Разнообразие жизни на Земле. Вирусы и бактерии
Систематика как наука о разнообразии организмов. Выявление, описание, классификация и группирование организмов в систему. Общая характеристика вирусов и их значение в природе. Проникновение вирусной НК в клетку и выход образовавшихся вирионов в среду.
Рубрика | Биология и естествознание |
Вид | лекция |
Язык | русский |
Дата добавления | 25.08.2020 |
Размер файла | 949,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Лекция
Разнообразие жизни на Земле. Вирусы и бактерии
1. Систематика как наука о разнообразии организмов
Считается, что на Земле сейчас существует около 2,5 млн. видов организмов (по некоторым источникам не менее 10 млн.) и около 500 млн. видов вымерло в предшествующие геологические эпохи.
Познание многообразия живого было и остается одной из основных задач биологии и, в частности, систематики - биологической науки, изучающей разнообразие всех существующих и вымерших организмов.
Основными разделами систематики являются таксономия (классификация организмов), номенклатура (совокупность существующих названий групп организмов) и филогенетика (установление родства и хода исторического развития организмов).
В задачи современной систематики входит выявление, описание, классификация и группирование организмов в систему. Конечной целью систематических исследований является создание такой системы всех организмов или отдельных их групп, которая содержала бы максимум возможной биологической информации. Чем информативнее система, тем полезнее она в научном и практическом отношении.
Известно большое число систем живущих и ископаемых организмов и отдельных их групп. Первые системы появились еще в IV в. до н.э. (впервые - Аристотель, Теофраст).
В зависимости от принципов, на которых строятся системы организмов, выделяют искусственные, естественные и генеалогические системы.
Искусственная биологическая система строится на основе какого-либо одного или немногих морфологических признаков. Как правило, такие системы не отражают сущности объектов классификации. Они несут незначительную биологическую информацию и предназначены в основном для удобного «сортирования» объектов.
В ботанике господство искусственных систем продолжалось с IV в. до н.э. до середины XVIII века. Авторы: А. Чезальпино, Джон Рей, Ж. Турнефор и др. Известнейшая искусственная система принадлежит шведскому естествоиспытателю Карлу Линнею (1735), основанная на строении половых органов - тычинок и пестиков (выделил 24 класса, описал 1500 новых растений; позже в 1753 г. в работе «Виды растений» К. Линней описал более 10 000 видов).
В отличие от искусственных систем в естественных системах при классификации учитываются сходство и различие организмов по многим признакам. Поэтому естественные системы несут большую биологическую информацию. Положение в такой системе группы организмов (таксона) определяет ее основные свойства. Иначе говоря, зная положение объекта в системе, возможно еще до его изучения предсказать некоторые его свойства и особенности.
Первые естественные системы появились в конце XVIII века (система А. Жюссье, позже О.П. Декандоля), но в отличие от искусственных продолжают создаваться и используются, хотя и уступили первенство генеалогическим. Антуан Жюссье (1789) в своей естественной системе описал 20000 видов растений и распределил их в 100 порядков (соответствующих современным семействам), выделенных по совокупности основных признаков (цветок, плод, семя).
Генеалогические системы (эволюционные, филогенетические) помимо сходства и различий морфолого-анатомических и физиологических признаков, отражают и филогению, т.е. историческое родство организмов.
Генеалогические системы появились в конце XIX века. Например, системы цветковых растений А. Энглера, Дж. Хатчинсона, А.Л. Тахтаджяна.
В любых классификациях (системах) все организмы относятся к определенным таксономическим категориям и таксонам.
Под таксономическими категориями в систематике подразумевают определенные ранги или уровни в классификации организмов. Согласно правилам ботанической номенклатуры основными таксономическими категориями считаются вид, род, семейство, порядок, класс, отдел, царство.
Основной структурной единицей в системе живых организмов является вид.
Вид - это исторически сложившаяся совокупность популяций, особи которых сходны по морфологическим, физиологическим и биохимическим особенностям, способны свободно скрещиваться и давать плодовитое потомство, приспособлены к определенным условиям жизни и занимают в природе определенную территорию - ареал.
В отличие от абстрактных таксономических категорий таксоны являются реально существующие или существовавшие группы организмов, которые в процессе классификации отнесены к определенным таксономическим категориям.
Например, ранги рода или вида являются таксономическими категориями, а род крапива (Urtica) и вид крапива двудомная (Urtica dioica) - два конкретных таксона. Первый таксой охватывает все существующие виды рода крапива, второй - все особи, относимые к виду крапива двудомная.
