Биоорганические соединения, жиры и липиды

Общая характеристика основных групп биоорганических соединений. Химия жиров и липидов, их биологическая роль в процессах жизнедеятельности. Принципы нормирования липидов и жиров в питании. Всасывание продуктов гидролиза, транспорт липидов в организме.

Рубрика Биология и естествознание
Вид лекция
Язык русский
Дата добавления 08.10.2019
Размер файла 856,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Лекция

Биоорганические соединения, жиры и липиды

Липиды - это разнообразная по строению группа органических веществ, которые объединены общим свойством - растворимостью в неполярных растворителях. Липиды представляют собой обширную группу соединений, существенно различающихся по своей химической структуре и функциям. Поэтому трудно дать единое определение, которое подошло бы для всех соединений, относящихся к этому классу. Можно сказать, что липиды представляют собой группу веществ, которые характеризуются следующими признаками: нерастворимостью в воде; растворимостью в неполярных растворителях, таких, как эфир, хлороформ или бензол; содержанием высших алкильных радикалов; распространенностью в живых организмах. Под это определение попадает большое количество веществ, в том числе такие, которые обычно причисляют к другим классам соединений: например, жирорастворимые витамины и их производные, каротиноиды, высшие углеводороды и спирты. Включение всех этих веществ в число липидов в известной степени оправдано, потому что в живых организмах они находятся вместе с липидами и вместе с ними экстрагируются неполярными растворителями. С другой стороны, имеются представители липидов, которые довольно хорошо растворяются в воде (например, лизолецитины). Термин «липиды» является более общим, чем термин который объединяет группу жироподобных веществ, таких, как фосфолипиды, стерины, сфинголипиды.

Биологическая роль липидов

Липиды играют важнейшую роль в процессах жизнедеятельности. Будучи одним из основных компонентов биологических мембран, липиды влияют на их проницаемость, участвуют в передаче нервного импульса, создании межклеточных контактов. Жир служит в организме весьма эффективным источником энергии либо при непосредственном использовании, либо потенциально - в форме запасов жировой ткани. В натуральных пищевых жирах содержатся жирорастворимые витамины и «незаменимые» жирные кислоты. Важная функция липидов - создание термоизоляционных покровов у животных и растений, защита органов и тканей от механических воздействий.

Среди низкомолекулярных органических соединений, входящих в состав живых организмов, важную роль играют липиды, к которым относят жиры, воски и разнообразные жироподобные вещества. Это гидрофобные соединения, нерастворимые в воде. Обычно общее содержание липидов в клетке колеблется в пределах 5-15 % от массы сухого вещества.

Рис. 1. Основные группы органических веществ

Рис. 2. Модель (А) и схема строения (Б) молекулы нейтрального жира

Классификация липидов

Липиды по способности к гидролизу делят на омыляемые (двух и более компонентные) и неомыляемые (однокомпонентные).

Омыляемые липиды в щелочной среде гидролизуются с образованием мыл, они содержат в своем в составе жирные кислоты и спирты глицерин (глицеролипиды) или сфингозин (сфинголипиды). По количеству компонентов омыляемые липиды делятся на простые (состоят из 2 классов соединений) и сложные (состоят из 3 и более классов).

К простым липидам относятся:

1) воска (сложный эфир высшего одноатомного спирта и жирной кислоты);

2) триацилглицериды, диацилглицериды, моноацилглицериды (сложный эфир глицерина и жирных кислот). У человека весом в 70 кг ТГ около 10 кг.

3) церамиды (сложный эфир сфингозина и жирной кислоты С18-26) - лежат в основе сфинголипидов;

К сложным липидам относятся:

1) фосфолипиды (содержат фосфорную кислоту):

а) фосфоглицеролипиды (сложный эфир глицерина и 2 жирных кислот, содержит фосфорную кислоту и аминоспирт) - фосфатидилсерин, фосфатидилэтаноламин, фосфатидилхолин, фосфатидилинозитол, фосфатидилглицерол;

б) кардиолипины (2 фосфатидные кислоты, соединенные через глицерин);

в) плазмалогены (сложный эфир глицерина и жирной кислоты, содержит ненасыщенный одноатомный высший спирт, фосфорную кислоту и аминоспирт) - фосфатидальэтаноламины, фосфатидальсерины, фосфатидальхолины;

г) сфингомиелины (сложный эфир сфингозина и жирной кислоты С18-26, содержит фосфорную кислоту и аминоспирт - холин);

2) гликолипиды (производные сфингозина, содержащие углеводы):

а) цереброзиды (сложный эфир сфингозина и жирной кислоты С18-26, содержит гексозу: глюкозу или галактозу);

б) сульфатиды (сложный эфир сфингозина и жирной кислоты С18-26, содержит гексозу (глюкозу или галактозу) к которой присоединена в 3 положение серная кислота). Много в белом веществе;

в) ганглиозиды (сложный эфир сфингозина и жирной кислоты С18-26, содержит олигосахарид из гексоз и сиаловых кислот). Находятся в ганглиозных клетках;

К неомыляемым липидам относят:

1. стероиды;

2. жирные кислоты (структурный компонент омыляемых липидов),

3. витамины А, Д, Е, К;

4. терпены (углеводороды, спирты, альдегиды и кетоны с несколькими звеньями изопрена).

Биологические функции липидов

В организме липиды выполняют разнообразные функции:

1) Структурная. Сложные липиды и холестерин амфифильны, они образуют все клеточные мембраны; фосфолипиды выстилают поверхность альвеол, образуют оболочку липопротеинов. Сфингомиелины, плазмалогены, гликолипиды образуют миелиновые оболочки и другие мембраны нервных тканей.

2) Энергетическая. В организме до 33% всей энергии АТФ образуется за счет окисления липидов;

3) Антиоксидантная. Витамины А, Д, Е, К препятсвуют СРО;

4) Запасающая. ТГ являются формой хранения жирных кислот;

5) Защитная. ТГ, в составе жировой ткани, обеспечивают теплоизоляционную и механическую защиту тканей. Воска образуют защитную смазку на коже человека;

6) Регуляторная. Фосфотидилинозитолы являются внутриклеточными посредниками в действии гормонов (инозитолтрифосфатная система). Из полиненасыщенных жирных кислот образуются эйкозаноиды (лейкотриены, тромбоксаны, простагландины, простациклины), вещества, регулирующие иммуногенез, гемостаз, неспецифическую резистентность организма, воспалительные, аллергические, пролиферативные реакции. Из холестерина образуются стероидные гормоны: половые, кортикоиды, кальцитриол;

7) Пищеварительная. Из холестерина синтезируются желчные кислоты. Желчные кислоты, фосфолипиды, холестерин обеспечивают эмульгирование и всасывание липидов;

8) Информационная. Ганглиозиды обеспечивают межклеточные контакты.

