Влияние TNF и VEGF на свойства эндотелиальных клеток Ea.hy926 в модели многоклеточных сфероидов

Роль эндотелиальных клеток в развитии воспаления и неоангиогенеза при онкологических и хронических воспалительных заболеваниях. Культивирование клеток в статичных условиях на антиадгезивной подложке, приводяще к образованию сфероидов (SD-культур).

Рубрика Биология и естествознание
Вид статья
Язык русский
Дата добавления 17.08.2020
Размер файла 629,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН

Московский государственный университет им. М.В. Ломоносова, биологический факультет

Влияние TNF и VEGF на свойства эндотелиальных клеток Ea.hy926 в модели многоклеточных сфероидов

С.Ш. Гапизов, Л.Е. Петровская, Л.Н. Шингарова,

Е.В. Свирщевская, Д.А. Долгих, М.П. Кирпичников

РЕФЕРАТ

Клетки эндотелия играют ключевую роль в развитии воспаления и неоангиогенеза при онкологических и хронических воспалительных заболеваниях. Клетки в составе SD-культур наиболее приближены к условиям, в которых они находятся в органах и тканях человека при различных патологиях. Поэтому создание модели SD-культур на основе эндотелиальных клеток линии Ea.hy926 является актуальной задачей клеточной биологии. Впервые показано, что культивирование клеток в статичных условиях на антиадгезивной подложке приводит к образованию сфероидов (SD-культур). Изучена экспрессия ICAM-1 и VEGFR-2, а также продукция цитокинов клетками Ea.hy926, культивируемыми в 2D- и SD-условиях в присутствии TNF и VEGF. Методами проточной цитометрии и конфокальной микроскопии показано, что TNF как в 2D-, так и в SD-культурах значительно усиливает экспрессию молекулы клеточной адгезии ICAM-1, но не влияет на уровень VEGFR-2. В спонтанных SD-культурах наблюдалась повышенная продукция как провоспалительных (IL-8, IL-6, IP-10), так и противовоспалительных (IL-10, TGF-P 1-S) факторов по сравнению с 2D-условиями, что показано как методом проточной цитометрии, так и кПЦР. Под действием TNF в SD-культурах секреция IL-10, GM-CSF и IL-6 повышается в 11, 4.7 и 1.6 раза соответственно по сравнению с 2D-культурами. Таким образом, использование SD-культур клеток Ea.hy926 представляется перспективным для изучения эффектов противо- и провоспалительных агентов на клетки эндотелия. КЛЮЧЕВЫЕ СЛОВА молекула межклеточной адгезии, 2D- и SD-культуры, рецептор фактора роста эндотелия сосудов-2, фактор некроза опухоли, эндотелиальные клетки.

2D- и SD-культуры - культивирование клеток на пластике и в объеме соответственно; кПЦР - количественная полимеразная цепная реакция; ICAM-1 - молекула межклеточной адгезии; IFN - интерферон гамма; IL - интерлейкин; TNF - фактор некроза опухоли альфа; VCAM-1 - молекула клеточной адгезии сосудов; VEGF A - фактор роста эндотелия сосудов; VEGFR-2 - рецептор фактора роста эндотелия сосудов.

ВВЕДЕНИЕ

Рак и хронические воспалительные заболевания различных органов и тканей человека представляют серьезную медицинскую и социальную проблему. Показано, что ключевую роль в развитии и поддержании воспаления при таких заболеваниях, как ревматоидный артрит, псориаз, болезнь Крона и других, играет фактор некроза опухоли альфа (TNF) [1, 2]. Как воспалительный процесс, так и опухолевый рост сопровождаются гипоксией тканей, что приводит к образованию новых кровеносных сосудов под действием фактора роста эндотелия сосудов (VEGF), секретируемого клетками эпителия в условиях гипоксии [3, 4]. Известно, что в сосудах опухоли значительно повышен уровень экспрессии интегрина avP3 клетками эндотелия [5]. Показано, что TNF и VEGF стимулируют экспрессию молекул адгезии и воспаления на клетках эндотелия, в частности, ICAM- 1 и VCAM-1, рецептора 2 фактора роста эндотелия сосудов (VEGFR-2), PECAM-1, P- и E-селектинов, выход фактора Виллебранда из телец Вейбла- Паладе, а также усиливают секрецию цитокинов IL-6, IL-8, фактора хемотаксиса моноцитов 1 (MCP- 1) и гранулоцитарно-макрофагального колониестимулирующего фактора (GM-CSF) [6--11]. Изменение экспрессии поверхностных белков эндотелия обеспечивает торможение лейкоцитов в участках воспаления, их адгезию и трансэндотелиальную миграцию

Ответ in vitro соответствует процессам, происходящим in vivo под действием провоспалительных стимулов, что позволяет использовать культуру клеток эндотелия для моделирования процессов воспаления в целом организме.

Использование терапевтических средств, направленных на подавление роста сосудов, частично тормозит патологический процесс. В частности, разработаны и применяются в клинике антитела к VEGF (Бевацизумаб) и низкомолекулярный ингибитор VEGF (Афлиберцепт), антитела к TNF (Адалимумаб, Инфликсимаб и Этанерцепт), ряд антител к интегринам, таких, как Ведолизумаб и антитела к а4Р7- интегрину [13-15]. На стадии клинических испытаний находятся ингибитор avp3-интегрина Циденгитид, антитела Этарацизумаб и другие препараты [16-18]. Недостатком низкомолекулярных препаратов является достаточно быстро формирующаяся у больного резистентность к ним [19]. Антитела также обладают рядом недостатков, в частности, высокая стоимость производства рекомбинантных гуманизированных антител ограничивает число больных, которым доступен такой вид терапии. С другой стороны, антитела имеют большую молекулярную массу, препятствующую глубокому проникновению в ткани [19, 20].