Для видов организмов приняты биноминальные названия, состоящие из двух латинских слов. Первое обозначает род, к которому относится данный вид, второе - видовой эпитет.
Например одуванчик лекарственный - Таrаxасum officinale, ландыш майский - Convallaria majalis.
Принятое в ботанике правило давать видам двойные названия известно как бинарная номенклатура (введена в обиход в 1753 г. К. Линнеем).
2. Общая характеристика вирусов и их значение в природе
Вирусы (лат. virus - яд) - субмикроскопические неклеточные организмы, способные размножаться только внутри живых клеток (облигатные паразиты). Они относятся к отдельному царству живых организмов - Царство Вирусы.
Вирусы открыты русским ботаником Д.И. Ивановским (1864-1920 гг.) в 1892 году при исследовании мозаичной болезни листьев табака. Термин «вирус» был впервые предложен в 1898 г. голландским ученым М. Бейеринком (1851-1931 гг.).
В настоящее время известно около 3000 различных видов вирусов.
Размеры вирусов колеблются от 15 до 350 нм (длина некоторых нитевидных достигает 3000 нм; 1 нм = 1·10-9м), т.е. большинство из них не видны в световой микроскоп (субмикроскопические) и их изучение стало возможным только после изобретения электронного микроскопа.
В отличие от всех остальных организмов вирусы не имеют клеточного строения!
Зрелая вирусная частица (т.е. внеклеточная, покоящаяся - вирион) устроена очень просто: она состоит из одной или нескольких молекул нуклеиновых кислот, составляющих сердцевину вируса, и белковой оболочки (капсид) - это так называемые простые вирусы.
Сложные вирусы (например, герпеса или гриппа) кроме, белков капсида и нуклеиновой кислоты содержат дополнительную липопротеидную мембрану (оболочку, суперкапсид образуемый из плазматической мембраны клетки хозяина), различные углеводы и ферменты (рис. 1).
Ферменты способствуют проникновению вирусной НК в клетку и выходу образовавшихся вирионов в среду (нейраминидаза миксовирусов, АТФ-аза и лизоцим некоторых фагов и др.), а также участвуют в процессах транскрипции и репликации вирусной НК (различные транскриптазы и репликазы).
Белковая оболочка защищает нуклеиновую кислоту от различных физических и химических воздействий, а также препятствует проникновению к ней клеточных ферментов, предотвращая тем самым ее расщепление (защитная функция). Также, в составе капсида имеется рецептор, комплементарный рецептору заражаемой клетки - вирусы поражают строго определенный круг хозяев (определительная функция).
Вирионы многих вирусов растений и ряда фагов имеют спиральный капсид, в котором белковые субъединицы (капсомеры) уложены по спирали вокруг оси. Например, ВТМ (вирус табачной мозаики) имеет форму палочек диаметром 15-17 нм и длиной до 300 нм (рис. 2). Внутри его капсида имеется полый канал диаметром 4 нм. Генетическим материалом ВТМ является одноцепочечная РНК, плотно уложенная в желобке спирального капсида. Для вирионов со спиральным капсидом характерно высокое содержание белка (90 - 98%) по отношению к нуклеиновой кислоте.
Капсиды вирионов многих вирусов (например, аденовирус, вирус герпеса, вирус желтой мозаики турнепса - ВЖМТ) имеют форму симметричного многогранника, чаще всего икосаэдра (многогранник с 12 вершинами, 20 треугольными гранями и 30 ребрами). Такие капсиды называют изометрическими (рис. 3). В таких вирионах содержание белка составляет около 50% по отношению к НК.
В вирусе присутствует всегда один тип нуклеиновой кислоты (либо ДНК, либо РНК), поэтому все вирусы делят на ДНК-содержащие и РНК-содержащие. Молекулы нуклеиновой кислоты в вирионе могут быть линейными (РНК, ДНК) или иметь форму кольца (ДНК). Причем эти нуклеиновые кислоты могут состоять из одной цепочки или из двух. Вирусная НК имеет от 3 до 200 генов.
ДНК-содержащие вирусы (роды) - поксвирус, иридовирус, герпесвирус, аденовирус и др. РНК-содержащие вирусы - парамиксовирус, ортомиксовирус, коронавирус, аренавирус, лейковирус, рабдовирус и др.
Нуклеиновая кислота вируса совмещает в себе функции обеих кислот (ДНК и РНК) - это хранение и передача наследственной информации, а также управление синтезом белков.
В отличие от вирусов все клеточные организмы содержат оба типа нуклеиновых кислот.