Источником липидов в организме являются синтетические процессы и пища. Некоторые липиды в организме не синтезируются (полиненасыщенные жирные кислоты - витамин F, витамины А, Д, Е, К), они являются незаменимыми и поступают в организм только с пищей.

Принципы нормирования липидов в питании

В сутки человеку требуется потреблять 80-100г липидов, из них 25-30г растительного масла, 30-50г сливочного масла и 20-30г жира животного происхождения.

Потребность в пищевых липидах зависит от возраста. Новорожденным до 3 месяцев требуется 6,5 г/кг липидов, детям до 6 месяцев - 6 г/кг, детям после 6 месяцев - 5,5 г/кг, взрослым - 1,4 г/кг, пожилым - 0,5 г/кг. Причины: 1). основным источником энергии для детей грудного возраста являются липиды, а для взрослых людей - глюкоза. 2). Энергозатраты с возрастом снижаются.

Потребность в липидах увеличивается на холоде, при физических нагрузках, в период выздоровления и при беременности.

С пищей в норме поступает около 85-90г ТГ, 1г ФЛ, 0,3--0,5 г ХС (в основном в виде эфиров). Растительные масла содержат много полиеновых незаменимых (линолевая до 60%, линоленовая) жирных кислот, фосфолипидов (удаляются при рафинировании). Сливочное масло содержит много витаминов А, Д, Е.

Все природные липиды хорошо перевариваются, масла усваиваются лучше жиров. При смешанном питании сливочное масло усваивается на 93-98%, свиной жир - на 96-98%, говяжий жир - на 80-94%, подсолнечное масло - на 86-90%. Длительная тепловая обработка (> 30 мин) разрушает полезные липиды, при этом образуются токсические продукты окисления жирных кислот и канцерогенные вещества.

При недостаточном поступлении липидов с пищей снижается иммунитет, снижается продукция стероидных гормонов, нарушается половая функция. При дефиците линолевой кислоты развивается тромбоз сосудов и увеличивается риск раковых заболеваний. При избытке липидов в пище развивается атеросклероз и увеличивается риск рака молочной железы и толстой кишки.

Переваривание липидов

Переваривание - это гидролиз пищевых веществ до их ассимилируемых форм.

Лишь 40-50% пищевых липидов расщепляется полностью, от 3% до 10% пищевых липидов всасываются в неизмененном виде.

Так как липиды не растворимы в воде, их переваривание и всасывание имеет свои особенности и протекает в несколько стадий:

1) Липиды твердой пищи при механическом воздействии и под влиянием ПАВ желчи смешиваются с пищеварительными соками с образованием эмульсии (масло в воде). Образование эмульсии необходимо для увеличения площади действия ферментов, т.к. они работают только в водной фазе. Липиды жидкой пищи (молоко, бульон и т.д.) поступают в организм сразу в виде эмульсии;

2) Под действием липаз пищеварительных соков происходит гидролиз липидов эмульсии с образованием водорастворимых веществ и более простых липидов;

3) Выделенные из эмульсии водорастворимые вещества всасываются и поступают в кровь. Выделенные из эмульсии более простые липиды, соединяясь с компонентами желчи, образуют мицеллы;

4) Мицеллы обеспечивают всасывание липидов в клетки эндотелия кишечника.

Ротовая полость

В ротовой полости происходит механическое измельчение твердой пищи и смачивание ее слюной (рН=6,8).

У грудных детей здесь начинается гидролиз ТГ с короткими и средними жирными кислотами, которые поступают с жидкой пищей в виде эмульсии. Гидролиз осуществляет лингвальная триглицеридлипаза («липаза языка», ТГЛ), которую секретируют железы Эбнера, находящиеся на дорсальной поверхности языка.

Желудок

Так как «липаза языка» действует в диапазоне 2-7,5 рН, она может функционировать в желудке в течение 1-2 часов, расщепляя до 30% триглицеридов с короткими жирными кислотами. У грудных детей и детей младшего возраста она активно гидролизует ТГ молока, которые содержат в основном жирные кислоты с короткой и средней длиной цепей (4--12 С). У взрослых людей вклад «липазы языка» в переваривание ТГ незначителен.

В главных клетках желудка вырабатывается желудочная липаза, которая активна при нейтральном значении рН, характерном для желудочного сока детей грудного и младшего возраста, и не активна у взрослых (рН желудочного сока ~1,5). Эта липаза гидролизует ТГ, отщепляя, в основном, жирные кислоты у третьего атома углерода глицерола. Образующиеся в желудке ЖК и МГ далее участвуют в эмульгировании липидов в двенадцатиперстной кишке.

Тонкая кишка

Основной процесс переваривания липидов происходит в тонкой кишке.

1. Эмульгирование липидов (смешивание липидов с водой) происходит в тонкой кишке под действием желчи. Желчь синтезируется в печени, концентрируется в желчном пузыре и после приёма жирной пищи выделяется в просвет двенадцатиперстной кишки (500-1500 мл/сут).

Желчь это вязкая жёлто-зелёная жидкость, имеет рН=7,3-8.0, содержит Н2О - 87-97%, органические вещества (желчные кислоты - 310 ммоль/л (10,3-91,4 г/л), жирные кислоты - 1,4-3,2 г/л, пигменты желчные - 3,2 ммоль/л (5,3-9,8 г/л), холестерин - 25 ммоль/л (0,6-2,6) г/л, фосфолипиды - 8 ммоль/л) и минеральные компоненты (натрий 130-145 ммоль/л, хлор 75-100 ммоль/л, НСО3- 10-28 ммоль/л, калий 5-9 ммоль/л). Нарушение соотношение компонентов желчи приводит к образованию камней.

Желчные кислоты (производные холановой кислоты) синтезируются в печени из холестерина (холиевая, и хенодезоксихолиевая кислоты) и образуются в кишечнике (дезоксихолиевая, литохолиевая, и д.р. около 20) из холиевой и хенодезоксихолиевой кислот под действием микроорганизмов.

В желчи желчные кислоты присутствуют в основном в виде конъюгатов с глицином (66-80%) и таурином (20-34%), образуя парные желчные кислоты: таурохолевую, гликохолевую и д.р.

