Effect of Cu-nanoparticles versus copper carbonate salt supplementation in low-copper diet: analysis of humerus biomechanical response in a rat model study

Evaluation of the effect of adding Cu (in the form of copper carbonate or nanoparticles) with a reduced level of requirement for rats that are growing. The study of the parameters of the humerus. Analysis of the biomechanical reaction of the humerus.

Рубрика Биология и естествознание
Вид статья
Язык английский
Дата добавления 17.06.2020
Размер файла 24,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Department of Physics, Faculty of Production Engineering, University of Life Sciences in Lublin

Effect of Cu-nanoparticles versus copper carbonate salt supplementation in low-copper diet: analysis of humerus biomechanical response in a rat model study

Siemowit Muszynski, Katarzyna Ognik,

Maigorzata Kwiecien, Piotr Dobrowolski,

Ewelina Cholewinska, Agnieszka Tomczyk,

Katarzyna Kwiatkowska, Natalia Kowal, Marta Ejtel,

Agnieszka Leus, Estera Kaminska

Copper is required for normal bone growth and metabolism. The purpose of this study was to assess the effect of adding of Cu (in form of copper carbonate or nanoparticles) at the reduced level of 50% of daily demand to growing rats evaluated on the basis of mechanical and geometric parameters of humerus. Twenty four 5-weeks old male Wistar rats were divided into control group fed diet without Cu supplementation and two experimental groups fed either a diet supplemented with Cu as copper carbonate at 3.25 mg kg1 of the premix or a diet with a Cu nanoparticles (40 nm) at the same dosage. The supplementation lasted 4 weeks. At the end of experiment, there were no changes in rats body weight and generally in bone geometry, but significant alteration was noted in the structural parameters, which was partially dependent on Cu source. Our study showed an increase in work to fracture and toughness significantly in both Cu-supplemented groups, while the increase of elastic energy was observed only when Cu was supplemented in form of nanoparticles. On contrary, the yield load and stiffness decreased in Cu-Salt-treated rats. The values of most material parameters were also altered after Cu supplementation, irrespective of its source, as increase of yield strain, ultimate strain and yield stress as well as an decrease of Young modulus in both Cu-treated groups was observed. This study showed that Cu-NP given in low dose increased mechanical endurance of bone, without the changes in strain and stress compared to low dose of Cu given in traditional form.

Keywords: COPPER, NANOPARTICLES, HUMERUS, MECHANICAL TESTING, RAT.

Вплив наночастинок Cu в порівнянні з карбонатом міді в раціоні з низьким вмістом міді: аналіз біомеханічної реакції плечової кістки в модельному досліді на щурах

Анотація

Мідь потрібна для нормального росту і метаболізму кісток. Метою дослідження було оцінити ефект додавання Cu (у формі карбонату міді або наночастинок) при зниженому рівні 50 % добової потреби для щурів, що ростуть, на основі механічних та геометричних параметрів плечової кістки. Двадцять чотири 5-тижневі самці щурів Wistar ділили на контрольні групи, що годували раціоном без додавання Cu, і дві експериментальні групи з раціоном з Cu у формі преміксу карбонату міді на рівні 3,25 мг / кг-1 або раціону з наночастинками Cu (40 нм) однакової дози. Вигодовування тривало 4 тижні. Наприкінці експерименту не було змін у масі тіла щурів та загалом в геометрії кістки, але значні зміни зазначалися в структурних параметрах, що частково залежать від джерела Cu. У щурів із CuSalt-раціоном знизився приріст маси.. Значення більшості матеріальних параметрів також змінювалися після додавання Cu, незалежно від його джерела, в обох групах, що отримували Cu. Це дослідження показало, що Cu-NP, що вводиться в низьких дозах, збільшує механічну витривалість кістки, без змін деформації та напруженості в порівнянні з низькою дозою Cu, що дається в традиційній формі.

Ключові слова: МІДЬ, НАНОЧАСТИНКИ, ПЛЕЧОВА КІСТКА, МЕХАНІЧНЕ ВИПРОБУВАННЯ, ЩУРИ.