Более сложное строение имеют вирусы бактерий - бактериофаги (рис. 4). Они состоят из головки и хвоста (стержня и чехла, базальной пластинки и нитей отростка). Длинная молекула НК (РНК или ДНК) сложена в виде спирали внутри головки бактериофага (белковой оболочки).
К вирусам относятся также и вироиды - инфекционные агенты, представляющие собой низкомолекулярные (короткие) одноцепочечные кольцевые РНК, не кодирующие собственные белки (лишены капсида). Являются возбудителями ряда заболеваний.
Как уже было сказано выше, вне живой клетки вирусы размножаться не могут. Вирус попадает в клетку, либо впрыскивая в нее свою нуклеиновую кислоту оставляя при этом белковую оболочку снаружи клетки (как это делают бактериофаги), либо при фагоцитозе (пиноцитозе) вместе с белковой оболочкой (вирусы животных), либо через нарушенную клеточную оболочку (вирусы растений).
Вирусы растений распространяются, как правило, с помощью насекомых и нематод (круглые черви). Сосущие насекомые (например, цикады) переносят вирусы вместе с соком, который они высасывают из клеток флоэмы или эпидермиса. Также вирусы могут передаваться потомству через семена и споры.
Вирусные РНК или ДНК, попав в клетку-хозяина, начинают самовоспроизводиться (удваиваться). Вирус инактивирует ДНК хозяина, а ферменты совсем расщепляют ее. Затем по программе и-РНК вируса на рибосомах клетки синтезируются специфические вирусные белки, после чего осуществляется процесс самосборки новых вирусных частиц (нуклеиновые кислоты одеваются белковой оболочкой). Таким образом, вирус становится внутриклеточным паразитом на генетическом уровне. После размножения новое поколение вирионов (до 1000) выходит из клетки, разрушая ее (иногда не разрушая) и заражает другие (здоровые) клетки. Вирусная ДНК может также встраиваться в геном клетки-хозяина и размножаться дальше как составная часть хромосомы.
Ученые считают, что вирусы возникли около 3 млрд. лет назад из нуклеиновых кислот организмов (прокариотов) в результате выделения из генома свободных фрагментов, которые приобрели способность синтезировать белковую оболочку и делится (удваиваться, реплицироваться) внутри клеток. Высказывается мнение, что новые типы вирусов и сейчас образуются из генома бактерий и эукариот (ядра, пластид, митохондрий).
В природе вирусы имеют большое значение, так как они распространены повсеместно и поражают все группы живых организмов, часто вызывая различные заболевания.
Известно более 1000 заболеваний растений, вызванных вирусами (РНК-содержащие). Наиболее распространены различные некрозы (участки мертвой ткани), мозаики (пятна, крапинки, полосы на органах растений), при которых повреждаются ткани паренхимы, уменьшается количество хлоропластов, разрушается флоэма и т.д.; наблюдается морщинистость или карликовость листьев. Вирусы вызывают задержку роста растений, что приводит к снижению урожаев.
ВЖМТ - вирус желтой мозаики турнепса, ВТМ - вирус табачной мозаики, ВККТ -вирус карликовой кустистости томатов.
Появление полосок на цветках некоторых сортов тюльпанов (пестрые) также обусловлено вирусом, а ведь цветоводы продают эти тюльпаны, выдавая их за особый сорт.
У животных вирусы (ДНК- и РНК-содержащие) вызывают такие заболевания, как: ящур (у крупного рогатого скота), бешенство (у собак, лисиц, волков), миксоматоз (у крыс), саркома, лейкоз и чума (у кур) и т.д. Очень часто заражаются этими болезнями и люди (при контактах с зараженными животными).
У человека вирусы вызывают такие заболевания, как: оспа (вирус натуральной оспы), свинка (парамиксовирус), грипп (миксовирус), респираторные заболевания (ОРЗ; риновирусы РНК-), инфекционный гепатит, полиомиелит (детский паралич; пикорнавирус), бешенство, герпес, СПИД (вирус иммунодефицита человека - ВИЧ).
Грипп - единственное инфекционное заболевание, которое проявляется в виде периодических глобальных эпидемий, опасных для жизни человека. Инфекционные свойства вируса гриппа (поражает слизистые оболочки дыхательных путей), как и других вирусов, зависят от специфических белков вирусной оболочки, которые постоянно изменяются в результате рекомбинаций или мутаций. Поэтому новые штаммы вируса гриппа вызывают новые эпидемии, так как у человека не выработался пока к ним иммунитет.