Соли жёлчных кислот, мыла, фосфолипиды, белки и щелочная среда желчи действуют как детергенты (ПАВ), они снижают поверхностное натяжение липидных капель, в результате крупные капли распадаются на множество мелких, т.е. происходит эмульгирование. Эмульгированию также способствует перистальтика кишечника и выделяющийся, при взаимодействии химуса и бикарбонатов СО2: Н+ + НСО3- > Н2СО3 > Н2О + ^СО2.

2. Гидролиз триглицеридов осуществляет панкреатическая липаза. Ее оптимум рН=8, она гидролизует ТГ преимущественно в положениях 1 и 3, с образованием 2 свободных жирных кислот и 2-моноацилглицерола (2-МГ). 2-МГ является хорошим эмульгатором.

28% 2-МГ под действием изомеразы превращается в 1-МГ. Большая часть 1-МГ гидролизуется панкреатической липазой до глицерина и жирной кислоты.

В поджелудочной железе панкреатическая липаза синтезируется вместе с белком колипазой. Колипаза образуется в неактивном виде и в кишечнике активируется трипсином путем частичного протеолиза. Колипаза своим гидрофобным доменом связывается с поверхностью липидной капли, а гидрофильным способствует максимальному приближению активного центра панкреатической липазы к ТГ, что ускоряет их гидролиз.

3. Гидролиз лецитина происходит с участием фосфолипаз (ФЛ): А1, А2, С, D и лизофосфолипазы (лизоФЛ).

В результате действия этих четырех ферментов фосфолипиды расщепляются до свободных жирных кислот, глицерола, фосфорной кислоты и аминоспирта или его аналога, например, аминокислоты серина, однако часть фосфолипидов расщепляется при участии фосфолипазы А2 только до лизофосфолипидов и в таком виде может поступать в стенку кишечника.

ФЛ А2 активируется частичным протеолизом с участием трипсина и гидролизует лецитин до лизолецитина. Лизолецитин является хорошим эмульгатором. ЛизоФЛ гидролизует часть лизолецитина до глицерофосфохолина. Остальные фосфолипиды не гидролизуются.

4. Гидролиз эфиров холестерина до холестерина и жирных кислот осуществляет холестеролэстераза, фермент поджелудочной железы и кишечного сока.

5. Мицеллообразование

Водонерастворимые продукты гидролиза (жирные кислоты с длинной цепью, 2-МГ, холестерол, лизолецитины, фосфолипиды) вместе с компонентами желчи (солями жёлчных кислот, ХС, ФЛ) образуют в просвете кишечника структуры, называемые смешанными мицеллами. Смешанные мицеллы построены таким образом, что гидрофобные части молекул обращены внутрь мицеллы (жирные кислоты, 2-МГ, 1-МГ), а гидрофильные (желчные кислоты, фосфолипиды, ХС) -- наружу, поэтому мицеллы хорошо растворяются в водной фазе содержимого тонкой кишки. Стабильность мицелл обеспечивается в основном солями жёлчных кислот, а также моноглицеридами и лизофосфолипидами.

Регуляция переваривания

Пища стимулирует секрецию из клеток слизистой тонкой кишки в кровь холецистокинина (панкреозимин, пептидный гормон). Он вызывает выделение в просвет двенадцатиперстной кишки желчи из желчного пузыря и панкреатического сока из поджелудочной железы.

Кислый химус стимулирует секрецию из клеток слизистой тонкой кишки в кровь секретина (пептидный гормон). Секретин стимулирует секрецию бикарбоната (НСО3-) в сок поджелудочной железы.

Переваривание липидов жидкой пищи

Всасывание продуктов гидролиза

1. Водорастворимые продукты гидролиза липидов всасываются в тонкой кишке без участия мицелл. Холин и этаноламин всасываются в виде ЦДФ производных, фосфорная кислота - в виде Na+ и K+ солей, глицерол - в свободном виде.

2. Жирные кислоты с короткой и средней цепью, всасываются без участия мицелл в основном в тонкой кишке, а часть уже в желудке.

3. Водонерастворимые продукты гидролиза липидов всасываются в тонкой кишке с участием мицелл. Мицеллы сближаются со щёточной каймой энтероцитов, и липидные компоненты мицелл (2-МГ, 1-МГ, жирные кислоты, холестерин, лизолецитин, фосфолипиды и т.д.) диффундируют через мембраны внутрь клеток.

Рециклирование компоненты желчи

Вместе с продуктами гидролиза всасываются компоненты желчи - соли жёлчных кислот, фосфолипиды, холестерин. Наиболее активно соли жёлчных кислот всасываются в подвздошной кишке. Жёлчные кислоты далее попадают через воротную вену в печень, из печени вновь секретируются в жёлчный пузырь и далее опять участвуют в эмульгировании липидов. Этот путь жёлчных кислот называют «энтерогепатическая циркуляция». Каждая молекула жёлчных кислот за сутки проходит 5-- 8 циклов, и около 5% жёлчных кислот выделяется с фекалиями.

Транспорт липидов в организме

Транспорт липидов в организме идет двумя путями:

1) жирные кислоты транспортируются в крови с помощью альбуминов;

2) ТГ, ФЛ, ХС, ЭХС и д.р. липиды транспортируются в крови в составе липопротеинов.

Обмен липопротеинов

Липопротеины (ЛП) - это надмолекулярные комплексы сферической формы, состоящие из липидов, белков и углеводов. Липопротеины имеют гидрофильную оболочку и гидрофобное ядро. В гидрофильную оболочку входят белки и амфифильные липиды - ФЛ, ХС. В гидрофобное ядро входят гидрофобные липиды - ТГ, эфиры ХС и т.д. ЛП хорошо растворимы в воде.

биоорганический жир липид

В организме синтезируются несколько видов липопротеины, они отличаются химическим составом, образуются в разных местах и осуществляют транспорт липидов в различных направлениях.

ЛП разделяют с помощью:

1) электрофореза, по заряду и размеру, на б-ЛП, в-ЛП, пре-в-ЛП и ХМ;

2) центрифугирования, по плотности, на ЛПВП, ЛПНП, ЛППП, ЛПОНП и ХМ.

Соотношение и количество липопротеины в крови зависит от времени суток и от питания. В постабсорбтивный период и при голодании в крови присутствуют только ЛПНП и ЛПВП.

