникает множество новых «коалиций» генов, а приспособительная ценность этих «коалиций» оценивается отбором.
З а к л ю ч е н и е
Геномные мутации, хромосомные ?ерестройки и генные мутации - причина многих наследственных заболеваний и врождённых уродств у человека. В связи с этим ограждение человека от действия мутагенов - важнейшая задача. Огромное значение в этом отношении имело осуществлённое по инициативе СССР запрещение испытаний ядерного оружия в атмосфере, загрязняющих окружающую среду радиоактивными веществами. Очень важно тщательное соблюдение мер защиты человека от радиации в атомной индустрии, при использовании радиоактивных изотопов, рентгеновских лучей и т.п. Необходимо изучение возможного мутагенного действия различных новых лекарственных средств, ??стицидов, химических препаратов, применяемых в промышленности, и запрещение производства тех из них, которые окажутся мутагенными. Профилактика вирусных инфекций имеет значение и для защиты потомства от мутагенного действия вирусов.
Мутационный процесс является важнейшим фактором эволюции. Мутационный процесс изменяет гены и порядок их расположения в хромосомах и тем самым увеличивает генетическое разнообразие популяций. Он создает избыточные копии генов и тем самым открывает возможность усложнения организмов. Мутации возникают случайно и не направленно. Адаптивная ценность каждой мутации не постоянна. Она определяется взаимодействием мутантного аллеля с другими генами организма и с условиями среды, в которой развивается и живет мутантный организм.
Если бы мутационный процесс был единственным фактором эволюции, то сама эволюция происходила гораздо медленнее, чем на самом деле. Частоты генов в популяциях меняются не только и не столько за счёт мутационного процесса, но благодаря действию других факторов эволюции.
Мутационный процесс является главным источником изменений, приводящим к различным патологиям. Задачи науки на ближайшие время определяются как уменьшения генетического груза путем предотвращения или снижения вероятности мутаций и устранения возникших в ДНК изменений с помощью генной инженерии. Генная инженерия - новое направление в молекулярной биологии, появившееся в последние время, которое может в будущем обратить мутации на пользу человеку, в частности, эффективно бороться с вирусами. Уже сейчас существуют вещества называемые антимутагены, которые приводят к ослаблению темпов мутирования. Ус?ехи современной генетики находят применение в диагностики, профилактике и лечении ряда наследственных патологий.
Список использованных источников
1. Интернет-ресурс: http://www.polnaja-jenciklopedija.ru/biologiya/osnovygenetiki.html
2. Клаг Уильям С., Каммингс Майкл Р. Основы генетики. - М.: Техносфера, 2007. - 896 с.
3. Френкель Е.Н. Концепции современного естествознания. Физические, химические и биологические концепции. - Ростов н/Д: Феникс, 2014. - 246 с.
Размещено на Allbest.ru
...Подобные документы
Изучение понятия мутации. Отличительные черты генотипической, комбинативной, мутационной изменчивости. Причины мутаций и их искусственное вызывание. Признаки вредных и полезных мутационных процессов. Значение хромосомных и геномных мутаций в эволюции.
реферат [37,5 K], добавлен 12.11.2010Исследование молекулярно-цитологических основ мутационной изменчивости. Изучение разнообразия соматических и генеративных мутаций. Выявление причин возникновения мутаций. Значение мутаций в природе и жизни человека. Биологические и физические мутагены.
презентация [19,1 M], добавлен 24.04.2016Частота ошибок при последовательной репликации. Значение процесса конкуренции и отбора для процессов эволюции. Механизм мутации, свойства воспроизведения, случайное производство альтернативных возможностей. Роль случайности в процессе мутации и эволюции.
курсовая работа [217,9 K], добавлен 25.10.2009Обусловленность наследственной изменчивости типов мутаций и их комбинаций в последующих скрещиваниях. Генные, геномные, хромосомные мутации. Снижение жизнеспособности особей как последствие мутаций. Причины возникновения мутаций, безуспешность их лечения.
презентация [5,5 M], добавлен 11.02.2010Предпосылки эволюции: изменчивость и наследственность. Формы изменчивости, основные понятия и термины. Наследственные изменения - мутации. Эволюционная характеристика мутаций. Генетические различия между близкими группами. Корреляции.