Так, зимой 1968/69 г. в США было зарегистрировано 50 млн. случаев гонконгского гриппа, при этом 70000 человек погибло. Эпидемия 1918/19 г. охватила весь земной шар, проходила в виде трех волн и унесла 20 млн. человеческих жизней.
Вирусные заболевания с трудом поддаются лечению, поскольку вирусы не чувствительны к антибиотикам. К счастью, во многих случаях иммунная система ограничивает дальнейшее распространение инфекции.
Многочисленные вирусные заболевания человека и животных возможно предупредить путем иммунизации - проведения профилактических прививок, которые позволяют вырабатывать иммунитет против вирусов.
Человеком вирусы широко используются в микробиологических исследованиях (биотехнология, генная инженерия). Возможно использование вирусов для борьбы с вредителями сельскохозяйственных культур.
В США с хлопковой совкой эффективно борются с помощью вируса. Данный метод борьбы практически безвреден - вирус, как правило, видоспецифичен (т.е. поражает только определенный вид организма).
Также установлено, что, например, вирус некротической мозаики риса подавляет рост риса. А вот другие растения, например, джут (источник грубых волокон для мешков и канатов), лучше растут, когда поражены этим вирусом, чем в здоровом состоянии. Этот феномен ученые пока объяснить не могут.
Бактериофаги поражают бактерии (проникают внутрь и активно их разрушают), в том числе и болезнетворные. Поэтому возможно их использование для предупреждения и лечения многих инфекционных заболеваний, для борьбы с болезнетворными бактериями: чумой, брюшным тифом, холерой и др.
3. Общая характеристика бактерий и их значение в природе
Все бактерии принадлежат к н/ц Прокариоты.
В надцарство Прокариоты объединяются в основном микроскопические организмы, клетки которых не имеют ограниченного мембраной ядра (доядерные).
Прокариоты - первые организмы появившиеся на Земле (~3,8 млрд. л.н.).
К надцарству Прокариоты относится всего лишь одно царство - Дробянки, которое подразделяется на три подцарства: архебактерии (метанобразующие), эубактерии (настоящие бактерии) и оксифотобактерии (хлороксибактерии и цианобактерии). По другой классификации к надцарству Прокариоты относится 2 царства: Архебактерии и Еубактерии.
Бактерии - это самая распространенная группа живых организмов в природе. Они живут в почве, воде, пыли, воздухе (до 40 км), в продуктах питания, на других организмах, а также и внутри их.
В 1 г плодородной почвы может содержится от 0,2 до 2 и более млрд. бактерий; в 1 см3 парного молока - более 3 млрд.
Бактерии являются космополитами: одни и те же виды можно найти на всех материках, т.е. почти повсеместно; они приспособлены к самым разным экологическим условиям.
Их можно найти даже в горячих источниках (при t до +88°С). Известны бактерии, которые существуют при высоком давлении (на дне океана) при t выше +360°С (термофилы).
Аэробные бактерии Microccus radiodurans могут выдерживать радиоактивное облучение в 6,5 млн. рентген, что в 10 тыс. раз превышает дозу, смертельную для человека. Некоторые бактерии могут находиться даже в ядерных реакторах.
Бактерии - в основном микроскопические клеточные организмы, не имеющие оформленного ядра. Сейчас известно около 5000 видов бактерий, а по другим данным их более 3 млрд. видов.
Размеры и формы
Размеры клеток бактерий составляют в среднем 10 мкм (от 0,2 до 100 мкм; 1 мкм = 10-6м). Большинство бактерий представляют собой одноклеточные организмы, однако некоторые являются колониальными и даже «многоклеточными» (многие нитчатые цианобактерии). Большинство бактерий можно рассмотреть только под микроскопом (отсюда и название - микробы).
Бактерии открыты голландским ученым А. Левенгуком. В 1695 г. вышла в свет его книга «Тайны природы», в которой были впервые описаны микробы.
По форме клеток среди настоящих бактерий (эубактерий) выделяют несколько групп (рис. 5):
- кокки - имеют шарообразную форму (монококки - одиночные; диплококки - спаренные (пневмококк); стрептококки - соединенные в виде цепочки (Streptococcus thermophilus); сарцины - в виде плотных пачек; стафилококки - в виде виноградной грозди (Staphylococcus aureus));
- бациллы - палочковидные, вытянутые (Escherichia coli - кишечная палочка, Salmonella typhi - тифозная палочка) - самая многочисленная группа эубактерий;
- вибрионы - дугообразно изогнутые в виде запятой (Vibrio cholerae - вибрион холеры);
- спириллы - вытянутые, извитой формы в виде спирали (р. Спирилла).