Основные виды липопротеинов:

Состав, %

ХМ

ЛПОНП (пре-в-ЛП)

ЛППП (пре-в-ЛП)

ЛПНП (в-ЛП)

ЛПВП (б-ЛП)

Белки

2

10

11

22

50

ФЛ

3

18

23

21

27

ХС

2

7

8

8

4

ЭХС

3

10

30

42

16

ТГ

85

55

26

7

3

Плотность, г/мл

0,92-0,98

0,96-1,00

0,96-1,00

1,00-1,06

1,06-1,21

Диаметр, нм

>120

30-100

30-100

21-100

7-15

Функции

Транспорт к тканям экзогенных липидов пищи

Транспорт к тканям эндогенных липидов печени

Транспорт к тканям эндогенных липидов печени

Транспорт ХС

в ткани

Удаление избытка ХС из тканей Донор апо А, С, Е

Место образования

энтероцит

гепатоцит

в крови из ЛПОНП

в крови из ЛППП

гепатоцит

Апо

В-48, С-II, Е

В-100, С-II, Е

В-100, Е

В-100

А-I С-II, Е, D

Норма в крови

< 2,2 ммоль/л

0,9- 1,9 ммоль/л

Апобелки

Белки, входящие в состав липопротеины, называются апопротеины (апобелки, апо). К наиболее распространенным апопротеинам относят: апо А-I, А-II, В-48, В-100, С-I, С-II, С-III, D, Е. Апобелки могут быть периферическими (гидрофильные: А-II, С-II, Е) и интегральными (имеют гидрофобный участок: В-48, В-100). Периферические апо переходят между ЛП, а интегральные - нет. Апопротеины выполняют несколько функций:

Апобелок

Функция

Место образования

Локализация

А-I

Активатор ЛХАТ, образование ЭХС

печень

ЛПВП

А-II

Активатор ЛХАТ, образование ЭХС

ЛПВП, ХМ

В-48

Структурная (синтез ЛП), рецепторная (фагоцитоз ЛП)

энтероцит

ХМ

В-100

Структурная (синтез ЛП), рецепторная (фагоцитоз ЛП)

печень

ЛПОНП, ЛППП, ЛПНП

С-I

Активатор ЛХАТ, образование ЭХС

Печень

ЛПВП, ЛПОНП

С-II

Активатор ЛПЛ, стимулирует гидролиз ТГ в ЛП

Печень

ЛПВП > ХМ, ЛПОНП

С-III

Ингибитор ЛПЛ, ингибирует гидролиз ТГ в ЛП

Печень

ЛПВП > ХМ, ЛПОНП

D

Перенос эфиров холестерина (БПЭХ)

Печень

ЛПВП

Е

Рецепторная, фагоцитоз ЛП

печень

ЛПВП > ХМ, ЛПОНП, ЛППП

Ферменты транспорта липидов

Липопротеинлипаза (ЛПЛ) (КФ 3.1.1.34, ген LPL, около 40 дефектных аллелей) связана с гепарансульфатом, находящимся на поверхности эндотелиальных клеток капилляров кровеносных сосудов. Она гидролизует ТГ в составе липопротеины до глицерина и 3 жирных кислот. При потере ТГ, ХМ превращаются в остаточные ХМ, а ЛПОНП повышают свою плотность до ЛППП и ЛПНП.

Апо С-II липопротеины активирует ЛПЛ, а фосфолипиды ЛП участвуют в связывании ЛПЛ с поверхностью ЛП. Синтез ЛПЛ индуцируется инсулином. Апо С-III ингибирует ЛПЛ.

ЛПЛ синтезируется в клетках многих тканей: жировой, мышечной, в легких, селезёнке, клетках лактирующей молочной железы. Ее нет в печени. Изоферменты ЛПЛ разных тканей отличаются по значением Кm. В жировой ткани ЛПЛ имеет Кm в 10 раз больше, чем в миокарде, поэтому в жировая ткань поглощает жирные кислоты только при избытке ТГ в крови, а миокард - постоянно, даже при низкой концентрации ТГ в крови. Жирные кислоты в адипоцитах используются для синтеза ТГ, в миокарде как источник энергии.

Печёночная липаза находиться на поверхности гепатоцитов, она не действует на зрелые ХМ, а гидролизует ТГ в ЛППП.

Лецитин: холестерол-ацил-трансфераза (ЛХАТ) находиться в ЛПВП, она переносит ацил с лецитина на ХС с образование ЭХС и лизолецитина. Ее активируют апо А-I, А-II и С-I. лецитин + ХС > лизолецитин + ЭХС

ЭХС погружается в ядро ЛПВП или переноситься с участием апо D на другие ЛП.

Рецепторы транспорта липидов

Рецептор липопротеиновнизкой плотности ЛПНП -- сложный белок, состоящий из 5 доменов и содержащий углеводную часть. Рецептор ЛПНП имеет лиганды к белкам ano B-100 и апо Е, хорошо связывает ЛПНП, хуже ЛППП, ЛПОНП, остаточные ХМ, содержащие эти апо.

ЛПНП-рецептор синтезируется практически во всех ядерных клетках организма. Активация или ингибирование транскрипции белка регулируется уровнем холестерина в клетке. При недостатке холестерина клетка инициирует синтез ЛПНП-рецептора, а при избытке -- наоборот, блокирует его.

Стимулируют синтез рецепторов ЛПНП гормоны: инсулин и трийодтиронин (Т3), половые гормоны, а глюкокортикоиды - уменьшают.

За открытие этого важнейшего рецептора липидного метаболизма Майкл Браун и Джозеф Голдштейн получили Нобелевскую премию по физиологии и медицине в 1985 году.

Белок, сходным с рецептором ЛПНП на поверхности клеток многих органов (печени, мозга, плаценты) имеется другой тип рецептора, называемый «белком, сходным с рецептором ЛПНП». Этот рецептор взаимодействует с апо Е и захватывает ремнантные (остаточные) ХМ и ЛППП. Так как ремнантные частицы содержат ХС, этот тип рецепторов также обеспечивает поступление его в ткани.

Кроме поступления ХС в ткани путём эндоцитоза ЛП, некоторое количество ХС поступает в клетки путём диффузии из ЛПНП и других ЛП при их контакте с мембранами клеток.

