The effects of melatonin administration in different times of day on the brown adipose tissue in rats with high-calorie diet-induced obesity

Melatonin like a basic pineal gland hormone, which regulate circadian systems of organism in accordance to environmental changes. Analysis of the general characteristics of changes in mass of brown, visceral adipose tissue and food intake in rats.

Рубрика Биология и естествознание
Вид статья
Язык английский
Дата добавления 20.09.2020
Размер файла 252,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

The effects of melatonin administration in different times of day on the brown adipose tissue in rats with high-calorie diet-induced obesity

O. Kalmukova

Annotation

The aim of our study was to determine morphofunctional state (area of nucleus, brown adipocytes and also area and number of lipid droplets in each cells, general optical density of tissue) of brown adipose tissue in rats with high-calorie (high fat) diet- induced obesity after melatonin administration in different time of the day (morning and evening). Melatonin was administered daily by gavage for 7 weeks in dose 30 mg/kg either 1 h after lights-on (ZT01) or 1 h before lights-off (ZT11) rats with high-calorie diet (HCD). Besides morphometric parameters as well were measured related visceral fat weight and related brown adipose tissue mass. Rats with HCD had huge changes in brown adipocytes morphology, which summarized in become resembles of classical white adipocytes: grown lipid droplets and cells area, but goes down lipid droplets number and optical density of brown adipose tissue. In general brown adipose tissue with above mentioned characteristic from HCD rats lose their ability to conduct strongly thermoproduction function. After melatonin used in rats with HCD arise leveling of pathological changes, which associated with consumption of HCD. Namely, in groups HCD ZT01 and HCD ZT11 we obtain decreased cells and lipid droplets area, increased lipid droplets number and optical density of brown adipose tissue, in relation to group HCD. Therese received changes has evidence about functionally active brown adipose tissue state, which can also dissipate of exceed energy (lipids - triacylglycerols) amount into whole organism during heat production for avoid to its storage in white adipose tissue and in outside adipose tissue. In addition, evening administration of melatonin (group HCD ZT11) demonstrate more activated state of brown adipose tissueand also related visceral weight gain less, than morning(group HCD ZT01). In conclusions, melatonin influence on morpho-functional state brown adipose tissue in rats with HCD, moreover evening administration can use for obesity therapy via its strong action on activate brown adipocytes.

Key words: melatonin, obesity, chronotherapy, adipocytes, high-fat diet, brown adipose tissue.

Метою нашого дослідження було визначення морфофункціонального стану (площі ядра, бурих адипоцитів, площі і кількості ліпідних включень у кожній клітині, загальної оптичної щільності тканини) бурої жирової тканини у щурів з індукованою дієтою (висококалорійною) ожирінням після введення мелатоніну в різний час доби (вранці і ввечері). Мелатонін вводили щоденно перорально за допомогою зонда протягом 7 тижнів у дозі 30 мг/кг або за 1 год після включення (ZT01), або за 1 год перед вимкненням світла (ZT11) щурам з висококалорійною дієтою (ВКД). Окрім морфометричних параметрів також вимірювали відносну масу вісцеральної білої і бурої жирової тканини. У щурів з ВКД знайдені значні зміни в морфології бурих адипоцитів, які загалом наближуються до морфології класичних білих адипоцитів: зростає площа ліпідних включень і клітин, проте відповідно знижується кількість ліпідних включень та оптична щільність бурої жирової тканини. Такі морфометричні зміни бурої жирової тканина у щурів ВКД свідчать про зниження її здатності до теплопродукції Після введення мелатоніну щурам з ВКД спостерігається нівелювання патологічних змін у бурій жировій тканині, які пов'язані з споживанням ВКД. У групах ВКД ZT01 і ВКД ZT11 показано зменшення площі клітин і ліпідих включень, а також збільшення кількості ліпідних включень та оптичної щільності бурої жирової тканини щодо групи ВКД. Отримані зміни свідчать про функціонально активний стан бурої жирової тканини, яка, у свою чергу, може працювати на розсіювання надлишкової енергії (у вигляді ліпідів - триацилгліцеридів) для теплопродукції, водночас уникаючи її надмірного запасання в білій жировій тканині та поза нею (в інших органах). Вечірнє введення мелатоніну (група ВКД ZT11) демонструє більш виражений стан активації бурої жирової тканини та зниження відносної маси вісцеральної жирової тканини порівняно з ранковими введеннями (група HCDZT01). Отже, мелатонін змінює морфофун- кціональний стан бурої жирової тканини у щурів з ВКД, причому, вечірнє введення може застосовуватися для терапії ожиріння через його сильну дію на активацію бурих адипоцитів (на відміну від ранкового).

Ключові слова: мелатонін, ожиріння, хронотерапія, адипоцити, висококалорійна дієта, бура жирова тканина.