Влияние наночастиц Cu по сравнению с карбонатом меди в рационе с низким содержимым меди: анализ биомеханической реакции плечевой кости в модельном опыте на крысах

Аннотация

Медь нужна для нормального роста и метаболизма костей. Целью исследования было оценить эффект добавления Cu (в форме карбоната меди или наночастиц) при сниженном уровне 50 % суточной потребности для крыс, которые растут, на основе механических и геометрических параметров плечевой кости. Двадцать четыре 5-недельных самца крыс Wistar разделили на контрольные группы, которых кормили рационом без добавления Cu, и две экспериментальных группы с рационом с Cu в форме премикса карбоната меди на уровне 3,25 мг / кг- 1 или рациону с наночастицами Cu (40 нм) одинаковой дозы. Выкармливание длилось 4 недели. В конце эксперимента не было изменений в массе тела крыс и в целом в геометрии кости, но значительные изменения отмечались в структурных параметрах, которые частично зависят от источника Cu. У крыс из CuSalt- рационом снизился прирост массы. Значения большинства материальных параметров также изменялись после добавления Cu, независимо от его источника, в обеих группах, которые получали Cu. Это исследование показало, что Cu - NP, что вводится в низких дозах, увеличивает механическую выносливость кости, без изменений деформации и напряженности по сравнению с низкой дозой Cu, которая дается в традиционной форме.

Ключевые слова: МЕДЬ, НАНОЧАСТИЦЫ, ПЛЕЧЕВАЯ КОСТЬ, МЕХАНИЧЕСКОЕ ИСПЫТАНИЕ, КРЫСЫ.

Copper (Cu) is an essential metal micronutrient closely linked to bone metabolism [1, 2]. Cu-dependent enzyme, lysyl oxidase, mediates in the biosynthesis of collagen, elastin, and keratin and normalizes the deposition of calcium and phosphorus in bones [3]. Studies on animals indicate that a poor-Cu diet leads to bone loss and reduced bone mass, resulting in a reduction of its mechanical strength and increases the risk of fractures [4]. Since bones undergo nonstop remodeling, bone formation requires an adequate and continuous supply of Cu.

Food, drinking water, and mineral supplements are the main sources of Cu. A traditional dietary form of Cu presents in supplemental mineral mixture is inorganic copper sulfate or carbonate. Recently, the use of elements in form of nanoparticles of has been considered as an alternative to inorganic forms due to their higher physical activity. To date, the results regarding application of Cu nanoparticles as an alternative growth promoter in livestock animals are limited. However, in pigs feeding, some researchers demonstrated better performance of piglets supplied with Cu in nanoparticles, showed an altered metabolic rate in embryos and depressed development of organs [5, 6]. Further, the study performed on broiler chickens showed that femoral bones from the group supplemented in ovo with Cu nanoparticles were characterised by a higher weight and volume and by significantly greater resistance to fractures compared to the non-supplemented group [7]. On the other hand, copper nanoparticles did not affect immunoglobulin concentrations or humoral responses [6].

Essentially copper nanoparticles at smaller concentrations can demonstrate positive responses in the microbiota while promoting growth and performance [8]. However, there are no scientific analyses involving the use of Cu nanoparticles in animal feeding and their effect on the bone structure when included in diet.

The objective of the present study was to investigate the geometrical, biomechanical and densitometric traits of the humerus in growing male rats given Cu in two different chemical forms (carbonate and nanoparticles) at the reduced level of 3.25 mgkg1 of the premix. With regard to the important role of Cu in the development of bones, it is hypothesized that the use of Cu in a more assailable form of nanoparticles might improve the development of the skeletal system, even if it is administered at the reduced level of 50% of daily recommended dose.

Materials and methods. Animal protocol and dietary treatments

All animal care and experimental protocols were approved by the respective Local Institutional Animal Care and Use Committee in Lublin.