Среди оксифотобактерий имеются также бактерии в виде многоклеточных нитей (Oscillatoria, Spirulina, Anabaena, Nostoc и др.).
Строение клетки. Бактериальные клетки имеют примитивное строение (рис. 6).
Снаружи бактериальная клетка ограничена оболочкой (клеточной стенкой). У большинства бактерий (эубактерии) основным структурным веществом оболочки является муреин (гликопептид), у некоторых (цианобактерии) оболочка содержит некоторое количество целлюлозы, муреина, но главный компонент - другие полисахариды и пектиновые вещества.
Оболочка придает клетке определенную форму и прочность (выдерживает внутреннее давление протопласта в гипотоническом растворе); обладает избирательной проницаемостью и антигенными свойствами (благодаря белкам и углеводам, входящих в ее состав).
Снаружи оболочки у многих бактерий (эу- и цианобактерий) образуется слизистая капсула, состоящая из молекул полисахаридов, которая представляет собой дополнительный защитный слой.
У многих почвенных бактерий в условиях жаркого засушливого климата капсула предохраняет клетку от высыхания. Нередко она защищает бактериальную клетку от проникновения фага. У некоторых бактерий капсульная слизь является источником запасных питательных веществ, а также способствует закреплению бактерий на поверхности субстратов, а иногда и их передвижению.
Под оболочкой внутри клетки размещается густая цитоплазма. На внутренней поверхности плазмолеммы (белково-липидный комплекс) находятся ферменты. У многих бактерий плазмолемма образует впячивания внутрь клетки (так как темпы роста ее обычно превышают темпы роста клеточной стенки) - мезосомы, участвующие в бескислородном дыхании (спиртовом, молочнокислом и др. брожении). У бактерий, способных к фотосинтезу на подобных впячиваниях плазмолеммы (фотосинтетических мембранах) расположены фотосинтетические пигменты (у эубактерий - бактериохлорофиллы; у цианобактерий - хлорофилл а, каротиноиды) где и осуществляется фотосинтез (у эубактерий без выделения О2, у цианобактерий - с выделением О2).
Зеленые и пурпурные серобактерии (эубактерии) в процессе фотосинтеза используют не воду, а соединения серы: CO2 + 2H2S > (CH2O) + S2v + H2O.
Считается, что обогащение атмосферы кислородом в Архее связано с деятельностью именно цианобактерий: СО2 + 2Н2О > (СН2О) + О2^ + Н2О
Подобные мембранные образования участвуют у некоторых бактерий и в фиксации атмосферного молекулярного азота (представители рода Azotobacter, Rhizobium, Anabaena, Nostoc).
В цитоплазме имеются рибосомы (70S), однако они меньше рибосом эукариот (80S) и расположены в цитоплазме свободно (не связаны с мембранами).
Рибосомы бактериального типа (70S) входят в состав органоидов эукариот - митохондрий и хлоропластов, что свидетельствует об эволюционном родстве прокариотных и эукариотных организмов.
В цитоплазме бактерий иногда заметны включения запасных питательных веществ (крахмал, гликоген, но чаще волютин - вещество, включающее остатки фосфорной кислоты).
Аналогом ядра у прокариот является структура, состоящая из ДНК, РНК и белков - генофор (нуклеоид), который не имеет собственной оболочки. Генетическая система прокариот (одиночные кольцевые молекулы ДНК) закреплена на клеточной мембране и соответствует примитивной хромосоме.
На поверхности многих бактериальных клеток имеются тонкие нитевидные структуры - фимбрии, представляющие собой прямые полые цилиндры, отходящие от цитоплазматической мембраны (их число может достигать от 1 до нескольких сотен, как, например, у кишечной палочки).
Фимбрии выполняют функцию прикрепления клетки к поверхности субстрата или сцепления клеток; половые фимбрии (F-пили) участвуют в передачи материала ДНК из клетки-донора в клетку-реципиент при размножении.
Бактерии лишены пластид, митохондрий, аппарата Гольджи и других органоидов имеющихся у эукариот. Отсутствует и внутриклеточное движение - циклоз.
У ряда нитчатых цианобактерий (носток, анабена) имеются специализированные клетки - гетероцисты с сильно утолщенными бесцветными 2-хслойными оболочками (принимают участие в размножении и в процессе фиксации молекулярного азота).
