To stimulate growth of wheat seedlings and to form biofilms

Development of biological preparations for organic agriculture. The study of effect of Lactobacillus plantarum ONU 12 and Bacillus megaterium ONU 484 on germination and growth of wheat seedlings. The formation of bacilli biofilms with a developed matrix.

Рубрика Биология и естествознание
Вид статья
Язык английский
Дата добавления 29.06.2020
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

TO STIMULATE GROWTH OF WHEAT SEEDLINGS AND TO FORM BIOFILMS

V.S. Tverdokhlib, N.V. Limanska, K.D. Krylova, V.O. Ivanytsia

Odesa I. I. Mechnikov National University

Development of biological preparations for organic agriculture should include the study of interactions of microorganisms - the components of biopreparations, with representatives of natural microbiota of agrocoenoses. As a microorganism - typical representative of epiphytic and soil microbiota, species Bacillus megaterium has been selected. Aim. The study of effect of Lactobacillus plantarum ONU 12 and Bacillus megaterium ONU 484 on germination and growth of wheat seedlings. Materials and Methods. Seeds of wheat Triticum aestivum L. were inoculated with suspensions of bacteria B. megaterium OHy 484, L. plantarum OHy 12 and their mixture was germinated in hydroponics and soil under green house conditions. Germination of seeds, mean length of roots and height of seedlings were compared. Capability of these microorganisms to form biofilms was studied: inoculated seedlings were dyed with 0.1% acridin orange and observed with a magnification x600. Results. Simultaneous inoculation with bacteria L. plantarum ONU 12 and with the representatives of soil microbiota B. megaterium ONU 484 didn t decrease the stimulation effect of lactobacilli. Opposite, the highest stimulation effect on plants both in hydroponics and in soil caused the treatments with the mixture L. plantarum ONU 12 + B. megaterium ONU 484 and with the strain B. megaterium ONU 484 alone. In hydroponics mean length of roots increased in 8.0 - 16.9%, mean height of seedlings - in 8.8 - 24.3%. In soil germination of seeds increased in 7.0%, mean height of seedlings - in 7.6%, mean root length - in 13.1%. Lactobacilli and bacilli in the mixture were able to form biofilms with a developed matrix. Conclusions. In presence of representative of soil microbiota B. megaterium ONU 484 phytostimulation the activity of lactobacilli increased.

Strain B. megaterium ONU484 also showed stimulation activity when applied separately.

Key words: stimulation of plant growth, Lactobacillus plantarum, Bacillus megaterium.

The development of biological preparations for organic agriculture should include the study of interactions of microorganisms from biological preparations with representatives of natural microbiota of agrocenoses. Lactobacilli isolated from plants are known for their stimulatory activity on plant growth [9; 10], which is explained by the synthesis of auxin hormones or their precursors described in the literature [6]. It remains unclear whether the stimulatory effect of lactobacilli decreases when bacteria penetrate into the natural environment and interact with representatives of plant and soil microbiota. As a microorganism - a typical representative of the epiphytic and soil microbiota there were selected the species Bacillus megaterium in our study. The representatives of the genus Bacillus inhabit the surface and vessels of plants, as well as soil, and are known for their ability to stimulate plant growth [6; 8; 10; 13]. The phytostimulative activity of bacilli is explained by the possible synthesis of auxins, cytokinins, gibberellins and their precursors [8; 12; 13]. Gruneberg et al. (2006) indicate the successful application of the consortium of Bacillus subtilis and Lactobacillus spp. to improve the growth of ornamental plants. The previous studies described strains - representatives of the genera Bacillus and Lactobacillus with stimulatory activity for each strain separately [3; 9].

The aim of this work was to study the effect of Lactobacillus plantarum and Bacillus megaterium on germination and growth of wheat seedlings.