Разработка аналогов антител и создание иммуноконъюгатов с противоопухолевыми препаратами и/или ингибиторами роста сосудов на их основе позволят усовершенствовать терапию онкологических и хронических воспалительных заболеваний, а также расширить круг больных, получающих адекватную терапию [19]. Для первичного скрининга новых препаратов требуется клеточная модель in vitro, свойства которой максимально приближены к условиям in vivo. В настоящее время взаимодействие противовоспалительных препаратов с эндотелиальными клетками анализируют с использованием первичных культур, полученных из пуповинной вены здоровых доноров (HUVEC, human umbilical vien endothelial cells) или гибридную линию Ea.hy926 [21-23]. Предпочтительным является использование стабильной линии, так как функциональные характеристики HUVEC могут зависеть от качества выделения клеток и от донора; кроме того, донорские клетки не всегда доступны, а количество пассажей первичных клеток ограничено [24]. Функциональные характеристики HUVEC и Ea.hy926 во многом совпадают, в частности, оба типа клеток отвечают изменением экспрессии молекул адгезии и продукцией IL-6 и IL-8 под действием TNF [25-27].

В организме мелкие сосуды и капилляры состоят преимущественно из эндотелиоцитов; в более крупных сосудах стенка формируется эндотелиальными клетками, соединительной тканью и гладкими мышцами. Монокультура эндотелиальных клеток во многом моделирует структуру капилляров, при этом использование многоклеточных сфероидов эндотелиальных клеток позволяет изучить эффекты различных препаратов не только на эндотелиальные клетки, но и на их ассоциаты с соединительным матриксом, формируемым в 3D-культурах [28-31]. Ранее предпринимались попытки получения 3D-культур эндотелиальных клеток методом клиностатирования [32-35]. Этот метод основан на вращении культуры клеток в гравитационном поле, что приводит к формированию сфероидов на поверхности монослойной культуры. Целью данной работы была разработка статичной модели 3D-культур эндотелиальных клеток линии Ea.hy926 и сравнительное изучение ответа на TNF и VEGF в 2D- и 3D-культурах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали реактивы фирм Bio-Rad (США), Sigma (США), Merck (США), Panreac (Испания), «ПанЭко» (Россия). Растворы готовили на деионизованной воде MilliQ. Использовали рекомбинантные белки TNF (получен в лаборатории инженерии белка ИБХ РАН) и VEGFA165 (Protein Synthesis, Россия).

Клеточные культуры

В работе использовали клеточную линию человека Ea.hy926 эндотелиального происхождения (ATCC, CRL-2922), предоставленную А.А. Соколовской (НИИ общей патологии и патофизиологии РАМН) с разрешения Dr. С.-J. Edgell (University of North Carolina). Клетки инкубировали в среде DMEM/F12 («ПанЭко», Россия) с добавлением 10% инактивированной бычьей фетальной сыворотки (HyClon, США), 50 мгк/мл сульфата гентамицина и 2 мМ L-глутамина («ПанЭко»). Для формирования трехмерных культур поверхность лунок 24-луночного планшета (Costar) покрывали поли-2-гидроксиэтилметакрилатом (pHEMA) (Sigma). В каждую лунку высевали по 500 х 103 клеток в 1 мл ростовой среды. Клетки культивировали в стандартных условиях в СО2-инкубаторе в течение 48 ч до формирования конфлюэнтного монослоя (2D-культуры) или сфероидов (OD-культуры).

Конфокальная микроскопия

Для анализа экспрессии молекул поверхностной адгезии на 2D-культурах эндотелиальных клеток в шестилуночные планшеты вкладывали стерильные покровные стекла, на которые наносили 100 X 103 клеток в 200 мкл среды и инкубировали в течение 16 ч в СО2-инкубаторе в стандартных условиях для получения конфлюэнтного монослоя. Для анализа 3D-культур клеток Ea.hy926 сфероиды пипетировали и переносили в лунки 96-луночного планшета. Рекомбинантные белки TNF или VEGFA добавляли в культуру в концентрации 25 нг/мл и инкубировали в течение 5 ч. Клетки окрашивали с использованием моноклональных антител мыши к ICAM-1 человека (CD56) и VEGFR-2 (Flk-1), а также вторичные антитела к IgG мыши, меченные CFL488 (Santa Cruz Biotechnology, США) или Alexa Fluor 555 (Invitrogen, США). Антитела добавляли в концентрации 0.2 мкг/мл на 1 ч. Клетки инкубировали в СО2-инкубаторе при вращении 40 об/мин. Ядра клеток окрашивали Hoechst 33342 (Sigma). По окончании инкубации 2D- и 3D-культуры фиксировали 1% параформальдегидом в течение 10 мин при комнатной температуре и промывали фосфатно-солевым буфером (ФСБ). После фиксации клетки отмывали от первичных антител и инкубировали с вторичными антителами в ФСБ (разведение 1: 1000) в течение 40 мин при 37°С. После отмывки клетки полимеризовали при помощи среды Mowiol 4.88 (Calbiochem, Германия) на предметных стеклах и оставляли на ночь при комнатной температуре. Изображения получали и анализировали с помощью конфокального микроскопа Nikon Eclipse TE2000-E (Япония).

Проточная цитофлуориметрия

Экспрессию поверхностных молекул ICAM-1 и VEGFR-2 во всех образцах оценивали с помощью проточного цитофлуориметра FACScan (BD, США). Для получения суспензии клетки из 2D- и 3D-культур обрабатывали раствором трипсин/ EDTA («ПанЭко»), отмывали в ФСБ с 1% бычьим сывороточным альбумином и 0.05% NaN3 (ФСБА), добавляли антитела соответствующей специфичности и инкубировали в течение 60 мин при 4оС в темноте. После отмывки клетки окрашивали вторичными флуоресцентно меченными антителами (60 мин, 4оС в темноте). Перед анализом в образцы добавляли пропидий йодид (0.5 мкг/мл) для дифференциального окрашивания мертвых клеток. В каждой пробе анализировали 10000 клеток. Результаты обрабатывали в программе WinMDI 2.9.