In the experiment, twenty four healthy male, albino Wistar rats of 5 weeks were randomly allocated to three dietary treatments: control group fed without additional Cu supplementation in premix (the CONT group), first experimental group fed with lowered level of inorganic copper as cooper carbonate (the CuSalt group) in premix and the second experimental group fed with lowered level of copper as nanoparticles (Sky Spring Nanomaterials, Inc. USA) of the size of 40 nm (the CuNano group). Rats were housed individually in stainless steel cages under a stable temperature of 21-22 °C and 12-h light-dark cycle. For 4 weeks, the rats had ad libitum access to tap water and experimental semi-purified diets. The diets were modifications of a casein diet for laboratory rodents recommended by the American Institute of Nutrition. After 4 weeks, at the end of the experiment, the rats were fasted for 24 hours and euthanized one by one with carbon dioxide inhalation and by dislocation of the spine.

Bone collection, geometrical analysis and densitometric evaluation. The bone length and weight were measured after removal of soft tissues from left humerus. Geometric properties such as the cross-section area, mean relative wall thickness, and cortical index were estimated on the basis of horizontal and vertical diameter measurements of the mid-diaphyseal cross-section of bone [9]. The second moment of inertia and radius of gyration about medial-lateral axis were also calculated [9]. Bone mineral density was assessed using the dual-energy X-ray absorptiometry (DXA) method on a Discovery W Hologic densitometer (Bedford, MA, USA) [10]. The measurement of bone tissue density was performed with an AccuPyc 1330 helium gas pycnometer (Micromeritics, Inc., Norcross, GA, USA) [11].

Mechanical testing. The mechanical properties of the humerus were determined using the three-point bending test of right humerus on a Zwick Z010 universal testing machine (Zwick GmbH & Company KG, Ulm, Germany). The distance between the supports was set at 40 % of the total bone length. Ultimate load was determined as the force causing bone fracture and the yield load as maximal force under elastic deformation of bone [9]. On the basis of measured geometric and mechanical traits the following material properties of the mid-diaphyseal fragment of the bone were calculated: bending moment, indicating bone elastic load capability [9]; yield stress, reflecting the elastic strength of midshaft cortical bone; the ultimate stress, equal to the maximum stress a bone can withstand in bending before fracture; Young modulus of elasticity, describing bending resistance of the bone [9]; yield strain, indicating the maximum strain the bone can withstand for reversible deformation and ultimate strain, describing the relative deformation occurring when the fracture load is applied. The determined bone structural traits were: stiffness, describing the bone resistance to deformation; toughness, as a bone resistance to fracture; elastic energy, as the energy absorbed by bone in elastic region and work to fracture, as a total work done to break the bone [9].

Statistical analysis. The results of the experiment are expressed as means values. As our aim was to evaluate the effect of an addition of carbonate salt or nanoparticles copper mineral supplements on the physical traits (geometry and mechanical properties) of humerus, statistical analysis was carried out with one-way ANOVA. Contrast analysis was applied in order to compare the effect of Cu supplementation source and the control group. Analyzed contrasts were as follows: (1) the control diet (CONT) vs. the diet containing inorganic form of Cu (CuSalt) and (2) CONT vs. the diets containing Cu in forms of nanoparticles (CuNano). Significance was declared at P<0.05. All statistical analyses were carried out by means of Statistica 12.0 software (StatSoft Inc., Tulsa, OK, USA).

Results and discussion. There was no effect of the form of Cu used on feed intake or weight gain during 4 weeks of the study (data not shown). Table presents the effects of copper supplementation in low-copper diet on measured bone physical properties.

copper biomechanical humerus

Table

The effect of a diet containing copper in inorganic or nanoparticles form at level of 50% of recommended dosage on bone general properties, midshaft geometrical properties and biomechanical properties of humerus obtained from 9-weeks-old rats