Движение. Бактерии реагируют на различные раздражители и способны перемещаться (таксис). Движение у некоторых осуществляется с помощью жгутиков (одного, как у Rhizobium, или нескольких, как у Azotobacter), другие - при помощи выбрасываемой слизи или благодаря вращению вокруг своей оси. Некоторые неподвижны (у цианобактерий жгутиков нет).
Нередко бактериальная клетка проходит в 1 с расстояние в 20-60 мкм (часто во много раз больше длины собственного тела). К спринтерам среди бактерий относится холерный вибрион, его скорость - 200 мкм/с.
Образование спор. Некоторые бактерии (в основном из рода Clostridium и Bacillus) при наступлении неблагоприятных условий образуют споры (эндоспоры), устойчивые к низким или высоким температурам и обезвоживанию.
Часть цитоплазмы, содержащая ДНК, уплотняется и покрывается плотной споровой оболочкой. Такие споры сохраняют способность к «прорастанию» в течение десятков лет (до 100). Например, бациллы сибирской язвы в состоянии спор остаются жизнедеятельными в течении 30 лет.
Если покоящаяся, устойчивая структура образуется из целой клетки, то она называется цистой (ее образуют некоторые виды рода Azotobacter).
Размножение. Митоз и мейоз у бактерий отсутствует.
Размножаются бактерии бесполым путем - делением клеток надвое (бинарное деление). Этому предшествует удвоение (репликация) нити ДНК генофора. Иногда у бактерий встречаются почкующиеся формы (формирование дочерней клетки меньшего размера, чем материнская).
В благоприятных условиях бактерии делятся через каждые 20-30 минут.
Иногда у некоторых бактерий (например, кишечная палочка) наблюдается примитивный половой процесс, однако при этом не образуются гаметы (половые клетки) и не происходит слияние клеток. Клетки бактерий просто обмениваются генетическим материалом (частями ДНК или очень редко всей) - генетическая рекомбинация.
Генетическая рекомбинации может осуществляться трансформацией (передача НК без соприкосновения), коньюгацией (передача НК при непосредственном контакте) или трансдукцией (передача НК посредством вирусов - умеренных бактериофагов).
Питание. Большинство - гетеротрофы. Они питаются:
- сапротрофно (мертвым, гниющим органическим материалом), выделяя при этом во внешнюю среду пищеварительные ферменты, а затем поглощая растворенные вещества;
- паразитически (болезнетворные, разлагают органику внутри живого организма-хозяина);
- симбиотически (также живут внутри других организмов, питаются за их счет, однако приносят хозяину и существенную пользу).
Например, бактерии рода Rhizobium вступают в симбиоз с корнями бобовых растений (клубеньки на корнях), питаются за их счет и фиксируют молекулярный азот, который используют растения. Кишечная палочка живет внутри организма человека и производит витамины В и К необходимые человеку. Внутри кишечного тракта жвачных животных бактерии разрушают целлюлозу до сахаров; бактерии, живущие в кишечном тракте термитов, также разлагают целлюлозу.
Некоторые бактерии питаются автотрофно. В зависимости от источника энергии используемого при этом, бактерии подразделяются на фотосинтетики (зеленые и пурпурные серобактерии, цианобактерии и др.) и хемосинтетики (нитрифицирующие, железобактерии, серобактерии и др.).
Хемосинтезирующие бактерии в качестве атомов углерода используют СО2, а энергию для синтеза органических веществ получают не от Солнца, а путем окисления неорганических веществ (азота, серы, аммиака, водорода, нитратов и соединений железа). Например, серобактерии окисляют серу до сульфат-ионов, нитрифицирующие бактерии окисляют аммиак до нитратов и т.д.
Значение в природе.
1. Участвуют в биогеохимических циклах. Улучшают плодородие почв.
Гетеротрофные бактерии выполняют в биосфере функцию редуцентов - разлагают мертвые органические остатки до простых минеральных веществ (CO2, H2O и др.), возвращая их опять растениям. Установлено, что более 90% СО2 биосферы образуется в результате деятельности бактерий и грибов (остальные 10% пополняются в атмосфере за счет дыхания эукариот, а также за счет хозяйственной деятельности человека).
Участвуют в процессах гниения (разложение белков и других азотистых соединений до аммиака - аммонификация), нитрификации (окисление аммиака до нитритов (NО2-) и нитратов (NО32-) - Nitrosomonas, Nitrobacter), денитрификации (превращение нитратов и нитритов в аммиак, молекулярный азот, оксиды азота - Thiobacillus), фиксации атмосферного азота (участвуют симбиотические (клубеньковые бактерии Rhizobium) и свободноживущие бактерии (Azotobacter, Clostridium, Nostoc, Anabaena), образование сульфитов и т.д.