Продукция гуморальных факторов

Продукцию цитокинов и хемокинов клетками Ea.hy926, культивируемыми в 2D- и 3D-условиях, анализировали с помощью проточной цитофлуори- метрии с использованием микрочастиц по протоколу производителя (BioRad, США) на приборе FACS Calibur (BD, США).

Количественная ПЦР (кПЦР)

Суммарную мРНК выделяли с использованием набора RNeasy Mini Kit (Qiagen, США) и очищали от примеси ДНК обработкой ДНКазой I (Fermentas, США). Синтез кДНК проводили с использованием набора First Strand cDNA Synthesis (Thermo Scientific, США). Концентрацию мРНК и кДНК определяли с помощью прибора NanoDrop 2000 (Thermo Scientific). Полученную кДНК использовали в качестве матрицы для ПЦР в реальном времени (кПЦР) со специфическими праймерами (табл. 1) [36] и смесью qPCRmix-HS SYBR («Евроген», Россия) на приборе Lightcycler 480 (Roche, США). Реакционная смесь включала 50 нг кДНК, праймеры (0.120 мкМ на образец), смесь qPCRmix-HS SYBR (5x) и воду MilliQ. Температуру отжига подбирали в соответствии с температурой плавления праймеров. Обработку результатов осуществляли последовательно в программах Convert Light-Cycler 480 и LineRegPCR. Экспрессию каждого гена анализировали в трех повторностях.

эндотелиальная клетка сфероид

Таблица 1. Праймеры, использованные в кПЦР [36]

Ген

Название

праймера

Нуклеотидная последовательность, 5' ^ 3'

Размер

ампликона, п.н.

Т, °С

пл

Я-актин

BAf

TCATGTTTGAGACCTTCAACAC

512

55

BAr

GTCTTTGCGGATGTCCACG

GM-CSF

GMf

CTGCTGCTGAGATGAATGAAACAG

195

55

GMr

GCACAGGAAGTTTCCGGGGT

ICAM-1

ICAMf

ACCATGGAGCCAATTTCTC

590

51

ICAMr

ACAATCCCTCTCGTCCAG

IL-6

IL6d

GATGCAATAACCACCCCTGACCC

173

52

IL6r

CAATCTGAGGTGCCCATGCTAC

VEGFR-2

VEGFR2f

ATGCTCAGCAGGATGGCAA

320

53

VEGFR2r

TTTGGTTCTGTCTTCCAAAGT

Статистика

Полученные данные анализировали параметрическими методами с помощью программы Excel; для цитометрических данных использовали программу Cell Quest. Различия считали статистически значимыми при р < 0.05.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Экспрессия молекул адгезии клетками Ea.hy926 в 2D- и SD-культурах

В норме клетки эндотелия, выстилающие сосуды, соединены между собой молекулами адгезии ICAM-1, VCAM-1, PECAM-1 и рядом других, связанных с молекулами актина, что обеспечивает быструю перестройку цитоскелета, необходимую для экстравазации лейкоцитов в ткани при воспалении [6]. В отличие от эндотелиальных клеток, эпителиальные клетки соединены более плотными кадгериновыми контактами, которые связаны с кератиновыми филаментами цитоскелета. Эпителиальные клетки формируют 3D-культуры разной степени плотности, что зависит от количества кадгериновых контактов [37]. Ранее не было попыток получить 3D-культуры эндотелиальных клеток, аналогичных культурам эпителиальных клеток. Клиностатированные культуры, в ряде статей называемые 3D-культурами, представляют собой монослойные культуры, выращиваемые при вращении в гравитационном поле [32-35]. При культивировании в течение 5-6 дней на поверхности монослоя появляются сфероиды, которые используют для анализа [33]. Однако при таком длительном культивировании нельзя оценить эффекты быстродействующих факторов, например TNF.

В данной работе клетки Ea.hy926 культивировали на антиадгезивной подложке pHEMA, в результате чего в течение 18 ч формировались кластеры клеток размером 200-400 мкм, неразбиваемые при пипе- тировании (рис. 1Б), что подтверждает формирование межклеточных контактов по всей поверхности клетки. В 2D-культуре клетки формируют плотный монослой, в котором клетки образуют контакты только по периметру (рис. 1А). Конфокальный анализ

Рис. 1. Морфология клеток Ea.hy926 в 2D- и 3D-условиях культивирования. Клетки Ea.hy926 через 48 ч после переноса в планшет для клеточных культур (А) или в планшет с антиадгезивным покрытием pHEMA (Б), световой микроскоп. Z-стеки 3D-культур, окрашенных антителами к ICAM-1 (В, зеленый) и VEGFR-2 (Г, красный), полученные методом конфокальной микроскопии

3D-культур выявил различный уровень экспрессии молекул адгезии в зависимости от расположения клеток в культуре. Так, в 3D-культурах Еа^у926 уровень экспрессии 1САМ-1 выше в клетках поверхностного слоя (рис. 1В), в то время как VEGFR-2 равномерно экспрессируется всеми клетками сфероида (рис. 1Г). Снижение экспрессии молекул адгезии внутри сфероида связано с формированием иерархии клеток. Наличие адгезионных контактов по всей поверхности клетки снижает экспрессию молекул адгезии - клетка находится в равновесном состоянии. На поверхности сфероида клетки имеют контакт с нижним слоем и не имеют контактов на поверхности, что стимулирует экспрессию молекул адгезии и имитирует репарацию повреждения в эпителиальных тканях. VEGFR-2, в отличие от 1САМ-1, экспрессируется равномерно по всему объему сфероида. Таким образом, показано, что эндотелиальные клетки, подобно эпителиальным, способны формировать сфероиды с внутренней иерархией в статичных культурах.