В крови в норме концентрация:

· ЛПНП < 2,2 ммоль/л,

· ЛПВП > 1,2 ммоль/л

· общих липидов 4-8г/л,

· ХС < 5,0 ммоль/л,

· ТГ < 1,7 ммоль/л,

· Свободных жирных кислот 400-800 мкмоль/л

Нормальные значения холестерина:

Общий холестерин

Рекомендуемый уровень

< 220 мг/дл

< 5,7 ммоль/л

Пограничный уровень

220-260 мг/дл

5,7- 6,69 ммоль/л

Повышенный уровень

> 260 мг/дл

> 6,7 ммоль/л

Нормальные значения

В соответствии c рекомендациями ASSMANN в настоящее время следующие значения холестерина ЛПВП могут быть предложены как основополагающие для оценки риска развития атеросклероза:

Благоприятный прогноз:

Женщины

> 65 мг/дл

1,7 ммоль/л

Мужчины

> 55 мг/дл

1,4 ммоль/л

Стандартный риск:

Женщины

45 - 65 мг/дл

1,2 - 1,7 ммоль/л

Мужчины

35 - 55 мг/дл

0,9 - 1,4 ммоль/л

Повышенный риск:

Женщины

< 45 мг/дл

1,2 ммоль/л

Мужчины

< 35 мг/дл

0,9 ммоль/л

Холестерин ЛПНП:

Подозрительный уровень

> 150 мг/дл

3,87 ммоль/л

Повышенный уровень

> 190 мг/дл

4,90 ммоль/л

Обмен в-липопротеинов

В промежутках между приемами пищи и при голодании необходимые для тканей липиды синтезируются преимущественно в печени. Печень -- основной орган, где идёт синтез жирных кислот, ХС, ФЛ из продуктов гликолиза. Скорость синтеза липидов в печени существенно зависит от состава пищи. Если в пище содержится более 10% липидов, то скорость синтеза липидов в печени резко снижается.

Транспорт липидов из печени осуществляется с участием ЛПОНП. Синтез ЛПОНП идет также как и ХМ. Сначала на рибосомах синтезируется апо В-100, который потом в аппарате Гольджи соединяется с липидами. Так как апо В-100 очень «длинный» белок (11536 АК), он покрывает поверхность всего ЛП.

После секреции ЛПОНП из печени в кровь, на них с ЛПВП переходят апо С-II и апо Е. Апо С-II активирует ЛПЛ, которая гидролизует ТГ ЛПОНП до жирных кислот и глицерина. Глицерол с кровью транспортируется в печень, а жирные кислоты - в ткань. Параллельно с потерей ТГ, ЛПОНП получают от ЛПВП ЭХС и ХС. В результате плотность ЛПОНП увеличивается, он превращается сначала в ЛППП, а затем в ЛПНП, при этом на ЛПВП возвращаются сначала апо С-II, а затем апо Е.

Содержание ЭХС и ХС в липопротеиновнизкой плотности достигает 45%; часть этих ЛП захватывается клетками печени через рецептор к ЛПНП (чувствителен к апо Е и апо В-100).

ЛПНП содержат до 55% ЭХС и ХС. ЛПНП являются основным поставщиком ХС в ткани. Из крови ЛПНП поступают в печень (до 75%) и другие ткани, которые имеют на своей поверхности рецепторы к липопротеиновнизкой плотности (ЛПНП).

Обмен липопротеинов высокой плотности(ЛПВП)

ЛПВП выполняют 2 основные функции: они поставляют апо другим ЛП в крови и участвуют в так называемом «обратном транспорте ХС». ЛПВП синтезируются в печени и в небольшом количестве в тонком кишечнике в виде насцентных ЛПВП. Они имеют дисковидную форму, небольшой размер и содержат высокий процент белков и фосфолипидов. В печени в ЛПВП включаются апопротеины А, Е, С-II, ЛХАТ. В крови апо С-II и апо Е переносятся с ЛПВП на ХМ и ЛПОНП. насцентные ЛПВП практически не содержат ХС и ТГ и в крови обогащаются ХС, получая его из других ЛП и мембран клеток.

Для переноса ХС в ЛПВП существует сложный механизм. На поверхности ЛПВП находится фермент ЛХАТ -- лецитин: холестерол-ацилтрансфераза. Этот фермент превращает ХС в ЭХС. Реакция активируется апо A-I, входящим в состав ЛПВП.

ЭХС перемещается внутрь ЛПВП. Таким образом, ЛПВП обогащаются ЭХС. ЛПВП увеличиваются в размерах, из дисковидных небольших частиц превращаются в частицы сферической формы, которые называют ЛПВП3, или «зрелые ЛПВП». ЛПВП3 частично обменивают ЭХС на ТГ, содержащиеся в ЛПОНП, ЛППП и ХМ. В этом переносе участвует «белок, переносящий эфиры холестерина» - апо D. Таким образом, часть ЭХС переносится на ЛПОНП, ЛППП, а ЛПВП3 за счёт накопления ТГ увеличиваются в размерах и превращаются в ЛПВП2.

Часть ЛПВП захватывается клетками печени, взаимодействуя со специфическими для ЛПВП рецепторами к апо А-1. На поверхности клеток печени ФЛ и ТГ ЛППП, ЛПВП2 гидролизуются печёночной липазой, что дестабилизирует структуру поверхности ЛП и способствует диффузии ХС в гепатоциты. ЛПВП2 в результате этого опять превращаются в ЛПВП3 и возвращаются в кровоток.

Катаболизм жирных кислот

В живых организмах катаболизм ЖК протекает как в ферментативных так и в неферментативных реакциях.

· Ферментативный катаболизм жирных кислот происходит в основном в реакциях в-окисления. К побочным путям относиться ферментативное б- и щ-окисление ЖК, а также деградация жирных кислот в пероксисомах. Хотя эти побочные пути количественно менее важны, их нарушение может приводить к тяжелым заболеваниям.

· Неферментативный катаболизм жирных кислот протекает в реакциях перекисного окисления липидов (ПОЛ).

в-окисление жирных кислот

в-окисление -- специфический путь катаболизма жирных кислот с неразветвленной средней и короткой углеводородной цепью. в-окисление протекает в матриксе митохондрий, при котором от С конца жирных кислот последовательно отделяется по 2 атома С в виде Ацетил-КоА. в-окисление ЖК происходит только в аэробных условиях и является источником большого количества энергии.

в-окисление жирных кислот активно протекает в красных скелетных мышцах, сердечной мышце, почках и печени. Жирных кислот не служат источником энергии для нервных тканей, так как ЖК не проходят через гематоэнцефалический барьер, как и другие гидрофобные вещества.

