Историко-методологический анализ науки. Понятия "научная картина мира", "идеалы" и "нормы" научного исследования. Химическая картина мира
Динамика развития науки. Базовые понятия: картина мира (философская, религиозная, научная). Идеалы науки. Цели научной деятельности и способы их достижения. "Химический взгляд" на природу. Современная картина химических знаний. Концептуальные системы.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 29.09.2019 |
Размер файла | 55,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФГБОУ ВО «СЫКТЫВКАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ИМЕНИ ПИТИРИМА СОРОКИНА»
ИНСТИТУТ ЕСТЕСТВЕННЫХ НАУК
КАФЕДРА ХИМИИ
Реферат
«Историко-методологический анализ науки. Понятия «научная картина мира», «идеалы» и «нормы» научного исследования. Химическая картина мира»
Выполнила:
студентка 212-ХМо группы
Спиридонова В.А.
Проверила:
Дудар Т.Е.
2018
Содержание
Введение
Понятие картины мира
Идеалы и нормы научного исследования
Химическая картина мира
Список источников
Введение
Исторический и методологический анализ науки представляется актуальным направлением деятельности - в настоящее время существует огромное количество различных научных дисциплин, при этом продолжают появляться те или иные направления развития каждой науки. Однако, такое разнообразие существовало не всегда - различные области научного знания формировались на основе других, дополнялись ими, или возникали в противовес первоначальным.
Современное экспериментальное естествознание зарождается только в конце XVI века. Его появление было подготовлено протестантской Реформацией и католической Контрреформацией, когда под вопрос были поставлены самые основы средневекового мировоззрения. Так же как Лютер и Кальвин преобразовали религиозные доктрины, работы Коперника и Галилея привели к отказу от астрономии Птолемея, а труды Везалия и его последователей внесли существенные поправки в медицину. Эти события положили начало процессу, ныне называемому научной революцией.
Поэтому важно проследить динамику развития науки, начиная с древних времен, определяя предпосылки, послужившие началу развития тех или иных представлений.
В данной работе будут рассмотрены:
1) базовые понятия: научная картина мира, идеалы и нормы научного исследования;
2) химическая картина мира и ее развитие.
Понятие картина мира
Картина мира -- система интуитивных представлений о реальности. Картину мира можно выделить, описать или реконструировать у любой социопсихологической единицы -- от нации или этноса до какой-либо социальной или профессиональной группы или отдельной личности. Каждому отрезку исторического времени соответствует своя картина мира.
Далее можно рассмотреть самые основные, базовые картины мира.
Философская картина мира осмысливает мироздание в плане взаимоотношений человека и мира во всех ракурсах онтологическом, познавательном, ценностном и деятельностном. Вот почему философские картины мира не похожи одна на другую. Их объединяет и отличает от религиозной и мифологической картин мира, то, что философия относится к теоретическому способу освоения мира. Этот способ характеризуется тем, что человек познает мир в понятиях, умозрительно (в мысли, в слове). Философское знание, это знание или взгляд живого человека. Поэтому наряду со знанием о мире философия формирует и ценностное отношение к нему.
Философия отдает отчет в том, что мир бесконечно сложен, необъятен и бесконечен. Для философии остается один путь - понять мир не «вширь», а»вглубь», не в многообразии его явлений, а в единстве его сущности. Тогда философская картина мира осмысливается как системно-рационализированную совокупность представлений о мире в целом, включая в него и самого человека. Системообразующим принципом философской картины мира вступает понятие бытия. В этой категории фиксируется убеждение человека в существовании окружающего его мира и самого человека с его сознанием.
Религиозная картина мира обобщает религиозный опыт людей и делает главным предметом своего внимания соотношение повседневной эмпирии и потустороннего. Земное и небесное, человеческое и божественное - предмет религиозных размышлений. Причем тот мир, мир божественного определяет людей и в их физическом бытии, и в бытии духовном. Центральный пункт религиозной картины мира - образ Бога (богов) как высшей истинной реальности. Она выражает иерархическую упорядоченность сотворенного Богом мира и место человека в нем, в зависимости от его отношения к Богу.
Научная картина мира складывается в результате синтеза знаний, получаемых в различных науках, и содержит общие представления о мире, вырабатываемые на соответствующих стадиях исторического развития науки. В этом значении ее именуют общей научной картиной мира, которая включает представления как о природе, так и о жизни общества. Аспект общей научной картины мира, который соответствует представлениям о структуре и развитии природы, принято называть естественно-научной картиной мира.