Ранее в экспериментах с клиностатированными культурами Еа^у926 выявили различия в экспрессии молекул адгезии, а также в спонтанной и TNF- индуцированной продукции цитокинов, причем обнаружено как подавление [38], так и стимуляция продукции ряда белков [39]. Экспрессию молекул адгезии в статичных 2D- и 3D-культурах Ea.hy926 в ответ на активацию TNF и VEGF анализировали, используя предварительно подобранные условия активации клеток. Методом проточной цитометрии анализировали экспрессию ICAM-1, VEGFR-2, инте- грина avP3 и VCAM-1 в 2D-культуре под действием TNF и VEGF как в ранних культурах (24 ч инкубации), так и в «старых» (72-96 ч инкубации). Кроме того, изучали динамику изменения экспрессии поверхностных молекул под действием факторов. Изменения экспрессии интегрина avP3 и VCAM-1 не наблюдали (данные не приведены). VEGF также не оказывал стимулирующего действия ни на одну из молекул адгезии. Соответственно в дальнейшем изучали эффект TNF. Установлено, что наиболее эффективно TNF действует на ранние культуры (18-24 ч), причем быстро и с максимумом через 2-10 ч после добавления TNF с последующим снижением до значений в контроле через 24-36 ч. Показано, что через 5 ч после добавления TNF экспрессия ICAM-1 на ранних культурах увеличивается в 13 раз, а экспрессия VEGFR-2 практически не меняется (рис. 2, табл. 2). На рис. 2 приведены полученные методом конфокальной микроскопии микрофотографии 2D-культур, окрашенных антителами к ICAM-1 и VEGFR-2 (рис. 2В,Е), показывающие характерную мембранную локализацию этих молекул.

Рис. 2. Анализ экспрессии ICAM-1 и VEGFR-2 на клетках линии Ea.hy926 под действием TNF и VEGFA методами конфокальной микроскопии и проточной цитометрии

А, Б, Г, Д - по оси абсцисс отложена средняя интенсивность флуоресценции, по оси ординат количество событий. Клетки Ea.hy926 выращивали в 2D-условиях до достижения монослоя, в течение последних 5 ч культивирования добавляли 25 нг/мл TNF (А и Г) или 25 нг/мл VEGF (Б и Д). Экспрессия клетками определенных белков отображается в виде пиков флуоресценции антител, связанных с белками. Пик, обозначенный сплошным серым цветом, - неокрашенные клетки; клетки со вторичными антителами - серая линия (отрицательный контроль); неактивированные клетки, окрашенные специфическими антителами, - красная линия; клетки, окрашенные специфическими антителами, после стимуляции факторами - фиолетовая линия. В и Е - репрезентативные конфокальные изображения клеток, окрашенных антителами к ICAM-1 (В, красный) и VEGFR-2 (Е, красный). Ядра клеток окрашены Hoechst 33342 (синий). Длина мерного отрезка - 5-8 мкм

Таблица 2. Влияние TNF и VEGF на экспрессию ICAM-1 и VEGFR-2 на клетках Ea.hy926 в 2D- и 3D-культурах

Культура

Экспрессия

Контроль

TNF

р

VEGF

р

2D

ICAM-1

49 ± 11

862 ± 148*

< 0.001

57 ± 14

> 0.05

3D

ICAM-1

70 ± 15

630 ± 93

< 0.001

63 ± 14

> 0.05

2D

VEGFR-2

59± 11

71 ± 18

> 0.05

67 ± 16

> 0.05

3D

VEGFR-2

32 ± 8**

35 ± 8**

>0.05

28 ± 7**

> 0.05

Данные приведены в относительных единицах флуоресценции.

*TNF и VEGF добавляли в концентрации 25 нг/мл в течение последних 5 ч инкубации. Экспрессию оценивали методом проточной цитометрии. Жирным шрифтом отмечен эффект статистически значимого повышения экспрессии под действием TNF по сравнению с контролем.

**Статистически значимое снижение экспрессии VEGFR-2 в 3D по сравнению с 2D.

Сравнительные данные по экспрессии ICAM-1 и VEGFR-2 под действием TNF и VEGF для 2D- и 3D-культур Ea.hy926 приведены на рис. 3. Показано, что в 3D-культурах формируется более гомогенный пул клеток. Так, в 2D-культурах 10-20% клеток не экспрессируют молекул адгезии (пик в зоне аутофлуоресценции), а в 3D-культурах это значение значительно меньше (0-5%). В отличие от ICAM-1 спонтанная экспрессия VEGFR-2 в 3D-культурах снижается в 2 раза, несмотря на отсутствие первого пика (табл. 2, рис. 3Г). Во всех 3D-культурах экспрессия VEGFR-2 была статистически значимо ниже, чем в 2D-условиях культивирования, что показывает роль контактных взаимодействий в экспрессии VEGFR-2 клетками Ea.hy926.

Экспрессия ICAM-1 как в 3D-, так и в 2D-куль- турах усиливалась под действием TNF, но повышение было менее выраженным, чем в 2D-культурах (в 7 и 11 раз соответственно). При этом появлялась негативная популяция, как и во всех 2D-культурах (рис. 3Б). VEGF не влиял на экспрессию молекул адгезии в 3D-культурах.

В целом влияние различных факторов на уровень экспрессии молекул адгезии в 3D-культурах было незначительным по сравнению с влиянием на 2D-культуры.