Dependent variable

Dieta

SEMb

P-valuec

CONT

CuSalt

CuNano

CONT * CuSalt

CONT * CuNano

Bone general properties

Bone weight, g

0.668

0.583

0.653

0.013

0.003

ns

Bone length, mm

39.4

37.1

38.0

0.3

<0.001

0.019

Bone mineral density, g-cm-2

0.137

0.130

0.143

0.006

ns

ns

Bone tissue density, g-cm-3

1.863

1.853

1.856

0.002

0.002

<0.001

Midshaft geometrical properties

Cross section area, mm2

4.01

3.77

4.34

0.10

ns

ns

Mean relative wall thickness,

2.63

2.41

2.12

0.11

ns

ns

Cortical index, %

57.1

53.5

54.1

1.5

ns

ns

Cross-sectional moment of inertia, mm4

1.43

1.68

1.87

0.07

ns

0.014

Radius of gyration, mm

0.62

0.66

0.64

0.01

ns

ns

Bone structural characteristic

Yield load, N

60.3

51.2

66.6

1.9

0.015

ns

Ultimate load, N

67.6

67.9

71.6

2.1

ns

ns

Elastic energy, mJ

16.7

15.0

23.8

1.2

ns

0.003

Work to fracture, mJ

29.8

40.4

43.4

1.6

<0.001

<0.001

Stiffness, N-m-1

103.4

80.9

85.7

3.8

0.018

ns

Toughness, mJ-mm-3

4.53

6.27

6.27

0.25

0.003

0.003

Bone material characteristic

Young modulus of elasticity, GPa

5.85

3.71

3.97

0.25

<0.001

<0.001

Yield strain, %

2.71

3.50

3.88

0.13

0.003

<0.001

Ultimate strain, %

4.00

5.30

5.71

0.01

0.004

0.007

Bending moment, N-m

0.223

0.176

0.222

0.009

0.014

ns

Yield stress, MPa

139

164

164

3

<0.001

<0.001

Ultimate stress, MPa

173

202

182

7

ns

ns

Data given are means. a CONT = diet without added Cu; CuSalt = diet containing 3.25 g of Cu in CuCo3 form; CuNano = diet containing 3.25 g of Cu in form of nanoparticles. b SEM = standard error of the mean (n = 8 rats for each group); c CONT*CuSalt = control diet vs. CuSalt; CuD *CuSalt-L =control diet vs. CuSalt-L; CONT*CuNano = control diet vs. CuNano; ns - not significant.

Bone length significantly decreased after both Cu treatments, also the bone weight decreased in group supplemented with Cu in form of CuCO3. However, bone mineral density did not differ between groups while bone tissue density decreased in both experimental groups. There were no effects of both Cu-treatments in geometrical properties of humerus, except that a statistically significant increase of the secondary moment of inertia was observed in CuNano group.

Mechanical testing revealed that a diet with CuSalt decreased the yield load and stiffness. In CuNano group the increase of elastic energy was observed, while work to fracture and toughness increased in both Cu-supplemented groups. Further, material characteristics showed that Cu- supplementation, irrespective of its source, decreased Young modulus of elasticity and increased yield strain, yield stress and ultimate strain. Bending moment decreased in CuSalt group. To sum up, although bones from CuNano group were bending at the same yield loads as those from CuSalt groups, unchanged values yield stresses showed that humerus from CuNano group were subjected to similar mechanical stresses as from CuSalt group, which both were significantly higher than in control group.

Dietary Cu is traditionally supplied as copper sulfate or carbonate. However, in the recent years, the use of the mineral nanoparticles has been considered as an alternative to inorganic forms due to their better bioavailability and digestibility [12-14]. The unique bioactivity of NanoCu is mainly due to the particle size and the large surface area [7]. It is suggested, that copper nanoparticles introduced with the diet are absorbed in the small intestine, and at the same time nanoparticles inhibits calcium absorption [15]. As copper is the main mineral component of bone, this could affect bone growth and development.

Our study showed that supplementation with 3.25 mgkg-1 of Cu irrespective of its source decreased bone length, bone tissue density, Young modulus of elasticity and increased work to fracture, toughness, yield strain, ultimate strain and yield stress as compared to the rats whose diet was devoid of copper (the control CONT group). There were no changes in bone mineral density, midshaft geometrical properties, ultimate load and ultimate stress.