Подробнее остановимся на научной картине мира. Научная картина мира (НКМ) -- целостная система представлений об общих свойствах и закономерностях действительности, построенная в результате обобщения и синтеза фундаментальных научных понятий и принципов, а также методология получения научного знания.
В процессе развития науки происходит постоянное обновление идей и концепций, более ранние представления становятся частными случаями новых теорий. Таким образом, научная картина мира -- не догма и не абсолютная истина. В то же время, научные представления приближены к истине, так как основаны на всей совокупности доказанных фактов и установленных причинно-следственных связей. В результате научные знания позволяют делать верные предсказания о свойствах нашего мира и способствуют развитию человеческой цивилизации. Противоречия между научными концепциями преодолеваются путём выявления новых фактов и сравнения их с предсказаниями различных теорий. В таком развитии -- суть научного метода.
Научная картина мира существенно отличается от религиозных представлений о мире, которые основаны не столько на доказанных фактах, сколько на авторитете пророков и религиозной традиции. Религиозные интерпретации концепции мироздания постоянно изменяются, чтобы приблизить их к современным научным трактовкам. Догмы разных религий, как правило, противоречат друг другу, и эти противоречия весьма трудно преодолеть (в отличие от научных противоречий, которые преодолеваются экспериментальным путём).
Далее можно указать 3 основных типа НКМ:
а) систематизированное знание, полученное в различных отраслях научного знания и синтезированное в некоторую целостность;
б) естественнонаучная картина мира и общественно-научная картина мира;
в) конкретно-научная картина мира (физическая картина мира, картина исследуемой реальности).
Картина мира исследуемой реальности по существу совпадает с теоретическим знанием в той или иной области науки. Но есть и существенные различия между теорией и НКМ. Во-первых, в НКМ есть философская нагруженность категорий науки, которые преобразуются в фундаментальные понятия (взаимодействие, причинность и т. д.) Во-вторых, картина мира не включает процесс получения знания и его аргументации. Картину мира образуют фундаментальные понятия и фундаментальные принципы науки. К числу таких относят принципы глобального эволюционизма, понятия пространства и времени и другие[4].
Идеалы и нормы научного исследования
Идеалы науки -- это ценностные ориентации научного мышления ученых, которые занимаются наукой. Ценности есть общезначимые образцы, нормы, которые предъявляются к научному исследованию.
Идеалы и нормы науки носят исторически развивающийся характер. Например, идеалом классической науки Х\/11-ХIХ вв. в понимании причинности была динамическая трактовка причинности: все предопределено -- прошлое, настоящее, будущее.
В нормах и идеалах исследования выражены представления о целях научной деятельности и способах их достижения.
Виды:
а) собственно познавательные установки, которые регулируют процесс воспроизведения объекта в различных формах научного знания;
б) социальные нормативы, которые фиксируют роль науки и ее ценность для общественной жизни на определенном этапе исторического развития, управляют процессом коммуникации исследователей, отношениями научных сообществ и учреждений между собой и с обществом в целом и т.п.
Эти два аспекта идеалов и норм науки соответствуют двум аспектам ее функционирования: как познавательной деятельности и как социального института.
Основные формы:
1) объяснение и описание,
2) доказательность и обоснованность знания,
3) построение и организация знаний.
В совокупности - своеобразная схема метода исследовательской деятельности.
На разных этапах исторического развития наука создает разные типы таких схем метода, представленных системой идеалов и норм исследования. Сравнивая их, можно выделить как общие, так и особенные черты в содержании познавательных идеалов и норм. Общие черты характеризуют специфику научной рациональности, а особенные выражают ее исторические типы и их конкретные дисциплинарные разновидности. В содержании любой из форм можно зафиксировать по меньшей мере три взаимосвязанных уровня.
Первый уровень - признаки, которые отличают науку от других форм познания: что научное знание отлично от мнения, должно быть обосновано и доказано, что наука не может ограничиваться непосредственными констатациями явлений, а должна раскрыть их сущность.
Второй уровень - исторически изменчивые установки, которые характеризуют стиль мышления, доминирующий в науке на определенном историческом этапе. В Средневековье различал правильное знание, проверенное наблюдениями и приносящее практический эффект, и истинное знание, через веру. В новое время требование экспериментальной проверки - важнейший критерий истинности знания.
Третий уровень - установки второго уровня конкретизируются применительно к специфике предметной области каждой науки (математики, физики, биологии, социальных наук и т.п.). Например, в математике отсутствует идеал экспериментальной проверки теории, но для опытных наук он обязателен.