Materials and methods

Strains from the Collection of the Department of Microbiology, Virology and Biotechnology of Odesa National I. I. Mechnikov University L. plantarum ONU 12 i B. megaterium ONU 484 were used. Lactobacilli were grown in a liquid MRS medium [5] at 37 °C overnight and used in the experiments with a culture concentration of 108 cells/ml. Bacilli were grown overnight in LB medium at 28 °C. To prepare the mixture, bacteria of both strains were grown to the concentration of 108 CFU/ml, and mixed in a ratio of 1:1.

For simulating the conditions of hydroponics, we used the Aquasave S gel, prepared according to the instructions. As a test plant, Triticum aestivum L. (wheat variety - Kuialnik) was used. Seed surfaces were sterilized by 25% hydrogen peroxide for one minute. Then seeds were washed three times in sterile distilled water.

Overnight cultures of lactobacilli and bacilli at concentration of 108 cells/ ml were used to prepare dilutions 1% (107 cells/ml), 0.1% (106 cells/ml), 0.01% (105 cells/ml), 0.001% (104 cells/ml), 0.0001% (103 cells/ml), 0.00001% (102 cells/ ml) for each strain and for mixtures of strains. Seeds were soaked for one hour in each of the prepared dilutions. Subsequently, seeds were transferred in Aquasave S gel in glassware for germination. The control was seeds soaked for one hour in sterile distilled water. Germination was carried out in a greenhouse in Aquasave S gel for seven days.

With the concentrations of bacteria that exhibited the higher stimulatory activity we conducted the same experiment in soil conditions (Fig. 1). We used the soil "Poliskiy Universalniy" with a high content of peat, which was not sterilized before sowing.

In total in three independent experiments there were tested 300 seeds of each variants. After seven days, the growth characteristics of plants were measured: average lengths of the roots of seedlings and average height of the plant [2].

Statistical processing was performed using Excel package. The lengths of the roots and shoots as quantitative values were expressed as a mean and confidential interval at 95%, the germination as a qualitative value was expressed as a percentage and a standard error. Significant differences between control measurements and inoculated seedlings were detected in Student's t-test (P <0.05).

To study the ability of bacteria to form biofilms obtained wheat seedlings were washed from gel in distilled water. Biofilms were fixed in 96% ethanol for 15 min and stained with 0.1% solution of acridine orange for 10 minutes. The colored seedlings were dried on a slide and examined under a microscope. For observation, the microscope PrimoStar PC, Carl Zeiss with a total magnification x600 was used. The level of formation of biofilm was evaluated by the scale given in Table 1 [1].

Table 1

The evaluation criteria of the formation of biofilms [1]

Criteria

Description

-

Does not form biofilms

+

Individual attached cells without the formation of biofilms

+ +

Individual well-formed microcolonies

+ + +

Well-formed biofilms with gaps in the structure

+ + + +

Well-formed biofilm with matrix

We investigated 10 samples of each variant and evaluated the level of biofilm formation in 10 fields of vision. The biofilms were photographed using the camera Canon EOS 500D.

Results and Discussion

Inoculation of wheat seeds with bacteria of the strains L. plantarum ONU 12 and B. megaterium ONU 484 influenced germination and growth of seedlings in hydroponics conditions. Thus, treatment with bacilli at concentrations from 0,1% (106 cells/ml) to 0.001% (104 cells/ml) of the overnight cultures significantly increased the germination (Table 2).

biological preparations organic agriculture lactobacillus

Table 2

Germination of wheat in gel (%) after the treatments with L. plantarum ONU 12 and B. megaterium ONU 484 in different concentrations, cells/ml

Variant of treatment

Concentration, cells/ml

107

106

105

104

103

L. plantarum ONU 12

65.0 ± 1.2

84.2±1.0*

72,4±1,3

67.1 ± 2,8

66.5 ± 1.2

B. megaterium ONU 484

40.0±3.6

63.3±3.6*

90,0±2,2**

73.3±3.3***

55.0±2.6

L. plantarum 12 + B. megaterium 484

53.3±3.7

60.0±3.6

57.0±3.6

57.0±3.6

55.0±2.6

Water (control)

55.0±2.6%

Note: the difference between the values is reliable at P = 0.05; * - compared with the corresponding indicator at concentration of 107 cells/ml; ** - at concentration of 106 cells/ ml; *** - at concentration of 105 cells/ml; all values are significantly different from control.