Рис. 3. Сравнение экспрессии ICAM-1 и VEGFR-2 на клетках линии Ea.hy926, культивируемых в 2D- и 3D-условиях, под действием TNF и VEGFA методом проточной цитометрии. По оси абсцисс отложена средняя интенсивность флуоресценции, по оси ординат - количество событий. Клетки Ea.hy926 выращивали в 2D- или 3D-условиях в течение 3 сут и окрашивали антителами к ICAM-1 (А--В) или VeGfR-2 (г--Е). В культуры добавляли в течение последних 5 ч 25 нг/ мл TNF (Б, Д) или 25 нг/мл VEGF (В, Е). Сплошным серым цветом показан пик аутофлуоресценции неокрашенных клеток, красной линией - 2D-культуры, окрашенные специфическими антителами, фиолетовой - 3D-культуры, окрашенные таким же образом

Продукция цитокинов клетками Ea.hy926 в 2D- и SD-культурах

Один из показателей активации эндотелиальных клеток - продукция ими гуморальных факторов: цитокинов, хемокинов, ростовых факторов. Поскольку изменения уровня экспрессии молекул адгезии под действием VEGF не было обнаружено, продукцию цитокинов в 2D- и 3D-культурах анализировали только в присутствии TNF. Определяли продукцию 11 факторов, включая IL-2, -4, -6, -8, -10, GM-CSF, IFN-y, трансформирующие факторы роста бета (TGF-P) 1-3 и хемокин IP-10. Обнаружено, что в отсутствие TNF клетки Ea.hy926 продуцировали существенное количество только IL-8 (13.4 нг/мл) и TGF-P1 (7.5 нг/мл), причем продукция в 3D-культурах была значимо выше (в 2-3 раза) (рис. 4А,Б). Под действием TNF продукция IL-8 в 2D-культурах (19 нг/мл) возрастала до спонтанного уровня в 3D-культурах (22 нг/мл) и не изменялась в самих 3D-культурах (рис. 4В,Г). Обработка TNF приводила к продукции цитокинов, сравнимой в 2D и 3D-культурах, которая убывала в ряду IL-6 > IL-10 > IL-2 > IFN-y > IL-4 (рис. 4В,Г). Отношение спонтанной и индуцированной TNF продукции 3D/2D приведено на рис. 4Д,Е. Спонтанные 3D-культуры продуцировали статистически значимо больше (в 2-5 раз) IL-8, IL-6, IL-10, TGF-P 1-3, IP-10, при этом в них практически отсутствовали (ниже порога чувствительности метода в 2D-культурах) IL-2, IL-4, IFN-y, GM-CSF (рис. 4Д). В TNF-стимулированных культурах основное различие заключалось в продукции GM-CSF и IL-10 (рис. 4Е). Секреция IL-10 3D-культурами увеличилась в 11 раз, GM-CSF в 4.7 раза, IL-6 в 1.6 раза по сравнению с 2D-культурами. В то же время в 3D-культурах уменьшилась секреция IL-4 в 2 раза, IFN-y в 1.4 раза, TGF-P2 и TGF-P3 в 1.6 раза по сравнению с 2D-культурами (рис. 4Е).

Рис. 4. Продукция гуморальных факторов клетками Ea.hy926, культивируемых в 2D- и 3D-условиях. Клетки Ea.hy926 культивировали в 24-луночных планшетах до достижения адгезии или на антиадгезивной подложке для формирования 3D-культур, после этого в среду добавляли 25 нг/мл TNF. Супернатанты собирали через 24 и 48 ч после добавления TNF. Продукция растворимых факторов в 2D- (А и В) или в 3D- (Б и Г) культурах без активации (А и Б) и после активации TNF (В и Г). Отношение концентрации факторов в культурах 3D/2D без стимуляции (Д), после добавления TNF (Б). Концентрацию определяли методом проточной цитометрии с использованием микрочастиц по протоколу производителя (BioRad) с использованием калибровочных кривых

Сравнение синтеза мРНК и белков клетками Ea.hy926 в 2D- и SD-культурах

Анализ ранних событий в культурах Ea.hy926 после активации TNF оценивали по экспрессии генов ICAM-1, VEGFR-2, GM-CSF и IL-6 с помощью кПЦР. Данные по кПЦР нормированы по экспрессии мРНК актина и приведены в виде значений относительной экспрессии генов (ОЭГ), которая подсчитана по формуле ОЭГ = 2-ddCt [40]. Использование этого метода позволяет оценить, во сколько раз изменилось количество копий гена в 2D- и 3D-культурах, активированных TNF, по сравнению с контролем (рис. 5А). Можно также сравнить экспрессию гена в 3D- и 2D-условиях в присутствии TNF и без него (рис. 5В). На рис. 5 приведены результаты сравнения экспрессии VEGFR-2 и ICAM-1 в культурах

Рис. 5. Анализ экспрессии VEGFR-2 и ICAM-1 в культурах клеток Ea.hy926 без добавления и после добавления TNF методами кПЦР и проточной цитометрии. Клетки Ea.hy926 выращивали в 2D- (А и Б) и 3D- (В и Г) условиях в течение 18 ч для формирования монослоя или сфероидов, после чего добавляли 25 нг/мл TNF. Через 5 ч часть культур использовали для получения мРНК, синтеза кДНК и кПЦР (А и В).