The altered values of Young modulus of elasticity, yield strain and yield stress prove that there was a change in bone elastic properties after copper inclusion. However, bone mineral density, as an important indicator of bone strength, did not differ between copper-supplemented and Cu- deprived control animals. This would indicate that bone mineralization was not disturbed in the rats. Evidently, mineral density is not sufficient to explain the observed changes in bone elasticity. Thus, alteration in bone susceptibility to the elastic deformation could be related to alteration in bone collagen matrix structure. It is well described that the bone elasticity depends also on the functionality of organic matrix, especially on cross-linking, the orientation, density, and length of collagen fibrils and fibers [16]. Collagen cross-links are particularly essential in bone deformation limits (strain range), bending strength (elastic energy and work to fracture) and stiffness or Young modulus. It can be assumed that both copper nanoparticles and copper carbohydrate given in the diet to growing rats even at reduced dose positively influence the process of synthesis and crosslinking of collagen, resulting in a beneficial effect on mechanical endurance.

There were also alteration in several calculated bone parameters which were Cu-source- depended. The most significant were an decrease of the bone weight, yield load and stiffness in CuSalt group when compared to the CONT group. This indicates a decrease in certain mechanical features of the bones. On contrary, in CuNano group an increase of elastic energy was observed. This indicates that the bones of the rats from the CuNano group were able to absorb more energy during bending, which proved their improved mechanical endurance. However, the knowledge of the relations between the mechanical properties and structure of bone tissue is still incomplete. A number of other bone parameters, e.g. hydroxyapatite structure [17], influence bone mechanical parameters, irrespective of mineral density, bone geometry or structure of collagen fibrils.

The knowledge of bone mechanical parameters facilitates assessment of the distribution of stresses and strains occurring in bones under the external loads. The influence of various mineral nanoparticles on the bone biomechanical properties should be further investigated. In our study, a selected biomechanical indicators showed that Cu given at reduced dose increased mechanical endurance of bone, however, more significant improvement was observe when cooper was supplemented in form of nanoparticles than in traditional form of cooper carbonate.

References

1. Pena M. M., Lee J., Thiele D. J. A delicate balance: homeostatic control of copper uptake and distribution // J. Nutr. 1999. - 1129. - P. 1251-1260.

2. Lanocha N., Kalisinska E., Kosik-Bogacka D., Budis H., Sokolowski S., Bohatyrewicz A. Comparison of metal concentrations in bones of long-living mammals // Biol. Trace Elem. Res. - 2013. - 152.- 195-203.

3. Linder M. C., Hazegh-Azam M. Copper biochemistry and molecular biology // Am J Clin Nutr. - 1996. - 63. - Р. 797-811.

4. Palacios C. The role of nutrients in bone health, from A to Z // Crit. Rev. Food Sci. Nutr. - 2006. - 46. - Р. 621-628.

5. Gonzales-Eguia A., Fu C.-M., Lu F.-Y., Lien T. F. Effects of nanocopper on copper availability and nutrients digestibility, growth performance and serum traits of piglets // Livest. Sci. - 2009. - 126. - Р. 122-129.

6. Pineda L., Sawosz E., Vadalasetty K., Chwalibog A. Effect of copper nanoparticles on metabolic rate and development of chicken embryos // Anim. Feed Sci. Technol. - 2013. - 186. - Р. 125-129.

7. Mroczek-Sosnowska N., Lukasiewicz M., Adamek D., Kamaszewski M., Niemiec J., Wnuk- Gnich A., Scott A., Chwalibog A., Sawosz E. Effect of copper nanoparticles administered in ovo on the activity of proliferating cells and on the resistance of femoral bones in broiler chickens // Arch. Anim. Nutr. - 2017. - 71. - Р. 327-332.

8. Gangadoo S., Stanley D., Hughes R. J., Moore R J., Chapman J. Nanoparticles in feed: Progress and prospects in poultry research // Trends Food Sci. Technol. - 2016. - 58. - Р. 115-126.