Специфика исследуемых объектов сказывается на характере идеалов и норм научного познания, и каждый новый тип системной организации объектов требует их трансформации. В их системе выражен образ познавательной деятельности, представление об обязательных процедурах, которые обеспечивают постижение истины. Этот образ всегда имеет социокультурную размерность. Эти влияния определяют специфику второго уровня, который выступает базисом для формирования нормативных структур, выражающих особенности различных предметных областей науки.
Определяя общую схему метода деятельности, идеалы и нормы регулируют построение различных типов теорий, осуществление наблюдений и формирование эмпирических фактов. Они впечатываются во все эти процессы исследовательской деятельности. Исследователь может не осознавать всех применяемых в поиске нормативных структур, многие из которых ему представляются само собой разумеющимися.
В системе таких знаний и способов их построения возникают своеобразные эталонные формы, на которые ориентируется исследователь (для Ньютона евклидова геометрия).
Вместе с тем историческая изменчивость идеалов и норм, необходимость вырабатывать новые регулятивы исследования порождают потребность в их осмыслении и рациональной экспликации. Результатом такой рефлексии выступают методологические принципы, в системе которых описываются идеалы и нормы исследования[2].
наука картина мир химический
Химическая картина мира
«Химический взгляд» на природу начал формироваться в рамках классической химии, которая является наукой о свойствах веществ и их превращениях на основе феноменологического подхода. В современной (неклассической) химии этот взгляд дополнился совокупностью квантовых представлений о веществе и его преобразованиях, объяснениями причин химических процессов на основе квантовой механики и квантовой теории поля. «Химический взгляд» на природу не может быть сведен к физическому, несмотря на все успехи физической химии в нынешнем столетии, поскольку у химии давно были обнаружены качества некоторого особого типа.
В химии совмещается множество противоречивых тенденций. В качестве примеров можно отметить отчетливое проявление неравноценности отдельных химических элементов. Подавляющее большинство химических соединений (96% из более 15 миллионов, известных в настоящее время) - это органические соединения, в основе которых лежат 18 элементов (наибольшее распространение имеют всего 6 из них). Это происходит в силу того, что, во-первых, химические связи на основе этих элементов прочны (энергоемки) и, во-вторых, они еще и лабильны. Наиболее всем этим требованиям энергоемкости и лабильности связей отвечает углерод, который к тому же совмещает в себе химические противоположности, реализуя их единство. В космическом пространстве основным элементом является водород, в звездах к нему добавляется гелий. В неорганических веществах основными элементами являются водород, азот, кислород, углерод.
Если говорить конкретно о химическом представлении о реальности и химической картине мира, то можно указать следующие положения:
1. Основой химической реальности является динамическая ячейка сложной топологической структуры. Эта ячейка склеена «электронным клеем», посредством «обобществления» электронов, а её элементный состав и структура расположения атомов определяют поведение и самой ячейки, и вещества на её основе. То, что сама структура химических соединений оказалась гораздо более качественно разветвленной, чем это предполагалось ранее, позволило фактически ввести в химическую науку новый логический и топологический язык
2. По многим параметрам химию можно рассматривать как центральную науку естествознания. Первая предпосылка к этому - размеры химических объектов - атомов и молекул, которые, с одной стороны, значительно превышают размеры элементарных частиц, ядра атомов, а с другой стороны, на много порядков меньше параметров клеток отдельных растений и живых организмов. Отсюда легкость перекидывания мостов к физике, которые к настоящему времени позволили установить глубокие и хорошо исследованные взаимодействия между физической и химической дисциплинарными онтологиями. Также естественным образом углубляются возможности взаимодействия с биологией. Исследование нуклеиновых кислот, аминокислот, полипептидов, белков включает в себя конкретные химические исследования.
3. Методология химических исследований также предполагает развитие различных, далеко отстоящих друг от друга направлений. С одной стороны, в ней четко выражена тенденция редукционизма и, прежде всего, сведение к физике; большое значение имеет опора на историцизм химических процессов. С другой стороны, химия всегда тяготела к холизму и системной иерархии, и именно на них, прежде всего, опирается развитие представлений о «сложных системах» этого структурного уровня мира. Однако главными проблемами химической картины мира являются самоорганизация и время.
4. Самоорганизация представляет собой спонтанное образование высокоупорядоченных структур из хаоса или промежуточных зародышей. «Мы называем систему самоорганизующейся, если она без специфического воздействия извне обретает какую-то пространственную, временную или функциональную структуру. Под специфическим внешним воздействием мы понимаем такое, которое навязывает системе структуру или функционирование». Зародышем самоорганизации служит «вероятность», упорядоченность возникает через флуктуации, устойчивость - через неустойчивость [1].