In the control - seeds, soaked in water instead of the suspension of bacteria, the germination was 55.0 ± 2.6%. We can see that low concentrations of bacteria (103 cells/ml) did not influence the germination. A high concentration (107 cells/ml) did not influence or even suppress germination, as in the case with B. megaterium ONU 484. Application of the individual strains was more effective than treatment with the mixture of strains L. plantarum ONU 12 and B. megaterium ONU 484 (Table 1). Treatment with lactobacilli improved the germination in 5.0-25.0%, bacilli - in 8.3-35.0% (except for the concentration of 107 cells/ml), and the mixture - in 1.7-5.0% (almost did not influence).

Measuring of the average length of the roots of seedlings showed that treatment of wheat seeds by suspensions of B. megaterium 484 increased root length in 8.0-14.8% (Fig. 1, A). In this case, the best concentrations were 0.1% (106 cells/ml) and 0.0001% (103 cells/ml) of B. megaterium 484 overnight cultures.

Fig. 1. Average length of the roots of wheat seedlings treated with bacterial
suspensions and germinated in gel:

A - B. megaterium ONU 484; B - L. plantarum ONU 12;

C - L. plantarum ONU 12 + B. megaterium ONU 484,

* values are significantly different from the control (P <0.05)

Treatment with lactobacilli increased the length of roots in 8.0% (Fig. 3, B). The average length of roots of seedlings after treatment with the mixture of lactobacilli and bacilli in gel increased in 8.0-17.0% (concentration of applied bacterial suspensions 104-106 cells/ml) (Fig. 5). This means, that interaction with representatives of soil and plant microbiota - bacilli, did not decrease the stimulatory activity of lactobacilli. Opposite - their activity increased due to stimulatory effect of bacilli.

Figure 2 shows the wheat seedlings in gels after the treatment by the mixture of lactobacilli and bacilli.

Fig. 2. Growth of root systems of wheat seedlings after the treatment with the mixture L. plantarum ONU 12 and B. megaterium ONU 484

Bacterial suspensions caused more significant effect on the height of seedlings. Thus, treatment with strain B. megaterium 484 increased the average height of seedlings in 8.8-21.4% (for concentrations of applied bacterial suspensions 103106 cells/ml) (Fig. 3, A).

Fig. 3. Average height of wheat seedlings treated with bacterial suspensions and germinated in gel:

A - B. megaterium 484, B - L. plantarum ONU 12;

C - L. plantarum 12 + B. megaterium 484,

* values are significantly different from the control (P <0.05)

Treatment with lactobacilli increased the height of wheat seedlings in 10.412.7% (103-104 cells/ml) (Fig. 3, B). Treatments with the mixture also proved to be effective, increasing the height of seedlings in 8.8-24.3%, (103-107 cells/ml). When seeds were germinated in gel, treatment with the mixture of lactobacilli and bacilli was more effective than treatment with a separate strain of lactobacilli. Treatment by the strain B. megaterium ONU 484 also led to significant stimulation of plant growth. All concentrations caused positive effect, but application of the mixture was more effective at higher concentrations of bacteria (107-105 cells/ml), and use of bacteria of the strain B. megaterium ONU 484 individually could occur both at high concentrations (107 cells/ml) and at less concentrations - from 0.01% - to 0.0001% concentrations of daily culture (from 102 to 104 cells/ml).