в-окисление ЖК увеличивается в постабсорбтивный период, при голодании и физической работе. При этом концентрация жирных кислот в крови увеличивается в результате мобилизации ЖК из жировых ткани.

Активация жирных кислот

Активация жирных кислот происходит в результате образования макроэргической связи между ЖК и HSКоА с образованием Ацил-КоА. Реакцию катализирует фермент Ацил-КоА синтетаза: RCOOH + HSKoA + АТФ > RCO~SКоА + АМФ+ PPн. Пирофосфат гидролизуется ферментом пирофосфатазой: Н4Р2О7 + Н2О > 2Н3РО4

Ацил-КоА синтетазы находятся как в цитозоле (на внешней мембране митохондрий), так и в матриксе митохондрий. Эти ферменты отличаются по специфичности к ЖК с различной длиной углеводородной цепи.

Транспорт жирных кислот

Транспорт ЖК в матрикс митохондрий зависит от длины углеродной цепи.

ЖК с короткой и средней длиной цепи (от 4 до 12 атомов С) могут проникать в матрикс митохондрий путём диффузии. Активация этих ЖК происходит ацил-КоА синтетазами в матриксе митохондрий.

ЖК с длинной цепью, сначала активируются в цитозоле (ацил-КоА синтетазами на внешней мембране митохондрий), а затем переносятся в матрикс митохондрий специальной транспортной системой с помощью карнитина. Карнитин поступает с пищей или синтезируется из лизина и метионина с участием витамина С.

· В наружной мембране митохондрий фермент карнитинацилтрансфераза I (карнитин-пальмитоилтрансфераза I) катализирует перенос ацила с КоА на карнитин с образованием ацилкарнитина;

· Ацилкарнитин проходит через межмембранное пространство к наружной стороне внутренней мембраны и транспортируется с помощью карнитинацилкарнитинтранслоказы на внутреннюю поверхность внутренней мембраны митохондрий;

· Фермент карнитинацилтрансфераза II катализирует перенос ацила с карнитина на внутримитохондриальный HSКоА с образованием Ацил-КоА;

· Свободный карнитин возвращается на цитозольную сторону внутренней мембраны митохондрий той же транслоказой.

Реакции в-окисление жирных кислот

1. в-окисление начинается с дегидрирования ацил-КоА ФАД-зависимой Ацил-КоА дегидрогеназой с образованием двойной связи (транс) между б- и в-атомами С в Еноил-КоА. Восстановленный ФАДН2 окисляясь в ЦПЭ, обеспечивает синтез 2 молекул АТФ;

2. Еноил-КоА гидратаза присоединяет воду к двойной связи Еноил-КоА с образованием в-оксиацил-КоА;

3. в-оксиацил-КоА окисляется НАД зависимой дегидрогеназой до в-кетоацил-КоА. Восстановленный НАДН2, окисляясь в ЦПЭ, обеспечивает синтез 3 молекул АТФ;

4. Тиолаза с участием HКоА отщепляет от в-кетоацил-КоА Ацетил-КоА. В результате 4 реакций образуется Ацил-КоА, который короче предыдущего Ацил-КоА на 2 углерода. Образованный Ацетил-КоА окисляясь в ЦТК, обеспечивает синтез в ЦПЭ 12 молекул АТФ.

Затем Ацил-КоА снова вступает в реакции в-окисления. Циклы продолжаются до тех пор, пока Ацил-КоА не превратится в Ацетил-КоА с 2 атома С (если ЖК имела четное количество атомов С) или Бутирил-КоА с 3 атомами С (если ЖК имела нечетное количество атомов С).

Энергетический баланс окисления насыщенных жирных кислот с четным количеством атомов углерода

При активации ЖК затрачивается 2 макроэргической связи АТФ.

При окислении насыщенной ЖК с четным количеством атомов С образуются только ФАДН2, НАДН2 и Ацетил-КоА.

За 1 цикл в-окисления образуется 1 ФАДН2, 1 НАДН2 и 1 Ацетил-КоА, которые при окислении дают 2+3+12=17 АТФ.

Количество циклов при в-окислении ЖК = количество атомов С в (ЖК/2)-1. Пальмитиновая кислота при в-окислении проходит (16/2)-1 = 7 циклов. За 7 циклов образуется 17*7=119 АТФ.

Последний цикл в-окисления сопровождается образованием дополнительной Ацетил-КоА, которая при окислении дает 12 АТФ.

Таким образом, при окислении пальмитиновой кислоты образуется: -2+119+12=129 АТФ.

Суммарное уравнение в-окисления, пальмитоил-КоА: С15Н31СО-КоА + 7 ФАД + 7 НАД+ + 7 HSKoA > 8 CH3-CO-KoA + 7 ФАДН2 + 7 НАДН2

Перекисное окисление липидов

Понятие ПОЛ объединяет все реакции неферментативного окисления полиненасыщенных ЖК, свободных или входящих в состав омыляемых липидов, протекающих по радикальному механизму. Реакции ПОЛ инициируются активными формами кислорода.

В результате появления в гидрофобном слое мембран гидрофильных зон за счёт образования гидропероксидов жирных кислот в клетки могут проникать вода, ионы натрия, кальция, что приводит к набуханию клеток, органелл и их разрушению.

Регуляция ПОЛ

Процессы ПОЛ усиливаются при избытке катехоламинов (стресс), гипоксии, ишемии (при реоксигенации), повышенном содержании активных форм О2, снижении антиоксидантной защиты, повышенном содержании ненасыщенных жирных кислот.

Активация ПОЛ происходит при воспалении и характерна для многих заболеваний: дистрофии мышц (болезнь Дюшенна), болезни Паркинсона, атеросклерозе, развитии опухолей.

Физиологическое значение реакций ПОЛ:

1. модифицируют физико-химические свойства биомембран: увеличивают их проницаемость.

2. регулируют активность мембранных ферментов, реакции окислительного фосфорилирования.

3. участвуют в контроле клеточного деления.

4. Участвует в адаптации организма.

Повышение активности ПОЛ приводит к:

1. разрушению, фрагментации клеточных мембран, повреждению и гибели клеток.

2. модификации ЛП, особенно ЛПНП. Они становятся «липкими», легче проникают в сосудистую стенку, хорошо захватываются макрофагами, что ускоряет развитие атеросклероза.

3. накоплению продуктов ПОЛ, многие из которых токсичны, канцерогенены и мутагенены (МДА).

4. ускорению процессов старения организма.