5. Ключевые проблемы самоорганизации, химической сложности, необратимости определяются исследованием времени в химических процессах. Химическое время - это не совсем корректный термин, «правильнее говорить не о «химическом времени», а о моделях или концепциях времени, функционирующих в химических теориях».
Современная картина химических знаний
Важнейшей особенностью основной проблемы химии является то, что она имеет всего четыре способа решения вопроса. Свойства вещества зависят от четырех факторов:
1. от элементного и молекулярного состава вещества;
2. от структуры молекул вещества;
3. от термодинамических и кинетических условий, в которых вещество находится в процессе химической реакции;
4. от уровня химической организации вещества.
Поскольку эти способы появлялись последовательно, мы можем в истории химии выделить четыре последовательно сменявших друг друга этапа ее развития. В то же время с каждым из названных способов решения основной проблемы химии связана своя концептуальная система знаний. Эти четыре концептуальных системы знания находятся в отношениях иерархии (субординации). В системе химии они являются подсистемами, так же как сама химия представляет собой подсистему всего естествознания в целом.
Современную картину химических знаний объясняют с позиций четырех концептуальных систем.
Первый уровень химического знания. Учение о составе вещества
Учение о составе веществ является первым уровнем химических знаний. До 20-30-х гг. XIX в. вся химия не выходила за пределы этого подхода. Но постепенно рамки состава (свойств) - стали тесны химии, и во второй половине XIX в. главенствующую роль в химии постепенно приобрело понятие «структура», ориентированное, что и отражено непосредственно в самом понятии, на структуру молекулы реагента.
Первый действенный способ решения проблемы происхождения свойств вещества появился в XVII в. в работах английского ученого Р. Бойля. Его исследования показали, что качества и свойства тел не имеют абсолютного характера и зависят от того, из каких химических элементов эти тела составлены. У Бойля наименьшими частичками вещества оказывались неосязаемые органами чувств мельчайшие частички (атомы), которые могли связываться друг с другом, образуя более крупные соединения - кластеры (по терминологии Бойля). В зависимости от объема и формы кластеров, от того, находились они в движении или покоились, зависели и свойства природных тел. Сегодня мы вместо термина «кластер» используем понятие «молекула».
В период с середины XVII в. до первой половины XIX в. учение о составе вещества представляло собой всю химию того времени. Оно существует и сегодня, представляя собой первую концептуальную систему химии. На этом уровне знания химической картины мира ученые решали и решают три важнейшие проблемы: химического элемента, химического соединения и задачу создания новых материалов с вновь открытыми химическими элементами.
Химическим элементом называют все атомы, имеющие одинаковый заряд ядра. Особой разновидностью химических элементов являются изотопы, у которых ядра атомов отличаются числом нейтронов (поэтому у них разная атомная масса), но содержат одинаковое число протонов и поэтому занимают одно и тоже место в периодической системе элементов. Термин «изотоп» был введен в 1910 г. английским радиохимиком Ф. Содди. Различают стабильные (устойчивые) и нестабильные (радиоактивные) изотопы.
С момента открытия изотопов наибольший интерес вызвали радиоактивные изотопы, которые стали широко использоваться в атомной энергетике, приборостроении, медицине и т. д.
В Периодической системе Д.И. Менделеева насчитывалось 62 элемента, в 1930-е гг. она заканчивалась ураном. В 1999 г. было сообщено, что путем физического синтеза атомных ядер открыт 114-й элемент.
Долгое время химики эмпирическим путем определяли, что относится к химическим соединениям, а что - к простым телам или смесям. В начале XIX в. Ж. Пруст сформулировал закон постоянства состава, в соответствии с которым любое индивидуальное химическое соединение обладает строго определенным, неизменным составом и тем самым отличается от смесей.
Химическое соединение - понятие более широкое, чем «сложное вещество», которое должно состоять из двух и более разных химических элементов. Химическое соединение может состоять и из одного элемента. Это О2, графит, алмаз и другие кристаллы без посторонних включений в их решетку в идеальном случае».
Дальнейшее развитие химии и изучение все большего числа соединений приводили химиков к мысли, что наряду с веществами, имеющими определенный состав, существуют еще и соединения переменного состава - бертоллиды. В результате были переосмыслены представления о молекуле в целом. Молекулой, как и прежде, продолжали называть наименьшую частичку вещества, способную определять его свойства и существовать самостоятельно.
Далее были определены химические связи, указывающие на взаимодействие атомных электрических зарядов, носителями которых оказываются электроны и ядра атомов.