The phenomenon of enhancement of the properties of lactobacilli under the influence of another strain is known for the synthesis of bacteriocins, when the so-called strain-inducer intensified the synthesis of antagonistic compounds, and the strain-inducer did not necessarily belong to the species L. plantarum, and not necessarily - to the genus Lactobacillus. This could be Escherichia coli, Bacillus spp. and others [11]. Perhaps this phenomenon is also known for the synthesis of plant growth hormones by lactobacilli. The enhancement of the stimulating activity of lactobacilli in the mixture is still not described in the literature, and therefore its mechanisms require further study.

We have carried out the experiments on germination of inoculated seeds in the soil with the concentrations of bacterial suspensions that had the best stimulating effect in gel. As it is shown in Table 3, the effect of inoculation with bacteria was not so significant as in gel.

Only bacteria B. megaterium 484 at concentration of 0.01% (105 cells/ml) increased germination in 7% (in the control group germination reached 83.0%).

Table 3

Germination of wheat seeds in soil after the treatments with strains L. plantarum ONU 12 and B. megaterium ONU 484 at different concentrations, %

Strain

Concentration, cells/ml

Germination

107

70.0±3.7

B. megaterium ONU 484

105

90.0±2.4*

103

88.0±2.6**

L. plantarum 12 +

106

83.0±3.1

B. megaterium 484

105

85.0±2.9

Note: * Differences in comparison with the corresponding indicators, obtained at: * - concentration of 1%; ** - concentration 0.001% (P = 0.05); all values are significantly different from the control.

Growth indices at some concentrations in soil were even less than in the control, that indicates that these concentrations were too high for application in soil (Fig. 4), in contrast to the growth conditions in gel.

Thus, the average length of roots of wheat seedlings increased in soil after the treatment with 1% (107 cells/ml) B. megaterium 484 and a mixture of L. plantarum 12 + B. megaterium 484 at concentration of 0.01% (105 cells/ml) - an increase in 6.3 - 13.1% occured (Fig. 4).

Fig. 4. Average length of roots of wheat seedlings, inoculated by bacteria and germinated in soil:

* values are significantly different from the control (P <0.05)

The most positive effect on average height of seedlings was caused by the suspension of 0.0001% (103 cells/ml) of the overnight culture of B. megaterium 484 - an increase of 7.6% occured (Fig. 5).

So, for germination in soil more careful selection of bacterial concentrations for seed treatment was required. The length of roots and the height of the plants were better influenced by treatment with an individual strain B. megaterium 484, moreover, different concentrations caused a different effect on the growth of the roots and the aboveground parts. For increasing the length of the root higher concentrations of bacteria (106 cells/ml) are required, for increasing the height lower concentrations - 0.0001% (103 cells/ml) could be proposed.

Fig. 5. Average height of wheat seedlings inoculated by bacteria and germinated in soil:

* values significantly differ from the control (P <0,05)

This coincides with the literature data: plant growth hormones, for example, auxin produced by bacilli [8] could stimulate or inhibit growth of various plant organs at different concentrations [7]. In our study, we have shown an increase in morphological characteristics of plants, which indicate the stimulation potential of the strains. The results indicate that germination of plants both in gel and in soil was most improved by bacteria of B. megaterium ONU 484 strain (an increase in germination of seedlings in 7.0-35.0%).

The height of seedlings and the length of roots, both in gel and in soil, were best influenced by the mixture of strains L. plantarum ONU 12 + B. megaterium ONU 484 and with bacteria B. megaterium ONU 484.

We gave studied the ability of bacteria to form biofilms on roots of seedlings germinated in gel with some concentrations that caused the best effect on growth characteristics.

Both individual strains and strains in the mixture were able to form biofilms on roots of wheat seedlings. Some of them were represented by individual microcolonies, another were well-formed biofilms without gaps in the structure (Table 4).