Параллельные культуры инкубировали в течение 36 ч и анализировали методом проточной цитометрии после окрашивания антителами к VEGFR-2 и ICAM-1 (Б и Г). Статистически значимая разница (< 0.05) обозначена планками. Данные представлены в виде относительной экспрессии генов (ОЭГ) (А и В). ОЭГ подсчитывали по формуле ОЭГ=2-с|с|а [40], где сравнивали 2D-культуры с TNF против контроля без TNF и 3D-культуры с TNF против контроля без TNF (А). Таким же образом сравнивали 3D с 2D в присутствии TNF и без него (В). Цитометрические данные представлены как отношение MFI в культуре с TNF к контролю без TNF (Б) или в 3D-культуре к 2D-культуре (Г) клеток Ea.hy926 без стимуляции и после стимуляции TNF в течение 5 ч методами кПЦР (рис. 5А,В) и проточной цитометрии (рис. 5Б,Г). Под действием TNF значительно повышался синтез мРНК ICAM-1 как в 2D-, так и в 3D-культурах (рис. 5А), что коррелировало с данными проточной цитометрии (рис. 5Б). Эффект TNF был ниже в 3D-культурах. Что касается экспрессии VEGFR-2, то по данным кПЦР она усиливалась, незначительно, но достоверно (рис. 5В), при этом уровень белка, оцененный цитометрическим методом, не менялся. Различие данных может быть связано с неоптимальными условиями проведения кПЦР (различная длина праймеров, табл. 1). В любом случае влияние TNF на экспрессию гена ICAM-1 было существенно большим, чем на VEGFR-2.

Аналогичным образом анализировали экспрессию генов GM-CSF и IL-6. РНК выделяли через 5 ч после добавления TNF. Для анализа синтеза белков использовали параллельные культуры, надосадок собирали через 30 ч после активации TNF.

На рис. 6 приведены результаты определения уровня спонтанного и TNF-индуцированного синтеза мРНК и продукции белков GM-CSF и IL-6. Под действием TNF усиливался как синтез мРНК, так и продукция обоих белков. Стимуляция GM-CSF была более выражена в 3D-, а IL-6 - в 2D-культурах (рис. 6А,Б). Сравнение эффективности синтеза мРНК и белков в 2D- и 3D-культурах не выявило различий в уровне экспрессии генов (рис. 6В). Спонтанная продукция GM-CSF была одинаковой в 2D- и 3D-условиях, тогда как в 3D-культурах продукция IL-6 была значительно выше. При стимуляции TNF различия снижались, и в 3D-культурах наблюдалась большая продукция как GM-CSF, так и IL-6 (рис. 6Г).

Рис. 6. Анализ продукции GM-CSF и IL-6 в культурах клеток Ea.hy926 без добавления и после добавления TNF методами кПЦР и проточной цитометрии. Культивирование и анализ результатов такие же, как в рис. 5

ЗАКЛЮЧЕНИЕ

Нами впервые показано, что культивирование клеток эндотелиального типа Ea.hy926 возможно в статичных условиях на антиадгезивной подложке. В спонтанных культурах Ea.hy926 в 3D-условиях продукция как провоспалительных, так и противовоспалительных факторов повышена по сравнению с 2D-условиями, что позволяет проводить более детальный анализ при тестировании новых терапевтических агентов. Активация TNF сходным образом влияет на клетки Ea.hy926, культивируемые в 2D- или 3D-условиях, за исключением усиления в 4-5 раз продукции GM-CSF и IL-10 в 3D-культурах. Наиболее характерными маркерами клеток Ea.hy926 являются молекула адгезии ICAM-1 и растворимые факторы IL-6, IL-8, TGF-P1, IL-10. 3D-культуры удобны для манипуляций, их можно переносить в новые планшеты, например 96-луночные, что позволяет изучать панель препаратов в разных разведениях. Для анализа методом конфокальной микроскопии не требуется выращивания клеток на предметных стеклах. Все это делает 3D-культуру клеток Еа^у926 удобной для скрининга новых противовоспалительных и ангиостатических препаратов. *

СПИСОК ЛИТЕРАТУРЫ

1. Astrakhantseva I.V., Efimov G.A., Drutskaya M.S., Kruglov A.A., Nedospasov S.A. // Biochemistry. 2014. V. 79. № 12.P. 1308-1321.

2. Petrovskaya L.E., Shingarova L.N., Kryukova E.A.,

Boldyreva E.F., Yakimov S.A., Guryanova S.V., Novoseletsky V.N., Dolgikh D.A., Kirpichnikov M.P. // Biochemistry. 2012.V. 77. № 1. P. 79-89.

3. Arjamaa O., Aaltonen V., Piippo N., Csont T., Petrovski G., Kaarniranta K., Kauppinen A. // Graefe's Arch. Clin. Exp. Ophthalmol. 2017. Doi: 10.1007/s00417-017-3711-0

4. Song H., Kim Y., Cho H., Kim S., Kang M., Kim J., Min H., Kang J., Yoon J., Kim C. // Am. J. Respir. Cell Mol. Biol. 2017. Doi: 10.1165/rcmb.2016-00800C

5. Bauer K., Mierke C., Behrens J. // Int. J. Cancer. 2007. V. 121. № 9. P. 1910-1918.

6. Pober J.S., Sessa W.C. // Nat. Rev. Immunol. 2007. V. 7.P. 803-815.

7. Bouis D., Hospers G.A., Meijer C., Molema G., Mulder N.H. // Angiogenesis. 2001. V. 4. № 2. P. 91-102.

8. Cervenak L., Morbidelli L., Donati D., Donnini S., Kambayashi T., Wilson J.L., Axelson H., Castanos-Velez E., Ljunggren H.G., Malefyt R.D. // Blood. 2000. V. 96. № 7. P. 2568-2573.

9. Meager A. // Cytokine Growth Factor Rev. 1999. V. 10. № 1.P. 27-39.

10. Galley H.F., Blaylock M.G., Dubbels A.M., Webster N.R. // Cell Biol. Internat. 2000. V. 24. № 2. P. 91-99.

11. Melder R.J., Koenig G.C., Witwer B.P., Safabakhsh N., Munn L.L., Jain R.K. // Nat. Med. 1996. V. 2. № 9. P. 992-997.

12. Madri J.A., Graesser D., Haas T. // Biochem. Cell Biol. 1996. V. 74. № 6. P. 749-757.

13. Moens S., Goveia J., Stapor P., Cantelmo A., Carmeliet P. // Cytokine Growth Factor Rev. 2014. V. 25. № 4. P. 473-482.