9. Muszynski S. Kwiecien M., Tomaszewska E., Swietlicka I., Dobrowolski P., Kasperek K., Jezewska-Witkowska G. Effect of caponization on performance and quality characteristics of long bones in Polbar chickens // Poult. Sci. - 2017. - 96. - Р. 491-500.

10. Blicharski T., Tomaszewska E., Dobrowolski P., Huias-Stasiak M., Muszynski S. A metabolite of leucine (P-hydroxy-P-methylbutyrate) given to sows during pregnancy alters bone development of their newborn offspring by hormonal modulation // PLoS One. - 2017. - 12.

11. Tomaszewska E., Dobrowolski P., Kostro K., Jakubaczak A., Taszkun I., Jaworska- Adamu J., Zmuda A., Rycerz K., Muszynski S. The effect of HMB and 2-Ox administered during pregnancy on bone properties in primiparous and multiparous minks (Neivison vison) // Bull. Vet. Inst. Pulawy - 2015. - 59. - Р. 563-568.

12. Tomaszewska E., Dobrowolski P., Kwiecien M., Winiarska-Mieczan A., TomczykA., Muszynski S. The influence of the dietary cu-glycine complex on the histomorphology of cancellous bone, articular cartilage, and growth plate as well as bone mechanical and geometric parameters is dose dependent // Biol Trace Elem Res. - 2016. - 178. - P. 54-63.

13. Tomaszewska E., Dobrowolski P., Kwiecien M., Burmanczuk N., Badzian B., Szymanczyk S., Kurlak P. Alterations of liver histomorphology in relation to copper supplementation in inorganic and organic form in growing rats // Bull Vet Inst Pulawy. - 2014. - 58. - Р. 479-486.

14. Tomaszewska E., Dobrowolski P., Kwiecien M. Intestinal alterations, basal hematology and biochemical parameters in adolescent rats fed different sources of dietary copper // Biol Trace Elem Res. - 2016. - 171. - Р. 185-191.

15. Ognik K., Stepniowska A., Cholewinska E, Kozlowski K. The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium // Poult. Sci. - 2016. - 95. - Р. 2045-2051.

16. Oxlund H., Barckman M., Ortoft G., Andreassen T. Reduced concentrations of collagen cross-links are associated with reduced strength of bone // Bone. - 1995. - 17. - Р. 365-371.

Размещено на Allbest.ru

...

Подобные документы

  • The skull is the bony section of the head. The structure of the tooth, coracohumeral ligament, the ribs, sternum, clavicle, scapula, humerus, capsule of the shoulder joint, ulna, metacarpal, pelvis (or Os Coxa), pubic symphysis, bursae of the shoulder.

    презентация [587,1 K], добавлен 11.04.2013

  • Induction of stress adaptive response: practical considerations. Detecting and quantifying stress response. Perspectives and areas for future work. Mechanisms of microorganism adaptation to stress factors: heat, cold, acid, osmotic pressure and so on.

    курсовая работа [313,2 K], добавлен 18.11.2014

  • It was proposed to use the 2H-labeled hydrolysate of RuMP facultative methylotroph Brevibacterium methylicum, obtained from deuterated salt medium dM9 as a substrate for the growth of inosine producing bacterium Bacillus subtilis.

    статья [550,4 K], добавлен 23.10.2006

  • Viruses as a special form of life, their role in Microbiology. Russian scientist DI Ivanov - discoverer of the tobacco mosaic virus and the founders of virology. History of discovery. Biography of the scientist and his major works. History of Virology.

    презентация [2,3 M], добавлен 22.05.2014

  • Study of synthetic properties of magnetic nanoparticles. Investigation of X-ray diffraction and transmission electron microscopy of geometrical parameters and super conducting quantum interference device magnetometry of magnetic characterization.

    реферат [857,0 K], добавлен 25.06.2010

  • The oxidative dehydrogenation of CH3OH and C2H5OH on different matrix, containing copper, and compared with each other. It was found that Y123 and Bi2212 are less active to compare with Cu-containing zeolites. The conversion of ethanol on zeolites.