Table 4

Level of biofilm formation on roots of wheat seedlings in hydroponics

Inoculum bacteria

Concentration,

cells/ml

Level of biofilm formation

L. plantarum ONU 12

104

+++

L. plantarum ONU 12

103

++

B. megaterium ONU 484

106

++++

B. megaterium ONU 484

105

+++

B. megaterium ONU 484

104

++

B. megaterium ONU 484

103

++

L. plantarum ONU 12 + B. megaterium ONU 484

104

++++

L. plantarum ONU 12 + B. megaterium ONU 484

105

++++

L. plantarum ONU 12 + B. megaterium ONU 484

106

++++

L. plantarum ONU 12 + B. megaterium ONU 484

107

++++

Well-formed biofilms were found on roots of the seedlings, which probably occurred due to lack of competition with other microbiota representatives and the compact gel structure that contributes to adhesion of bacteria (Figure 6).

Fig. 6. Biofilms of B. megaterium 484 and the mixture of L. plantarum ONU 12 and B. megaterium ONU 484 on roots of wheat seedlings (600x)

L. plantarum ONU 12 and B. megaterium 484 in the mixture formed a biofilm with a well-developed matrix regardless of the primary concentration of bacteria in inoculum. Instead, in case of the treatment with the strain B. megaterium 484, the level of biofilm formation depended on the concentration of bacteria and increased when higher concentrations of bacteria were applied.

The obtained results indicate that the investigated microorganisms are able to attach to roots of the seedlings, survive and form biofilms.

Conclusion

In presence of a representative of soil microbiota B. megaterium ONU 484 stimulation activity of lactobacilli from biological preparation increased. Strain B. megaterium ONU484 also showed stimulation activity when applied separately.

Literature

1. ГалкінМ. Б., Ліманська Н. В., Філіпова Т О., Іваниця В. О. Формування біоплівки бактеріями Lactobacillus plantarum на коренях рослин Lepidium sativum L. // Мікробіологія і біотехнологія. - 2012. - № 3. - С. 34-43.

2. ДСТУ 4138-2002 Насіння сільськогосподарських культур. Методи визначення якості. - К.: Держспоживстандарт України, 2003. - 170 с.

3. Мерліч А. Г., Ліманська Н. В., Жунько І. Д., Бабенко Д. О. Вплив Lactobacillu plantarum і Bacillus atrophaeus на проростання насіння та ріст проростків пшениці // Мікробіологія та біотехнологія. - 2017. - № 1(37). -

4. Bertani, G. Studies on lysogenesis. I. The mode of phageliberation by lysogenic Escherichia coli // J. Bacteriol. - 1951. - P 293-300.

5. De Man J. C., Rogosa M., Sharpe M. E. A medium for the cultivation of lactobacilli // J Appl Bacteriol - 1960 - № 23. - P 130-135.

6. Goffin P, de Bunt B., Giovane M., Leveaue J.H.J., Hoppener-Ogawa S., TeusinkB., Hugenholtz J. Understanding the physiology of Lactobacillus plantarum at zero growth // Molecular Systems Biology. - 2010. - Vol. 6, № 431. doi: 10.1038/ msb.2010.67.

7. Gruneberg H., Oschmann C., Dunya S., Ulrich C. Improving green roofs and rail road greening systems using Bacillus subtilis and Lactobacillus plantarum // Communications in agricultural and applied biological sciences. - 2006. - Vol. 72. - P. 121-130.

8. Kilian M., Steiner U., Krebs B., Junge H., Schmeiedeknecht G., Hain R. FZB24 Bacillus subtilis - mode of action of microbial agent enhancing plant vitality // Pflanzenschutz-NachrichtenBayer. - 2000. - V 1. - P. 72-93.

9. Limanska N. V, Sokolova N. V., Sudak A. A., Galkin M. B., Ivanytsia V. O. Effect of Lactobacillus plantarum on growth characteristics of wheat in hydroponics and soil // Microbiology and Biotechnology. - 2018. - № 3(43). - P. 36-49.