На коже с возрастом увеличивается количество пигментных пятен. Пигмент, вызывающий образование этих пятен, называется липофусцин. Он представляет собой смесь липидов и белков, связанных между собой поперечными ковалентными связями и денатурированными в результате взаимодействия с продуктами ПОЛ. Этот пигмент фагоцитируется, но не гидролизуется ферментами лизосом, и поэтому накапливается в клетках, нарушая их функции.

Анаболизм жирных кислот

Источником ЖК в организме являются синтетические процессы и пища.

ЖК, которые синтезируются в организме, называются заменимыми. Значительная их часть образуется в печени, в, меньшей степени -- в жировой ткани и лактирующей молочной железе.

ЖК, которые не синтезируются в организме, но необходимы для него называются незаменимыми. Единственным источником незаменимых ЖК является пища.

У человека синтез ЖК начинается с образования пальмитиновой кислоты, из которой затем образуются другие заменимые ЖК. Кроме того, некоторые заменимые ЖК образуются из незаменимых ЖК. Субстратами для синтеза ЖК служит ацетил-КоА и НАДФН2, образующийся в основном из глюкозы. Таким образом, избыток углеводов, поступающих в организм, трансформируется в ЖК, а затем в ТГ.

Образование субстратов, необходимых для синтеза ЖК

Образование и транспорт Ацетил-КоА. В реакциях гликолиза из глюкозы образуется ПВК, который поступает в матрикс митохондрий и превращается в Ацетил-КоА с участием ПВК ДГ. Так как внутренняя мембрана митохондрий непроницаема для Ацетил-КоА, поэтому он при участии цитратсинтазы конденсируется с ЩУК с образованием цитрата: Ацетил-КоА + Оксалоацетат > Цитрат + HS-КоА.

Затем транслоказа переносит цитрат в цитоплазму. Перенос цитрата в цитоплазму происходит только при увеличении количества цитрата в митохондриях, когда изоцитратдегидрогеназа и б-кетоглутаратдегидрогеназа ингибированы высокими концентрациями НАДН2 и АТФ (при избытке углеводов и низком энергопотреблении).

В цитоплазме цитрат расщепляется под действием фермента цитрат-лиазы: Цитрат + HSKoA + АТФ > Ацетил-КоА + АДФ+ Pн + ЩУК

Образование НАДФН2.

1) ЩУК в цитоплазме превращается в малат под действием малат ДГ, малат под действием малик-фермента превращается в ПВК, при этом образуется НАДФН2. ПВК транспортируется обратно в матрикс митохондрий;

2) НАДФН2 образуется в цитоплазме из глюкозы в окислительных реакциях ПФШ;

3) Цитрат изомеризуется в изоцитрат, который дегидрируется цитозольной НАДФ-зависимой ДГ до б-КГ с образованием НАДФН2. б-КГ переноситься в матрикс митохондрий.

Синтез пальмитиновой кислоты

Образование малонил-КоА

Первая реакция синтеза ЖК -- превращение ацетил-КоА в малонил-КоА. Это регуляторная реакция в синтезе ЖК катализируется ацетил-КоА-карбоксилазой.

Ацетил-КоА-карбоксилаза состоит из нескольких субъединиц, содержащих биотин.

Реакция протекает в 2 стадии:

1) СО2 + биотин + АТФ > биотин-СООН + АДФ + Фн

2) ацетил-КоА + биотин-СООН > малонил-КоА + биотин

Ацетил-КоА-карбоксилаза регулируется несколькими способами:

1) Ассоциация/диссоциация комплексов субъединиц фермента. В неактивной форме ацетил-КоА-карбоксилаза представляет собой комплексы, состоящих из 4 субъединиц. Цитрат стимулирует объединение комплексов, в результате чего активность фермента увеличивается. Пальмитоил-КоА вызывает диссоциацию комплексов и снижение активности фермента;

2) Фосфорилирование/дефосфорилирование ацетил-КоА-карбоксилазы. Глюкагон или адреналин через аденилатциклазную систему стимулируют фосфорилирование субъединиц ацетил-КоА карбоксилазы, что приводит к ее инактивации. Инсулин активирует фосфопротеинфосфатазу, ацетил-КоА карбоксилаза дефосфорилируется. Затем под действием цитрата происходит полимеризация протомеров фермента, и он становится активным;

3) Длительное потребление богатой углеводами и бедной липидами пищи приводит к увеличению секреции инсулина, который индукцирует синтез ацетил-КоА-карбоксилазы, пальмитатсинтазы, цитратлиазы, изоцитратдегидрогеназы и ускоряет синтез ЖК и ТГ. Голодание или богатая жирами пища приводит к снижению синтеза ферментов и, соответственно, ЖК и ТГ.

Образование пальмитиновой кислоты

После образования малонил-КоА синтез пальмитиновой кислоты продолжается на мультиферментном комплексе -- синтазе жирных кислот (пальмитоилсинтетазе).

Пальмитоилсинтаза - это димер, состоящий из двух идентичных полипептидных цепей. Каждая цепь имеет 7 активных центров и ацилпереносящий белок (АПБ). В каждой цепи есть 2 SH-гpyппы: одна SH-гpyппa принадлежит цистеину, другая -- остатку фосфопантетеиновой кислоты. SH-группа цистеина одного мономера расположена рядом с SH-группой 4-фосфопантетеината другого протомера. Таким образом, протомеры фермента расположены «голова к хвосту». Хотя каждый мономер содержит все каталитические центры, функционально активен комплекс из 2 протомеров. Поэтому реально синтезируются одновременно 2 ЖК.

Этот комплекс последовательно удлиняет радикал ЖК на 2 атома С, донором которых служит малонил-КоА.

Реакции синтеза пальмитиновой кислоты

1) Перенос ацетила с КоА на SH-группу цистеина ацетилтрансацилазным центром;

2) Перенос малонила с КоА на SH-группу АПБ малонилтрансацилазным центром;

3) Кетоацилсинтазным центром ацетильная группа конденсируется с малонильной с образованием кетоацила и выделением СО2.

4) Кетоацил восстанавливается кетоацил-редуктазой до оксиацила;

5) Оксиацил дегидратируется гидратазой в еноил;

6) Еноил восстанавливается еноилредуктазой до ацила.

В результате первого цикла реакций образуется ацил с 4 атомами С (бутирил). Далее бутирил переносится из позиции 2 в позицию 1 (где находился ацетил в начале первого цикла реакций). Затем бутирил подвергается тем же превращениям и удлиняется на 2 атома С (от малонил-КоА).