Существуют ковалентные, полярные, ионные и ионно-ковалентные химические связи, отличающиеся характером физического взаимодействия частиц между собой. Поэтому теперь под химическим соединением понимают определенное вещество, состоящее из одного или нескольких химических элементов, атомы которых за счет взаимодействия друг с другом объединены в частицу, обладающую устойчивой структурой: молекулу, комплекс, монокристалл или иной агрегат.
Осуществляют химические связи между атомами электроны, расположенные на внешней оболочке и связанные с ядром наименее прочно. Их назвали валентными электронами. В зависимости от характера взаимодействия между этими электронами различают ковалентную, ионную и металлическую химические связи.
Ковалентная связь осуществляется за счет образования электронных пар, в одинаковой мере принадлежащих обоим атомам.
Ионная связь представляет собой электростатическое притяжение между ионами, образованное за счет полного смещения электрической пары к одному из атомов.
Металлическая связь - это связь между положительными ионами в кристаллах атомов металлов, образующаяся за счет притяжения электронов, но перемещающаяся по кристаллу в свободном виде[3].
Второй уровень химического знания
Многочисленные эксперименты по изучению свойств химических элементов в первой половине XIX в. привели ученых к убеждению, что свойства веществ и их качественное разнообразие обусловлены не только составом элементов, но и структурой их молекул. К этому времени в химическом производстве стала преобладать переработка огромных масс вещества растительного и животного происхождения. Их качественное разнообразие потрясающе велико - сотни тысяч химических соединений, состав которых крайне однообразен, так как они состоят из нескольких элементов-органогенов (углерода, водорода, кислорода, серы, азота, фосфора).
Наука считает, что только эти шесть элементов составляют основу живых систем, из-за чего они получили название органогенов. Весовая доля этих элементов в живом организме составляет 97,4%. Кроме того, в состав биологически важных компонентов живых систем входят еще 12 элементов: натрий, калий, кальций, магний, железо, цинк, кремний, алюминий, хлор, медь, кобальт, бор.
Особая роль отведена природой углероду. Этот элемент способен организовать связи с элементами, противостоящими друг другу, и удерживать их внутри себя. Атомы углерода образуют почти все типы химических связей. На основе шести органогенов и еще около 20 других элементов природа создала около 8 млн. различных химических соединений, обнаруженных к настоящему времени. 96% из них приходится на органические соединения.
Объяснение необычайно широкому разнообразию органических соединений при столь бедном элементном составе было найдено в явлениях изомерии и полимерии. Так было положено начало второму уровню развития химических знаний, который получил название структурной химии.
Структура - это устойчивая упорядоченность качественно неизменной системы (молекулы). Под данное определение подпадают все структуры, которые исследуются в химии: квантово-механические, основанные на понятиях валентности и химического сродства, и др.
Она стала более высоким уровнем по отношению к учению о составе вещества, включив его в себя. При этом химия из преимущественно аналитической науки превратилась в синтетическую. Главным достижением этого этапа развития химии стало установление связи между структурой молекул и реакционной способностью веществ.
Основы структурной химии были заложены Дж. Дальтоном, который показал, что любое химическое вещество представляет собой совокупность молекул, состоящих из определенного количества атомов одного, двух или трех химических элементов. Затем И.-Я. Берцелиус выдвинул идею, что молекула представляет собой не простое нагромождение атомов, а определенную упорядоченную структуру атомов, связанных между собой электростатическими силами.
В XX в. структурная химия получила дальнейшее развитие. В частности, было уточнено понятие структуры, под которой стали понимать устойчивую упорядоченность качественно неизменной системы. Также было введено понятие атомной структуры - устойчивой совокупности ядра и окружающих его электронов, находящихся в электромагнитном взаимодействии друг с другом, - и молекулярной структуры - сочетания ограниченного числа атомов, имеющих закономерное расположение в пространстве и связанных друг с другом химической связью с помощью валентных электронов[3].
Структурная химия неорганических соединений ищет пути получения кристаллов для производства высокопрочных материалов с заданными свойствами, обладающих термостойкостью, сопротивлением агрессивной среде и другими качествами, предъявляемыми сегодняшним уровнем развития науки и техники. Решение этих вопросов наталкивается на различные препятствия. Выращивание, например, некоторых кристаллов требует исключения условий гравитации. Поэтому такие кристаллы выращивают в космосе, на орбитальных станциях.
Третий уровень химического знания. Учение о химических процессах
Учение о химических процессах - область науки, в которой осуществлена наиболее глубокая интеграция физики, химии и биологии. В основе этого учения находятся химическая термодинамика и кинетика, поэтому оно в равной степени принадлежит физике и химии. Одним из основоположников этого научного направления стал русский химик Н.Н. Семенов, основатель химической физики.