10. NarasimhaM., Malini M., Savitha J. andSrinivas C. Lactic acid bacteria (LAB) as plant growth promoting bacteria (PGPB) for the control of wilt of tomato caused by Ralstoniasolanacearum // Pest Management in Horticultural Ecosystems. - 2012. - V. 18, № 1. - P 60-65.

11. Rojo-Bezares B., Saenz Y., Navarro L., Zarazaga M., Ruiz-Larrea F., Torres C. Coculture-inducible bacteriocin activity of Lactobacillus plantarum strain J23 isolated from grapemust // Food Microbiol. - 2007. - Vol. 24. - P 482-491.

12. Wang S., Huijun W., Junging Q., Lingli M., Jun L., Yanfei X., Xuewen Gao. Molecular mechanism of plant growth promotion and induced systemic resistance by tobacco mosaic virus by Bacillus spp. // Journal of Microbiology and Biotechnology. - 2009. - 19. - P 1250-1258.

13. Zou C., Li Z., YuD. Bacillus megaterium XTBG34 promotes plant growth by producing 2-pentylfuran // J. Microbiol. - 2010. - V. 48. - P 460-466.

В. С. Твердохліб, Н. В. Ліманська, К. Д. Крилова, В. О. Іваниця

Одеський національний університет імені І.І. Мечникова, вул. Дворянська, 2, Одеса 65082,

ВПЛИВ БАКТЕРІЙ LACTOBACILLUS PLANTARUM OKY 12 І BACILLUS MEGATERIUM OKY 484 НА ПРОРОСТАННЯ ТА РІСТ СІЯНЦІВ ПШЕНИЦІ

Реферат

Створення біологічних препаратів для органічного землеробства має включати дослідження взаємодій мікроорганізмів - складових біопрепаратів, з представниками природньої мікробіоти агроценозів. У якості мікроорганізму - типового представника епіфітної і ґрунтової мікробіоти нами було обрано вид Bacillus megaterium. Мета. Вивчення впливу бактерій штамів Lactobacillusplantarum ОНУ12 і Bacillus megaterium ОНУ484 на проростання і ріст сіянців пшениці. Матеріали і методи досліджень. Було проведено дослідження стимулюючих властивостей бацил штаму B. megaterium ОНУ 484, лактобацил штаму L. plantarum ОНУ 12 та їх суміші, та здатність даних мікроорганізмів до формування біоплівок. Результати дослідження. Показано,що за сумісної інокуляції бактеріями біологічного препарату L. plantarum ОНУ 12 та представником ґрунтової мікробіоти B. megaterium ОНУ 484 зменшення стимуляційного впливу не відбувалося. Навпаки, найбільш стимулюючий вплив на ріст рослин як в умовах гідропоніки, так і у ґрунті чинили обробки сумішшю L. plantarum ОНУ 12 + B. megaterium ОНУ 484 та окремим штамом B. megaterium ОНУ 484. У гелі середня довжина кореня сіянців збільшувалась на 8,0-16,9%, а середня висота сіянців - на 8,824,3%. В умовах ґрунту схожість насіння підвищувалася на 7,0%, середня висота сіянців - на 7,6%, а середня довжина кореня - на 13,1%. На корінцях пшениці лактобацили і і бацили у суміші були здатними утворювати сформовану біоплівку з добре розвинутим матриксом. Висновки. За присутності представника мікробіоти ґрунту B. megaterium ОНУ 484 стимуляційні властивості лактобацил біопрепарату підвищувалися. Штам B. megaterium ОНУ 484 сам по собі виявився активним стимулятором росту рослин.

Ключові слова: стимуляція росту рослин, мікроорганізми зі стимулю- вальною активністю.