14. Komaki Y., Yamada A., Komaki F., Kudaravalli P., Micic D., Ido A., Sakuraba A. // J. Autoimmunity. 2017. V. 79. P. 4-16.

15. Bergqvist V., Hertervig E., Gedeon P., Kopljar M., Griph H., Kinhult S., Carneiro A., Marsal J. // Cancer Immunol. Immunotherapy. 2017. V. 66. № 5. P. 581-592.

16. Manegold C., Vansteenkiste J., Cardenal F., Schuette W., Woll P., Ulsperger E., Kerber A., Eckmayr J., von Pawel J. // Invest. New Drugs. 2013. V. 31. № 1. P. 175-182.

17. Hersey P., Sosman J., O'Day S., Richards J., Bedikian A., Gonzalez R., Sharfman W., Weber R., Logan T., Buzoianu M., et al. // Cancer. 2010. V. 116. № 6. P. 1526-1534.

18. Liu Y., Goswami R., Liu C., Sinha S. // Mol. Pharm. 2015. V. 12. № 7. P. 2544-2550.

19. Deyev S., Lebedenko E., Petrovskaya L., Dolgikh D., Gabibov A., Kirpichnikov M. // Russ. Chem. Rev. 2015. V. 84. № 1. P. 1-26.

20. Gebauer M., Skerra A. // Curr. Opin. Chem. Biol. 2009. V. 13. № 3. P. 245-255.

21. Oost B.A., Edgell C.-J.S., Hay C.W., MacGillivray R.T.-A. // Biochem. Cell. Biol. 1986. V. 64. № 7. P. 699-705.

22. Edgell C.-J., McDonald C.C., Graham J.B. // Cell Biology. 1983. V. 80. № 12. P. 3734-3737.

23. Bauer J., Marcolis M., Schreiner C., Edgell C.-J., Azizkhan J., Lazarowski E., Juliano R.L. // J. Cell. Physiol. 1992. V. 153. № 3. P. 437-449.

24. Heiss M., Hellstrom M., Kalen M., May T., Weber H., Hecker M., Augustin H., Korff T. // FASEB J. 2015. V. 29. № 7. P. 3076-3084.

25. Щегловитова О.Н., Склянкина Н.Н., Болдырева Н.В., Баба- янц А.А., Фролова И.С., Капкаева М.Р. // Вест. РАМН. 2014. V. 3. № 4. P. 31-35.

26. Riesbeck K., Billstrцm A., Tordsson J., Brodin T., Kristensson K., Dohlsten M. // Clin. Diagn. Lab. Immunol. 1998. V. 5. № 5. P. 675-682.

27. Chao C., Lii C., Tsai I., Li C., Liu K., Tsai C., Chen H. // J. Agric. Food Chem. 2011. V. 59. P. 5263-5271.

28. Hirschhaeuser F., Menne H., Dittfeld C., West J., Mueller- Klieser W., Kunz-Schughart L. // J. Biotechnol. 2010. V. 148. P. 3-15.

29. Fennema E., Rivron N., Rouwkema J., Blitterswijk C., Boer J. // Trends Biotechnol. 2013. V. 31. № 2. P. 108-115.

30. Page H., Flood P., Reynaud E.G. // Cell Tissue Res. 2013. V. 352. P. 123-131.

31. Breslin S., O'Driscoll L. // Drug Discovery Today. 2013. V. 18. № 5-6. P. 240-249.

32. Ma X., Sickmann A., Pietsch J., Wildgruber R., Weber G., Infanger M., Bauer J., Grimm D. // Proteomics. 2014. V. 14. № 6. P. 689-698.

33. Ma X., Wehland M., Schulz H., Saar K., Hьbner N., Infanger M., Bauer J., Grimm D. // PLoS One. 2013. V. 8. № 5. P. 1-10.

34. Sokolovskaya A.A., Ignashkova T.I., Bochenkova A.V., Moskovtsev A.A., Baranov V.M., Kubatiev A.A. // Acta Astronautica. 2014. V. 99. P. 16-23.

35. Grimm D., Bauer J., Ulbrich C., Westphal K., Wehland M., Infanger M., Aleshcheva G., Pietsch J., Ghardi M., Beck M., et al. // Tissue Engineering: Part A. 2010. V. 16. № 5. P. 1559-1573.

36. Unger R.E., Krump-Konvalinkova V., Peters K., Kirkpatrick C.J. // Microvascular Res. 2002. V. 64. P. 384-397.

37. Kim J.B. // Semin. Cancer Biol. 2005. V. 15. № 5. P. 365-377.

38. Griffoni C., Di Molfetta S., Fantozzi L., Zanetti C., Pippia P., Tomasi V., Spisni E. // J. Cell Biochem. 2011. V. 112. № 1.P. 265-272.

39. Sanchez-Bustamante C., Kelm J-M., Mitta B., Fussenegger M. // Biotechnol. Bioeng. 2006. V. 93. № 1. P. 169-180.

40. Livak K.J., Schmittgen T.D. // Methods. 2001. V. 25. № 4.P. 402-408.

Размещено на Allbest.ru

...

Подобные документы

  • Клетка как единая система сопряженных функциональных единиц. Гомологичность клеток. Размножение прокариотических и эукариотических клеток. Роль отдельных клеток во многоклеточном организме. Разнообразие клеток в пределах одного многоклеточного организма.