Участвуют в образовании различных полезных ископаемых (железных руд, фосфоритов, месторождений серы, нефти, угля и др.).
2. Вступают в симбиоз с другими организмами.
Бактерии из рода Rhizobium с корнями бобовых; некоторые цианобактерии являются одним из компонентом лишайников; бактерии и травоядные животные и т.д.
3. Применяются при очистке (биологической) сточных вод (разлагают органические вещества до безвредных неорганических).
4. Получение различных продуктов (пищевых, технических и др.).
Например, молочнокислые бактерии (Lactobacillus) используются для получения молочнокислых продуктов (кефир, йогурт, сливки, сыр и др.); уксуснокислые бактерии (Acetobacter) сбражживают спирт до уксусной кислоты; получают различные ферменты, лимонную кислоту, спирт и т.д. Некоторые бактерии (Актиномицеты) используются для производства антибиотиков, образующиеся в процессе их жизнедеятельности (в практике широко используются свыше 50 таких антибиотиков: стрептомицин, тетрациклин, грамицидин и т.д.), а также инсулина, интерферона. Бактерии используют для получения белка (так называемый белок одноклеточных), который можно использовать на корм скоту, а также в качестве пищевой добавки для человека (Spirulina). Метанобразующие бактерии (из архебактерий) применяются для получения биогаза из различных органических отходов (широко практикуется в Китае). На рисовых полях в тропиках искусственно разводят анабену (цианобактерия) для обогащения почвы азотом. Некоторые бактерии используются при квашении, засолке, силосовании и т.д.
5. В микробиологических исследованиях.
Одно из достижений генетической инженерии - это перенос генов, кодирующих синтез инсулина у человека, в клетки бактерий (уже начато промышленное получение этого гормона); получение интерферона.
6. Использование бактерий в качестве биологического метода борьбы с вредителями и сорняками в сельском хозяйстве.
Определенные виды бактерий из рода Bacillus заражают и вызывают гибель гусениц некоторых бабочек и личинок родственных им насекомых. Препарат таких бактерий используют для опыления посевов.
7. Порча пищевых продуктов.
8. Многие бактерии являются возбудителями болезней человека, животных и растений.
У растений вызывают рак томатов, паршу картофеля, гниль капусты, моркови и др. У животных - пищевые отравления, вызванные сальмонеллами (сальмонеллез), туберкулез и др. У человека - бактериальная пневмония, дифтерия, тиф, туберкулез, сибирская язва, сальмонеллез, холера, сифилис, пищевые бактериальные отравления и т.д.
9. Некоторые бактерии (цианобактерии: микроцистис, осциллатория, анабена и др.) вызывают «цветение» воды (при их массовом размножении вода окрашивается в зеленый цвет), что приводит к гибели гидробионтов (из-за отравления продуктами жизнедеятельности (H2S, NH3, CH4) и недостатка О2).
организм природа вирусный вирион
Размещено на Allbest.ru
...Подобные документы
Систематика - это наука, изучающая многообразие организмов на Земле, их классификацию и эволюционные взаимоотношения. Значение работ Карла Линнея. Основные особенности морфологической, "искусственной" и филогенетической (эволюционной) систематики.
реферат [20,1 K], добавлен 27.10.2009Бактерии (микробы) – одноклеточные прокариоты. Питание, дыхание, размножение и классификация бактерий. Бациллы, устройство жгутиков. Роль бактерий в природе, их экологические функции. Вирусы – внутриклеточные паразиты, возбудители опасных болезней.
презентация [4,8 M], добавлен 17.03.2015Характеристика вирусов как очень маленьких живых организмов, вызывающих болезни у растений и животных. Особенности строения вирусных ДНК, РНК, их внешний вид, размеры компонентов, вызываемые заболевания. Размножение и основные стадии репродукции вирусов.
презентация [1,6 M], добавлен 20.01.2012Определение родства организмов в биологии посредством их сравнения во взрослом состоянии, эмбрионального развития и поиска переходных ископаемых форм. Систематика органического мира и бинарная классификация Линнея. Теории происхождения жизни на Земле.
реферат [717,6 K], добавлен 20.12.2010Период жизнедеятельности клетки, в котором происходят все обменные процессы и деление. Интерфаза, метафаза и анафаза, деление клетки. Биологический смысл митоза. Вирусы и бактериофаги как неклеточные формы жизни. Виды и формы размножения организмов.