Учение о химических процессах базируется на идее, что способность к взаимодействию различных химических реагентов определяется кроме всего прочего и условиями протекания химических реакций, которые могут оказывать воздействие на характер и результаты этих реакций.
Важнейшей задачей химиков становится умение управлять химическими процессами, добиваясь нужных результатов. В самом общем виде методы управления химическими процессами можно подразделить на термодинамические (влияют на смещение химического равновесия реакции) и кинетические (влияют на скорость протекания химической реакции).
Скоростью химических процессов управляет химическая кинетика, в которой изучается зависимость протекания химических процессов от строения исходных реагентов, их концентрации, наличия в реакторе катализаторов и других добавок, способов смешения реагентов, материала и конструкции реактора и т. п.
Химическая кинетика. Объясняет качественные и количественные изменения в химических процессах и выявляет механизм реакции. Реакции проходят, как правило, ряд последовательных стадий, которые составляют полную реакцию. Скорость реакции зависит от условий протекания и природы веществ, вступивших в нее. К ним относятся концентрация, температура и присутствие катализаторов. Описывая химическую реакцию, ученые скрупулезно отмечают все условия ее протекания, поскольку в других условиях и при иных физических состояниях веществ эффект будет разный.
Задача исследования химических реакций является очень сложной. Ведь практически все химические реакции представляют собой отнюдь не простое взаимодействие исходных реагентов, а сложные цепи последовательных стадий, где реагенты взаимодействуют не только друг с другом, но и со стенками реактора, могущими как катализировать (ускорять), так и ингибировать (замедлять) процесс.
Катализ - ускорение химической реакции в присутствии особых веществ - катализаторов, которые взаимодействуют с реагентами, но в реакции не расходуются и не входят в конечный состав продуктов. Он был открыт в 1812 г. российским химиком К. Г. С. Кирхгофом.
Сущность катализа сводится к следующему:
1. активная молекула реагента достигается за счет их неполновалентного взаимодействия с веществом катализатора и состоит в расслаблении химических связей реагента;
2. в общем случае любую каталитическую реакцию можно представить проходящей через промежуточный комплекс, в котором происходит перераспределение расслабленных (неполновалентных) химических связей.
Применение катализаторов изменило всю химическую промышленность. Катализ необходим при производстве маргарина, многих пищевых продуктов, а также средств защиты растений. Почти вся промышленность основной химии (60-80 %) основаны на каталитических процессах. Химики не без основания говорят, что некаталитических процессов вообще не существует, поскольку все они протекают в реакторах, материал стенок которых служит своеобразным катализатором.
С участием катализаторов скорость некоторых реакций возрастает в 10 млрд раз. Есть катализаторы, позволяющие не просто контролировать состав конечного продукта, но и способствующие образованию молекул определенной формы, что сильно влияет на физические свойства продукта (твердость, пластичность).
Одним из самых молодых направлений в исследовании химических процессов является радиационная химия, которая зародилась во второй половине XX в. Предметом ее разработок - стали превращения самых разнообразных веществ под воздействием ионизирующих излучений. Источниками ионизирующего излучения служат рентгеновские установки, ускорители заряженных частиц, ядерные реакторы, радиоактивные изотопы. В результате радиационно-химических реакций вещества получают повышенную термостойкость и твердость.
Химические процессы представляют собой сложнейшее явление как в неживой, так и в живой природе. Эти процессы изучают химия, физика и биология. Перед химической наукой стоит принципиальная задача - научиться управлять химическими процессами. Дело в том, что некоторые процессы не удается осуществить, хотя в принципе они осуществимы, другие трудно остановить - реакции горения, взрывы, а часть из них трудноуправляема, поскольку они самопроизвольно создают массу побочных продуктов[3].
Четвертый уровень химического знания. Эволюционная химия
Эволюционная химия зародилась в 1950 - 1960 гг. В основе эволюционной химической картине мира лежат процессы биокатализа, ферментологии; ориентирована она главным образом на исследование молекулярного уровня живого, что основой живого является биокатализ, т.е. присутствие различных природных веществ в химической реакции, способных управлять ею, замедляя или ускоряя ее протекание. Эти катализаторы в живых системах определены самой природой, что и служит идеалом для многих химиков.
Идея концептуального представления о ведущей роли ферментов, биорегуляторов в процессе жизнедеятельности, предложенная французским естествоиспытателем Луи Пастером в ХIX веке, остается основополагающей и сегодня. Чрезвычайно плодотворным с этой точки зрения является исследование ферментов и раскрытие тонких механизмов их действия.