    реферат [28,6 K], добавлен 28.06.2009

  • Роль стромы и микроокружения кроветворных органов в образовании и развитии клеток крови. Теории кроветворения, постоянство состава клеток крови и костного мозга. Морфологическая и функциональная характеристика клеток различных классов схемы кроветворения.

    реферат [1,1 M], добавлен 07.05.2012

  • Основные функции бокаловидных клеток как клеток эпителия слизистой оболочки кишечника и других органов позвоночных животных и человека. Форма клеток и особенности их локализации. Секрет бокаловидных клеток. Участие бокаловидных клеток в секреции слизи.

    реферат [2,9 M], добавлен 23.12.2013

  • Основные разновидности живых клеток и особенности их строения. Общий план строения эукариотических и прокариотических клеток. Особенности строения растительной и грибной клеток. Сравнительная таблица строения клеток растений, животных, грибов и бактерий.

    реферат [5,5 M], добавлен 01.12.2016

  • Риккетсии — облигатные внутриклеточные паразиты, размножающиеся в цитоплазме эндотелиальных клеток, их жизненный цикл. Нормальное развитие хламидий. Морфология микоплазм - мельчайших частиц, являющихся самыми мелкими самореплицирующими прокариотами.

    презентация [630,2 K], добавлен 22.05.2015

  • Химический состав клеток, функции внутриклеточных структур, функции клеток в организме животных и растений, размножение и развитие клеток, приспособления клеток к условиям окружающей среды. Положения клеточной теории по М. Шлейдену и Т. Шванну.

    презентация [1,3 M], добавлен 17.12.2013

  • Достижения в области изучения стволовых клеток. Виды стволовых клеток, особенности их функционирования. Эмбриональные и гемопоэтические стволовые клетки. Стволовые клетки взрослого организма. Биоэтика использования эмбриональных стволовых клеток.

    презентация [908,9 K], добавлен 22.12.2012

  • Процесс созревания половых клеток. Жизненный цикл ряда простейших, водорослей, споровых, голосеменных растений и многоклеточных животных. Развитие мужских половых клеток, происходящее под регулирующим воздействием гормонов. Сперматогенез у человека.

    презентация [1,3 M], добавлен 01.04.2013

  • Исследование основных этапов развития клеточной теории. Анализ химического состава, строения, функций и эволюции клеток. История изучения клетки, открытие ядра, изобретение микроскопа. Характеристика форм клеток одноклеточных и многоклеточных организмов.

    презентация [1,4 M], добавлен 19.10.2013

  • Морфологическая разнообразность лимфоцитов, экспрессирование ими особых у каждой субпопуляции поверхностных маркеров. Различие Т-клеток по своим антигенраспознающим рецепторам. Дифференцировка В-клеток, активация Т и В-клеток, вызывающая синтез маркеров.

    реферат [17,0 K], добавлен 26.09.2009

  • Строение и функции оболочки клетки. Химический состав клетки. Содержание химических элементов. Биология опухолевой клетки. Клонирование клеток животных. А была ли Долли? Клонирование - ключ к вечной молодости? Культивирование клеток растений.

    реферат [27,3 K], добавлен 16.01.2005

  • Методика и задачи проведения урока биологии на тему: "Строение клеток", а также формы работы с учащимися. Сравнительная характеристика прокариотических и эукариотических клеток. Структура, назначение и функции основных органоидов клеток живых организмов.

    конспект урока [34,4 K], добавлен 16.02.2010

  • Значение роста и развития клеток. Жизненный и митотический циклы клеток. Продолжительность жизни разных типов клеток в многоклеточном организме. Рассмотрение митоза как универсального способа размножения, сохраняющего постоянство числа хромосом в клетках.

    презентация [4,1 M], добавлен 05.12.2014

  • Метод пульс-электрофореза для разделения ДНК индивидуальных хромосом. Выделение ДНК из клеток, лишенных клеточной стенки и измерение конечной концентрации ДНК. Выделение ДНК из культивируемых клеток: лимфоцитов, прокариот, грибов и растительных клеток.

    контрольная работа [576,0 K], добавлен 11.08.2009

  • Изучение принципа действия биопринтера, способного из клеток создавать любой орган, нанося клетки слой за слоем. Анализ технологии выращивания искусственных органов на основе стволовых клеток. Исследование механизма быстрого самообновления клеток крови.

    реферат [1,8 M], добавлен 25.06.2011

  • Сущность и сравнительная характеристика прокариотов и эукариотов. Понятие и структура вирусов, механизм их жизнедеятельности и оценка влияния на организм. Строение бактерий и их разновидности. Отличительные свойства животных и растительных клеток.

    презентация [2,1 M], добавлен 12.02.2017

  • Этапы эволюции первейших земных организмов, их свойства и порядок деления клеток. Дискретные модели циклов жизни. Индивидуальное развитие клеток прокариотов и его этапы. Рекуррентная модель старения Маккендрика фон Фёрстера, процессы отбора в ней.

    реферат [1,5 M], добавлен 30.08.2009

  • Наука о клетках - структурных и функциональных единицах почти всех живых организмов. Создание клеточной теории. Открытие протоплазмы, основные свойства живых клеток. Развитие новых методов в цитологии. Законы генетической непрерывности и наследственности.

    реферат [20,2 K], добавлен 04.06.2010

  • Влияние рН на биологические процессы. Подходы к биохимическому исследованию. Изотонические солевые растворы. Стадии фракционирования клеток. Перфузия изолированных органов. Культуры тканей и клеток. Зависимость ионизации аминокислот и белков от рН.

    реферат [1,6 M], добавлен 26.07.2009

  • Основные способы заражения куриных эмбрионов вирусом. Этапы получения субкультур: снятие клеточного слоя, отделение и посев клеток, методика заражения клеточных культур вирусом, учет результатов. Полуперевиваемые культуры клеток человека и животных.

    презентация [4,2 M], добавлен 29.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.