    статья [1,1 M], добавлен 10.02.2015

  • Evaluation of urban public transport system in Indonesia, the possibility of its effective development. Analysis of influence factors by using the Ishikawa Cause and Effect diagram and also the use of Pareto analysis. Using business process reengineering.

    контрольная работа [398,2 K], добавлен 21.04.2014

  • The problem of evaluation, self-assessment of personality as a psychological category. Factors of formation evaluation and self-esteem of children of primary school age. An experimental study of characteristics evaluation and self-esteem of junior pupils.

    курсовая работа [28,6 K], добавлен 19.05.2011

  • The process of scientific investigation. Contrastive Analysis. Statistical Methods of Analysis. Immediate Constituents Analysis. Distributional Analysis and Co-occurrence. Transformational Analysis. Method of Semantic Differential. Contextual Analysis.

    реферат [26,5 K], добавлен 31.07.2008

  • Сritical comparison of Infrared analysis and Mass Spectrometry. Summary of the uses in forensic, the molecular structural mass spectral. The method provides better sensitivity in comparison. To conclude, both techniques are helpful in the forensic study.

    реферат [20,1 K], добавлен 21.12.2011

  • Critical literature review. Apparel industry overview: Porter’s Five Forces framework, PESTLE, competitors analysis, key success factors of the industry. Bershka’s business model. Integration-responsiveness framework. Critical evaluation of chosen issue.

    контрольная работа [29,1 K], добавлен 04.10.2014

  • Nature of infrared analysis and nature of mass spectrometry. Summary of the uses in forensic analysis. Critical comparison of infrared analysis and spectrometry. Gathering of the information about positional isomers with the help of infrared analysis.

    эссе [21,8 K], добавлен 08.12.2011

  • Static model analysis. Proof mass, suspension beams, static deflection. Residual stress and Poisson’s ratio. Spring constants. Strain under acceleration. Sensitivity, thermal noise. Resolution due to the ADC. Maximum acceleration. Dynamic model analysis.

    курсовая работа [1,2 M], добавлен 21.09.2010

  • The air transport system in Russia. Project on the development of regional air traffic. Data collection. Creation of the database. Designing a data warehouse. Mathematical Model description. Data analysis and forecasting. Applying mathematical tools.

    реферат [316,2 K], добавлен 20.03.2016

  • Why study Indian philosophy. Why study philosophy. The method of asking questions. The Katha Upanishad. The method of analogy. Outline of Indian Philosophy. The Four Vedas. Monism versus Non-dualism. The Epic Period. Sutra Period. The Modern Period.

    презентация [661,8 K], добавлен 26.02.2015

  • Systematic framework for external analysis. Audience, medium and place of communication. The relevance of the dimension of time and text function. General considerations on the concept of style. Intratextual factors in translation text analysis.

    курс лекций [71,2 K], добавлен 23.07.2009

  • Planning a research study. Explanation, as an ability to give a good theoretical background of the problem, foresee what can happen later and introduce a way of solution. Identifying a significant research problem. Conducting a pilot and the main study.

    реферат [26,5 K], добавлен 01.04.2012

  • Defining cognitive linguistics. The main descriptive devices of frame analysis are the notions of frame and perspective. Frame is an assemblage of the knowledge we have about a certain situation, e.g., buying and selling. Application of frame analysis.

    реферат [324,4 K], добавлен 07.04.2012

  • What are the main reasons to study abroad. Advantages of studying abroad. The most popular destinations to study. Disadvantages of studying abroad. Effective way to learn a language. The opportunity to travel. Acquaintance another culture first-hand.

    реферат [543,8 K], добавлен 25.12.2014

  • Study the history of opening of the first grammar and boarding-schools. Description of monitorial system of education, when teacher teaches the monitors who then pass on their knowledge to the pupils. Analysis the most famous Universities in Britain.

    презентация [394,4 K], добавлен 29.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.