Ферменты- это белковые молекулы, синтезируемые живыми клетками. В каждой клетке имеются сотни различных ферментов. С их помощью осуществляются многочисленные химические реакции, которые благодаря каталитическому действию ферментов могут идти с большой скоростью при температурах, подходящих для данного организма, т.е. в пределах примерно от 5 до 40 градусов. Можно сказать, что ферменты - это биологические катализаторы.
В эволюционной химии существенное место отводится проблеме «самоорганизации» систем. Теория самоорганизации «отражает законы такого существования динамических систем, которое сопровождается их восхождением на все более высокие уровни сложности в системной упорядоченности, или материальной организации». В сущности, речь идет об использовании химического опыта живой природы. Это своеобразная биологизация химии. Химический реактор предстает как некое подобие живой системы, для которой характерны саморазвитие и определенные черты поведения. Так появилась эволюционная химия как высший уровень развития химического знания.
Постепенное развитие химической картины мира XIX в., приведшее к раскрытию структуры атома и детальному познанию строения и состава клетки, открыло перед химиками и биологами практические возможности совместной работы над химическими проблемами учения о клетке. Для освоения опыта живой природы и реализации полученных знания в промышленности химики наметили ряд перспективных путей.
Во-первых ведутся исследования в области металлокомплексного катализа, который обогащается приемами, используемыми живыми организмами в реакциях с участием ферментов (биокатализаторов).
Во-вторых, ученые пытаются моделировать биокатализаторы. Уже удалось создать модели многих ферментов, которые извлекаются из живой клетки и используются в химических реакциях. Но проблема осложняется тем, что ферменты, устойчивые внутри клетки, вне нее быстро разрушаются.
В-третьих, развивается химия иммобилизованных систем, благодаря которой биокатализаторы стали стабильными, устойчивыми в химических реакциях, появилась возможность их многократного использования.
В-четвертых, химики пытаются освоить и использовать весь опыт живой природы. Это позволит ученым создать полные аналоги живых систем, в которых будут синтезироваться самые разнообразные вещества. Таким образом, будут созданы принципиально новые химические технологии.
Изучение процессов самоорганизации в химии привело к формированию двух подходов к анализу предбиологических систем: субстратного и функционального[3].
Результатом субстратного подхода стала информация об отборе химических элементов и структур.
Химикам важно понять, каким образом из минимума химических элементов (основу жизнедеятельности живых организмов составляют 38 химических элементов) и химических соединений (большинство образовано на основе 6--18 элементов) образовались сложнейшие биосистемы.
Функциональный подход в эволюционной химии. В рамках этого подхода также изучается роль катализа и выявляются законы, которым подчиняются процессы самоорганизации химических систем.
Роль каталитических процессов усиливалась по мере усложнения состава и структуры химических систем. Именно на этом основании некоторые ученые стали связывать химическую эволюцию с самоорганизацией и саморазвитием каталитических систем.
Список источников
1. Данилова В.С., Кожевников Н.Н. Химическая картина мира и ее положение в системе фундаментальных дисциплинарных онтологий // Вестник ЯГУ. - 2009. - Т.6. - №2.
2. Лебедев С. А. Философия науки: Словарь основных терминов. -- М.: Академический проект, 2004. -- 320 с.
3. Полинг Л., Общая химия. -- 3-е изд. -- Пер. с англ. В. М. Сахарова под ред. проф. М.Х. Карапетьянца. -- М.: Мир, 1974. - 850 с.
4. Стёпин В. С. Картина мира // Философский словарь / Под ред. И. Т. Фролова. -- 7-е изд., перераб. и доп.. -- М.: Республика, 2001.-- 720 с.
Размещено на Allbest.ru
...Подобные документы
Понятие "научная картина мира". Физика как ведущая дисциплина в классической научной картине мира. Историческая смена физических картин мира. Современная картина мира. Главный предмет синергетики. Исторические формы проблемы происхождения жизни.
контрольная работа [24,6 K], добавлен 04.02.2010Реферат рассматривается эволюция с точки зрения синергетики. Естественно - научная картина мира. Механическая картина мира. Электромагнитная картина мира. Концепция необратимости и термодинамики. Концепция эволюции в биологии.
реферат [14,7 K], добавлен 20.11.2003Характеристика современной естественно-научной картины мира. Междисциплинарные концепции как важнейшие элементы структуры научной картины мира. Принципы построения и организации современного научного знания. Открытия XX века в области естествознания.
контрольная работа [21,9 K], добавлен 18.08.2009Концепция как совокупность главных идей методов исследования и описания результатов, функции науки. Картин мира – научная, механическая, электромагнитная и современная (объединяющая все естественные науки). Основные принципы, на которых они основываются.