В. С. Твердохлеб, Н. В. Лиманская, К. Д. Крылова, В. А. Иваныця

Одесский национальный университет имени И.И. Мечникова, ул. Дворянская, 2, Одесса 65082, Украина

ВЛИЯНИЕ БАКТЕРИЙ LACTOBACILLUS PLANTARUM O^U И BACILLUS MEGATERIUM O^484 НА ПРОРАСТАНИЕ И РОСТ СЕЯНЦЕВ ПШЕНИЦЫ

Реферат

Создание биологических препаратов для органического земледелия должно включать исследование взаимодействий микроорганизмов -составных биопрепаратов, с представителями микробиоты агроценозов. В качестве микроорганизма - типичного представителя эпифитной и почвенной микробиоты нами было избрано вид Bacillus megaterium. Цель. Изучение влияния бактерий штаммов Lactobacillus plantarum ОНУ 12 и Bacillus megaterium ОНУ 484 на прорастание и рост сеянцев пшеницы. Материалы и методы исследования. Было проведено исследование стимулирующих свойств бацилл штамма B. megaterium ОНУ 484, лактобацилл штамма L. plantarum ОНУ 12 и их смеси, и способность данных микроорганизмов к формированию биопленок. Результаты исследования. Показано, что при совместной инокуляции бактериями биологического препарата L. plantarum ОНУ 12 и представителем почвенной микробиоты B. megaterium ОНУ 484 уменьшения стимулирующего влияния не происходило. Наоборот, наибольшее стимулирующее влияние на рост растений как в условиях гидропоники, так и в почве вызывали обработки смесью L. plantarum ОНУ 12 + B. megaterium ОНУ 484 и отдельным штаммом B. megaterium ОНУ 484. В геле средняя длина корня сеянцев увеличивалась на 8,0-16,9%, а средняя высота сеянцев - на 8,8-24,3%. В условиях почвы всхожесть семян увеличивалась на 7,0%, средняя высота сеянцев - на 7,6%, а средняя длина корня - на 13,1%. На корнях пшеницы лактобациллы и бациллы в смеси были способными образовывать сформированную биопленку с хорошо развитым матриксом. Выводы. В присутствие представителя микробиоты почвы B. megaterium ОНУ 484 стимуляционные свойства лактобацилл биопрепарата повышались. Штамм B. megaterium ОНУ 484 сам по себе выявился активным стимулятором роста растений.

Ключевые слова: стимуляция роста растений, микроорганизмы со стимулирующей активностью.

Размещено на Allbest.ru

...

Подобные документы

  • It was proposed to use the 2H-labeled hydrolysate of RuMP facultative methylotroph Brevibacterium methylicum, obtained from deuterated salt medium dM9 as a substrate for the growth of inosine producing bacterium Bacillus subtilis.

    статья [550,4 K], добавлен 23.10.2006

  • The biosynthesis of 2H-labeled phenylalanine was done by converse of low molecular weight substrates in a new RuMP facultative methylotrophic mutant Brevibacterium methylicum. Isotope components of growth media and characteristics of bacterial growth.

    статья [1,3 M], добавлен 23.10.2006

  • Hormones as organic substances, produced in small amounts by specific tissues (endocrine glands), secreted into the blood stream to control the metabolic and biological activities. Classification of hormones. The pro-opiomelanocortin peptide family.

    презентация [1,2 M], добавлен 21.11.2012

  • This method is based on the growth of the strain of halophilic bacteria Halobacterium halobium on a synthetic medium containing 2H-labeled aromatic ammo acids and fractionation of solubilized protein by methanol, including purification of carotenoids.

    статья [2,0 M], добавлен 23.10.2006

  • История и классификация антибиотиков. Их влияние на бактерии рода Bacillus. Интенсивность роста колоний данного микроорганизма при различных концентрациях антибиотика, растворённого в питательной среде. Метод диффузии в агар с использованием желобка.

    курсовая работа [1,8 M], добавлен 09.09.2009

  • Animal physiology as a branch of the biological sciences life processes, bodily functions and behavior of animals. The history of physiology, its purpose, the main sections, concepts and relationship with other sciences. Basic life processes of animals.