Аналогичные циклы реакций повторяются до тех пор, пока не образуется радикал пальмитиновой кислоты, который под действием тиоэстеразного центра гидролитически отделяется от ферментного комплекса, превращаясь в свободную пальмитиновую кислоту.

Размещено на Allbest.ru

...

Подобные документы

  • Изучение значения обмена липидов в организме человека. Переваривание и всасывание липидов. Анализ роли желчных кислот. Гидролиз триглицеридов. Основные продукты расщепления жиров. Активация жирных кислот и их проникновение из цитоплазмы в митохондрии.

    презентация [11,9 M], добавлен 13.10.2013

  • Классификация липидов по строению, физиологическому значению и способности к гидролизу. Основные карбоновые кислоты, входящие в состав природных масел и жиров. Схема вероятной структуры фосфолипидов. Функции основных классов липидов в организме человека.

    реферат [264,9 K], добавлен 14.01.2010

  • Биологическая роль липидов. Структура Триацилглицеролов (нейтральных жиров) – сложных эфиров глицерола и жирных кислот. Структурные компоненты мембран клеток нервной ткани и мозга. Переваривание и всасывание липидов. Кетогенез (обмен жирных кислот).

    презентация [411,8 K], добавлен 06.12.2016

  • Общая характеристика и основные этапы обмена липидов, особенности процесса переваривания. Порядок всасывания продуктов переваривания липидов. Исследование различных органов и систем в данном процессе: стенок и жировой ткани кишечника, легких и печени.

    презентация [4,5 M], добавлен 31.01.2014

  • Растительные и животные жиры как основные источники липидов для человека. Технологический процесс получения микробных липидов. Использование микробиологического способа производства липидов. Применение микробных липидов в пищевых производствах.

    реферат [137,7 K], добавлен 18.06.2013

  • Липиды - обширная группа природных органических соединений, включающая жиры и жироподобные вещества. Классификация, строение и синтез липидов в организме. Биологические функции: энергетическая, структурная, регуляторная, защитная. Липиды в диете человека.

    презентация [174,7 K], добавлен 15.09.2013

  • Метаболизм липидов в организме, его закономерности и особенности. Общность промежуточных продуктов. Взаимосвязь между обменами углеводов, липидов и белков. Центральная роль ацетил-КоА во взаимосвязи процессов обмена. Расщепление углеводов, его этапы.

    контрольная работа [26,8 K], добавлен 10.06.2015

  • Исследование структурных особенностей простых липидов. Характеристика строительной, теплоизолирующей и энергетической функций липидов. Описания восков, соединений, образованных высшими карбоновыми кислотами и высокомолекулярными одноатомными спиртами.

    презентация [905,6 K], добавлен 31.05.2015

  • Виды биологически активных веществ. Характеристика продуктов липидной природы, области применения. Микроорганизмы - продуценты липидов, способы их культивирования. Технологическая схема экстракционного выделения биожира из биомассы дрожжей, его стадии.

    курсовая работа [86,5 K], добавлен 21.11.2014

  • Обмен белков, липидов и углеводов. Типы питания человека: всеядность, раздельное и низкоуглеводное питание, вегетарианство, сыроедение. Роль белков в обмене веществ. Недостаток жиров в организме. Изменения в организме в результате изменения типа питания.

    курсовая работа [33,5 K], добавлен 02.02.2014

  • Инсулин и глюкагон как регуляторы депонирования и мобилизации углеводов и жиров. Синтез и секреция инсулина. Нарушения метаболизма углеводов и липидов при сахарном диабете. Коматозные состояния как результат нарушения обмена жиров при сахарном диабете.

    курсовая работа [161,8 K], добавлен 25.05.2009

  • Обзор классификации, свойств и биологической роли витаминов, анализ их основных природных источников и антагонистов. Изучение липидов, процесса брожения и его типов. Характеристика физико-химических свойств белков и уровней организации белковых молекул.

    шпаргалка [53,8 K], добавлен 16.05.2010

  • Функции обмена веществ в организме: обеспечение органов и систем энергией, вырабатываемой при расщеплении пищевых веществ; превращение молекул пищевых продуктов в строительные блоки; образование нуклеиновых кислот, липидов, углеводов и других компонентов.

    реферат [28,0 K], добавлен 20.01.2009

  • Пространственная структура мембранных липидов. Структура и термодинамика водно-липидных систем. Смеси липидов с водой и полиморфизм. Изучение пространственного строения липидов в кристаллах. Основные типы структурной организации водно-липидных систем.

    реферат [2,9 M], добавлен 30.07.2009

  • Строение и биологическая роль липидов (жиров). Роль витаминов для организма и причины гиповитаминозов. Биохимические сдвиги в крови и в моче при мышечной работе. Биохимические основы питания и особенности питания спортсменов-силовиков, атлетов и бегунов.

    реферат [38,2 K], добавлен 20.06.2012

  • Строение, состав и физиологическая роль отдельных органелл клетки. Классификация белков по степени сложности. Состояние воды в живых тканях, ее функции. Полисахариды морских водорослей: состав, строение. Биологическая роль и классификация липидов.

    контрольная работа [1014,7 K], добавлен 04.08.2015

  • Взаимодействие липидов с биологическими мембранами и модельными бислоями. Подавление бактериального, грибкового, протозойного и паразитарного роста. Влияние на процесс окисления, на структуру и активность белка, взаимодействие с ДНК, цитотоксичность.

    реферат [33,6 K], добавлен 19.05.2017

  • Специфические свойства, структура и основные функции, продукты распада жиров, белков и углеводов. Переваривание и всасывание жиров в организме. Расщепление сложных углеводов пищи. Параметры регулирования углеводного обмена. Роль печени в обмене веществ.

    курсовая работа [261,6 K], добавлен 12.11.2014

  • Человек как белковый организм. Особенности баланса азота при рациональном питании детей, последствия его нарушений. Изменения при недостатке или избытке белков в пище. Жиры как обязательный элемент сбалансированного рациона. Роль углеводов в организме.

    презентация [5,4 M], добавлен 11.10.2016

  • Роль и значение белков, жиров и углеводов для нормального протекания всех жизненно важных процессов. Состав, структура и ключевые свойства белков, жиров и углеводов, их важнейшие задачи и функции в организме. Основные источники данных пищевых веществ.

    презентация [322,6 K], добавлен 11.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.