реферат [20,3 K], добавлен 06.07.2010Открытие вирусов, их размеры, особенности строения и жизненный цикл. Синтез компонентов вирусной частицы - нуклеиновой кислоты и белков капсида. Вирусы растений, животных и человека как возбудители различных заболеваний. Эволюционное развитие вирусов.
контрольная работа [433,8 K], добавлен 15.03.2014Эволюционное происхождение. Свойства вирусов. Природа вирусов. Строение и классификация вирусов. Взаимодействие вируса с клеткой. Значение вирусов. Вирусные заболевания. Особенности эволюции вирусо на соременном этапе.
реферат [299,2 K], добавлен 22.11.2005Наука о выведении новых форм живых организмов и задачи селекции по улучшению качества продукции, сортов и пород. Генетическое разнообразие растений, животных и их географическое распространение, гетерозис и инбридинг, их значение в природе и отборе.
презентация [3,0 M], добавлен 17.09.2012Вода – единственное вещество на Земле, которое существует в природе во всех трёх агрегатных состояниях – жидком, твёрдом и газообразном, ее основные физические и химические свойства, значение в природе и жизнедеятельности организмов. Круговорот воды.
презентация [746,5 K], добавлен 23.09.2011Разнообразие грибов, особенности их питания. Описание макромицет - грибов со шляпками. Группы сапротрофных, паразитических и симбиотических организмов. Значение грибов в круговороте веществ в природе. Вред, который они наносят другим живым организмам.
презентация [993,5 K], добавлен 14.06.2012Систематика. Строение прокариот. Размножение. Образ жизни. Основніе группы прокариот: бактерии – фототрофы, бактерии – хемоавтотрофы, бактерии – органотрофы, бактерии – паразиты. Сине-зеленые водоросли.
реферат [18,1 K], добавлен 22.10.2003Вирусы - мельчайшие организмы. Содержат в своем составе только один из типов нуклеиновых кислот. Могут существовать только как внутриклеточные паразиты. Значение бактерий в природе и хозяйственной деятельности человека.
реферат [30,3 K], добавлен 06.10.2006Море как первичная среда развития жизни на Земле. Изменения в развитии живых организмов: половой процесс, многоклеточный и фотосинтез. Развитие наземных организмов в палеозойскую эру. Предпосылки для выхода на сушу кистеперых предков земноводных.
реферат [18,0 K], добавлен 02.10.2009Анализ места света в жизни организмов, в том числе и в процессе фотосинтеза. Оценка экологических пределов выносливости организмов. Энергия солнца как практически единственный источник энергии для всех живых организмов. Сущность и значение видимого света.
презентация [4,2 M], добавлен 26.11.2010Бактерии – одноклеточные организмы, их признаки, строение, питание, классификация, морфология. Формы и среда обитания бактерий; размножение, образование спор; значение. Простейшие и грибы. Неклеточные формы жизни: вирусы и бактериофаги; химический состав.
презентация [4,4 M], добавлен 02.11.2012Первая классификация живых организмов, предложенная Карлом Линнеем. Три этапа Великих биологических объединений. Концепция эволюции органического мира Жан-Батиста Ламарка. Основные предпосылки возникновения теории Дарвина. Понятие естественного отбора.
реферат [762,6 K], добавлен 06.09.2013Отрицательная роль вирусов в жизни человека как возбудителей ряда опасных заболеваний: оспы, гепатита, энцефалита, краснухи, кори, бешенства, гриппа. "Индикаторы жизни": происхождение и природа вирусов, их строение. Взаимодействие вируса с клеткой.
реферат [164,7 K], добавлен 01.04.2009Теории возможности и вероятности возникновения жизни на Земле (креационизм, спонтанное и стационарное зарождение жизни, панспермия, биохимическая эволюция). Стадии образования органических молекул. Возникновение живых организмов, образование атмосферы.
курсовая работа [40,5 K], добавлен 26.05.2013Облигатные внутриклеточные паразиты. Морфология, строение вирусов. Сложно устроенные вирусы. Продуктивный тип взаимодействия вируса с клеткой. Представители однонитевых ДНК-вирусов. Культивирование, индикация вирусов. Внутриклеточная репродукция вирусов.
презентация [2,4 M], добавлен 23.02.2014Изучение и характеристика учения В.И. Вернадского о биосфере, его концепции "О начале и вечной жизни на земле". Противостояние двух мировоззрений как "Два синтеза Космоса". Понятие Вернадского о живом веществе, т.е. совокупности всех живых организмов.
реферат [31,3 K], добавлен 24.07.2010