    презентация [1,4 M], добавлен 22.12.2014

  • Uses of organic molecules. Large molecules are polymers, proteins, lipids, starch, nucleic acids are examples. Macromolecules in organisms. Carbohydrates include in soft drinks, pasta and potatoes. Function of lipids. Synthetic anabolic steroids.

    презентация [8,4 M], добавлен 27.11.2011

  • Аэробные спорообразующие бактерии (бациллы), род Bacillus семейства Bacillaceae, их морфолого-физиологические признаки. Санитарно-показательные микроорганизмы. Санитарно-гигиеническая характеристика пищевых продуктов. Возбудители кишечных заболеваний.

    контрольная работа [20,4 K], добавлен 10.06.2009

  • Общие бактериальные болезни насекомых, энтомопатогенные бактерии. Негативное влияние бактерий на здоровье человека. Характеристика и механизм действия бактерий Bacillus thuringiensis. Бактериальные препараты: применение и методы повышения эффективности.

    курсовая работа [48,4 K], добавлен 02.12.2010

  • Механизм воздействия прокариотических микроорганизмов на спав и липазу. Щелочные протеиназы рода Bacillus. Методика выделения, изучение свойств концентрированного ферментного препарата и порядок его применения в процессе обезжиривания меховой овчины.

    дипломная работа [169,7 K], добавлен 27.11.2010

  • Осуществлен биосинтез 2Н-меченого пуринового рибонуклеозида инозина с использованием адаптированного к дейтерию штамма Bacillus subtilis в тяжеловодородной среде высокого уровня дейтерированности с гидролизатом биомассы метилотрофной бактерии.

    статья [2,5 M], добавлен 23.10.2006

  • Viruses as a special form of life, their role in Microbiology. Russian scientist DI Ivanov - discoverer of the tobacco mosaic virus and the founders of virology. History of discovery. Biography of the scientist and his major works. History of Virology.

    презентация [2,3 M], добавлен 22.05.2014

  • Productivity Growth in Agriculture: Sources and Constraints. Agriculture in Development Thought. Transition to Sustainability. Economic understanding of process of agricultural development. Technical changes and improvement of efficiency of agriculture.

    контрольная работа [31,5 K], добавлен 18.07.2009

  • The concept of economic growth and development. Growth factors: extensive, intensive, the growth of the educational and professional level of personnel, improve the management of production. The factors of production: labor, capital and technology.

    презентация [2,3 M], добавлен 21.07.2013

  • The general outline of word formation in English: information about word formation as a means of the language development - appearance of a great number of new words, the growth of the vocabulary. The blending as a type of modern English word formation.

    курсовая работа [54,6 K], добавлен 18.04.2014

  • Characteristic of growth and development of Brazil and Russian Federation. Dynamics of growth and development. Gross value added by economic activity. Brazilian export of primary and manufactured goods. Export structure. Consumption side of GDP structure.

    реферат [778,3 K], добавлен 20.09.2012

  • Defining the role of developed countries in the world economy and their impact in the political, economic, technical, scientific and cultural spheres.The level and quality of life. Industrialised countries: the distinctive features and way of development.

    курсовая работа [455,2 K], добавлен 27.05.2015

  • Economic growth and potential of economic system. The main problems of productive forces in Ukraine. Modern approaches to productivity. Productivity growth in industries. Improvements in infrastructure quality Support of employment of the population.

    курсовая работа [15,3 K], добавлен 09.05.2011

  • Chinese economy: history and problems. Problems of Economic Growth. The history of Chinese agriculture. The ratio of exports and imports of goods and service to gross domestic product at current prices. Inefficiencies in the agricultural market.

    курсовая работа [162,1 K], добавлен 17.05.2014

  • Asian Development Fund. Poverty reduction in Asia and the Pacific. Promotion of pro poor, sustainable economic growth. Supporting social development. Facilitating good governance. Long-term Strategic Framework. Private, financial sector development.

    презентация [298,7 K], добавлен 08.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.