курсовая работа [280,9 K], добавлен 09.11.2006Определенная (ненаследственная) и неопределенная (наследственная) изменчивость. Генетические различия между особями. Мутации как элементарный эволюционный материал. Роль мутантных изменений в эволюции организмов. Категории гомологической изменчивости.
презентация [503,0 K], добавлен 15.12.2013Классификация мутаций: геномные, хромосомные, генные. Понятие наследственной изменчивости как способности организмов приобретать новые признаки в процессе онтогенеза и передавать их потомству. Описание основных мутаций: дальтонизм, гемофилия, талассемия.
презентация [1,9 M], добавлен 03.05.2012Жизненный цикл ретровирусов. Инфекция клеток ретровирусами. Спонтанные и индуцированные мутации. Основные процессы, приводящие к возникновению мутаций. Классификация мутаций по различным критериям. Последствия мутаций для организма, перенос генов.
реферат [26,5 K], добавлен 21.05.2015Особенности эволюции человека как биологического и социального существа, а также понятие "генотип" и "фенотип". Классификация мутации, основанной на размерах сегментов генома. Комплементация функционального дефекта в клетках больных анемией Фанкони.
курсовая работа [48,2 K], добавлен 15.08.2014Что такое геном, понятие геномных мутаций, их классификация. Описание гаплоидии, полиплоидии, сфера распространения этих мутаций. Синдром Дауна как болезнь, обусловленная аномалией хромосомного набора. Синдром Клайнфельтера. Синдром Шерешевского-Тернера.
презентация [2,7 M], добавлен 12.09.2011Обмен веществ и энергией в живой клетке, обменные процессы в неживой природе. Роль мутаций и окружающей среды в эволюции, значение для естествознания использования корпускулярно-волновых свойств веществ. Модели развития Вселенной, механизмы изменчивости.
контрольная работа [381,3 K], добавлен 17.08.2010Понятие мутации как любого наследственного изменения, не связанного с расщеплением или с обычной рекомбинацией неизмененного генетического материала. Типы хромосомных мутаций. Активность муосомальных ферментов при разных патологических состояниях.
контрольная работа [84,6 K], добавлен 15.08.2013Описания изменений в ДНК клетки, возникающих под действием ультрафиолета и рентгеновских лучей. Характеристика особенностей генных и хромосомных мутаций. Причины и передача цитоплазматических мутаций. Исследование мутаций в соматических клетках растений.
презентация [62,2 K], добавлен 17.09.2015Пределы модификационной изменчивости для разных признаков и при разных условиях, норма реакции. Управление доминированием, доминантные и рецессивные признаки. Понятие мутаций, их частота и причины; генные, хромосомные мутации. Закон гомологических рядов.
реферат [22,7 K], добавлен 13.10.2009Закономерности наследственности и мутационной изменчивости как основа теории селекции, ее задачи и методы. Выведение новых пород животных, сортов растений, микроорганизмов с учетом законов эволюции, роль внешней среды в развитии и формировании признаков.
презентация [16,6 K], добавлен 02.11.2011Эксперимент Менделя. Менделевская генетика. Мутации-изменения гена. Влияние мутаций на эффективное функционирование гена. Естественный отбор как подтверждение генетики или опровержения теории эволюции. Проблема истощения генофонда живых организмов.
реферат [19,7 K], добавлен 24.12.2007Микроэволюция как процесс преобразования генетической структуры популяций под действием факторов эволюции. Элементарная единица эволюции и её характеристики. Особенности популяций, их генетический состав. Элементарные эволюционные факторы, мутации.
реферат [127,7 K], добавлен 09.12.2013Структурная и функциональная целостность высших растений, изучение тканей растений и познание особенностей строения, жизнедеятельности и эволюции растений. Генетический контроль гистогенеза, возможности комбинативной и мутационной изменчивости.
курсовая работа [70,8 K], добавлен 08.06.2012Разработка комплексного подхода к процессам эволюции на базе современных достижений генетики популяций, молекулярной биологии, эволюции биосферы. Естественный отбор. Борьба видов за существование. Сохранение и накопление случайных мелких мутаций.
презентация [1,0 M], добавлен 11.03.2017Попытка французского ученого-естествоиспытателя Ж. Ламарка создать стройную и целостную теорию эволюции живого мира. Теория самозарождения жизни и наследования позитивных признаков, классификация животного мира. Реакция современников на теорию Ламарка.
презентация [1,6 M], добавлен 22.10.2016