реферат [498,5 K], добавлен 10.06.2010Естествознание в Европе и в России. Механическая картина мира (классическая и универсальная). Электромагнитная картина мира. Развитие теории электромагнитного поля Д. Максвелла. Квантово-полевая картина мира. Дифференцированное изучение природы.
контрольная работа [23,8 K], добавлен 16.06.2012Предмет и задачи естествознания как системы научных знаний. Характеристика этапов развития естествознания. Научная картина мира как одно из основополагающих понятий в естествознании — особая форма систематизации знаний, синтез различных научных теорий.
презентация [1001,9 K], добавлен 28.09.2014Античное естествознание как синтез натурфилософских идей и научных прозрений о "природы вещей". Эра механицизма в естествознании как становление системного знания действительной науки. Современная космологическая естественно-научная картина мира.
реферат [54,3 K], добавлен 05.06.2008История появления первых научных представлений и программ. Понятие "картина мира". Схематическое изображение структуры научного познания. Характеристика двух основных этапов становления науки. Научные программы античности. Идеи средневековья и Ренессанса.
реферат [616,7 K], добавлен 25.03.2016Понятие картины мира, ее сущность и особенности, история изучения. Сущность принципа глобального эволюционизма, его влияние на изменение представлений о картине мира в XIX веке. Синергетика как теория самоорганизации, ее роль в современном представлении.
контрольная работа [21,5 K], добавлен 09.02.2009Под картиной мира понимается целостная система представлений о мире, его общих свойствах и закономерностях. Различают общенаучную, естественно-научную, социально-историческую, специальную, механическую, электромагнитную и квантово-полевую картины мира.
реферат [109,7 K], добавлен 18.01.2009Раскрытие понятия научной картины мира как системы представлений человека о свойствах и закономерностях окружающей действительности. Анализ синергетической парадигмы как системы научных исследований, изучающей природные процессы на основе самоорганизации.
контрольная работа [31,4 K], добавлен 04.05.2011Научная революция и работы Коперника, Кеплера, Галилея и Декарта. Механика Ньютона, атомы микромира и лапласовский детерминизм, теории газов. Электромагнитная картина мира в работах Фарадея, Максвелла и Лоренца. Теория относительности Эйнштейна.
реферат [599,1 K], добавлен 25.03.2016История науки свидетельствует, что естествознание, возникшее в ходе научной революции XVI–XVII вв., было связано с развитием физики. Механистическая, электромагнитная картины мира. Становление современной физической картины мира. Материальный мир.
реферат [15,1 K], добавлен 06.07.2008Понятие и структура научной картины мира, ее отличие от ненаучных картин мира. Функциональность и взаимосвязь общей научной и естественнонаучной картин мира. Корпускулярно–волновой дуализм, свойства микрообъектов и доказательство гипотезы де Бройля.
реферат [37,9 K], добавлен 17.12.2009Современная научная картина мира. Фундаментальные воздействия и фундаментальные законы в материальном мире. Геофизическое строение и эволюция Земли. Уникальность планеты Земля в ряду других планет Солнечной системы. Концепция устойчивого развития.
контрольная работа [23,4 K], добавлен 10.06.2015Научные картины мира и научные революции в истории естествознания. Изучение физической картины мира в ее развитии. Явления электричества и магнетизма. Квантово-релятивистская физическая картина мира, законы электродинамики. Общая теория относительности.
реферат [30,1 K], добавлен 11.02.2011Особенности формирования научной картины мира в эпоху становления классического естествознания. Развитие физики как науки. Исследование роли внутренних и внешних факторов в формировании физической картины мира. Новая гелиоцентрическая парадигма Коперника.
реферат [36,3 K], добавлен 27.12.2016Естественнонаучная картина мира как целостная система представлений об общих принципах и законах устройства мироздания. Эволюция естественнонаучной картины мира в истории человечества. Предпосылки, влияющие на развитие новых научных представлений.
реферат [21,5 K], добавлен 17.04.2011Основы современной космологии. Открытие Хаббла, модель горячей Вселенной. Квантовая теория гравитации. Православное богословие о творении мира. Детерминизм Лапласа и неопределённость квантовой механики. Особенности соотношения детерминизма и вероятности.
дипломная работа [97,1 K], добавлен 23.08.2011Научная картина мира в системе теоретического и эмпирического знания: понятие, функции, принципиальные особенности. Принципы универсального эволюционизма: системный, эволюционный, термодинамический подход. Обоснование универсального эволюционизма.
курсовая работа [51,4 K], добавлен 14.11.2007