Цель нашего исследования - определение морфофункционального состояния (площади ядра, бурых адипоцитов, а также площади и количества липидных включений в каждой клетке, общей оптической плотности ткани) бурой жировой ткани у крыс с индуцированным диетой (высококалорийной) ожирением после введения мелатонина в разное время суток (утром и вечером). Мелатонин вводили ежедневно перорально с помощью зонда в течение 7 недель в дозе 30 мг/кг или за 1 ч после включения (ZT01) или за 1 ч перед выключением света (ZT11) крысам с высококалорийной диетой (ВКД). Кроме морфометрических параметров также измеряли относительную массу белой висцеральной и бурой жировой ткани. У крыс с ВКД найдены значительные изменения в морфологии бурых ади- поцитов, которые в целом приближаются к морфологии классических белых адипоцитов: растет площадь липидных включений и клеток, однако снижается количество липидных включений и оптическая плотность бурой жировой ткани. Такие морфометрические изменения бурой жировой ткани у крыс ВКД свидетельствуют о снижении ее способности к теплопродукции. После введения мелатонина крысам с ВКД наблюдается нивелирование патологических изменений в бурой жировой ткани, которые связаны с потреблением ВКД. В группах ВКД ZT01 и ВКД ZT11 показано уменьшение площади клеток и липидых включений, а также увеличение их количества (липидных включений) и оптической плотности бурой жировой ткани, касательно группы ВКД. Полученные изменения свидетельствуют о функционально активном состоянии бурой жировой ткани, которая, в свою очередь, может работать на рассеивание избыточной энергии (в виде триацилглицеридов) для теплопродукции, в то же время, избегая чрезмерного запасания липидов в белой жировой ткани и вне ее (в других органах). Вечернее введение мелатонина (группа ВКД ZT11) демонстрирует более выраженное состояние активации бурой жировой ткани и снижение относительной массы висцеральной жировой ткани по сравнению с утренними приемами (группа HCDZT01). Итак, мелатонин влияет и изменяет морфо-функциональное состояние бурой жировой ткани у крыс с ВКД, причем, вечернее введение может применяться для терапии ожирения из-за его сильного воздействия на активацию бурых ади- поцитов (в отличие от утреннего).

Ключевые слова: мелатонин, ожирение, хронотерапия, адипоциты, высококалорийная диета, бурая жировая ткань.

The overweight and obesity become wide medical problem, since were shown its involvement in development of 2 type diabetes [1]. The number of people with overweight and obese are grown every year [2]. Potentially, this people fall into risk diabetes group [3]. The search continues for effective and safe methods to prevent obesity. One of way to treatment obesity is target activated brown adipose tissue (BAT) [4, 5]. BAT through decrease fat mass, increase glucose uptake ameliorate insulin sensitivity and prevent 2 type diabetes development [6, 7].

Brown adipose tissue (BAT) - connecting tissue with specific function of lipids deposition for the heat production [8]. Since 2007 when activated BAT were open in adult human, its presence induce a huge interest [9, 10]. Usually, BAT activated after cold exposure or sympathetic influenceof adrenaline [11, 12]. But these methods of initiate BAT have many side effect (for example, adrenaline on cardiovascular systems). So, actual is finder agents to trigger BAT without (or with minimize) side effect for obesity improve [13, 14]. One of the potentiate candidate can be melatonin.

Melatonin - pineal gland hormone, which regulate circadian systems of organism in accordance to environmental changes [15], which control metabolism (blood pressure, blood glucose, body temperature, energy production) [16], seasonal reproduction [17], immune response [18] and aging [19, 20]. During obesity development was shown desynchronize some functions, while melatonin may act as orchestrating regulator molecule [21, 22].

In the other hand was demonstrate presence of melatonin receptor on brown adipocytes [23, 24]. Melatonin provoke in brown adipocytes expression of uncoupling proteins UCP1 in mitochondria [25] and induction thermogenesis [26, 27]. Thus effect may be beneficial for obesity therapy [28]. Now grow intensify studying about chronotherapy uses for cure most of illness, including obesity [29, 30]. It is need more dedicated study of chronopharmacological agents, including melatonin, in the treatment of metabolic diseases [31].

Materials and methods. White nonlinear male rats weighing 100-120 g were used in this study. The light cycle was 12-h light and 12-h darkness, with lights-off at 19:00 h. All experiments on animals were carried out in compliance with the international principles of the European Convention for the Protection of Vertebrate Animals used for experimental and other scientific purposes (European Convention, Strasburg, 1986), Article 26 of the Law of Ukraine "On the Protection of Animals from Cruelty" (No. 3447-IV, February 21, 2006) as well as all norms of bioethics and biological safety.

During the first week, all animals received standard rodent chow. On the 8th day, the animals were randomized into 2 groups: control animals received standard chow (3,81 kcal/g) for 10 weeks and experimental rats received high-calorie diet (5,35 kcal/g) consisting of standard chow (60 %), lard (10 %), eggs (10 %), sugar (9 %), peanut (5 %), dry milk (5 %) and vegetable oil (1 %) [32]. Food and water were available ad libitum. To confirm the development of obesity the animals were weighed one times a week until the average body gain reached a significant difference of at least 30 % between the two groups and the respective animals were classified as having the normal body mass (Control) and those with development of obesity (HCD). Rats of HCD groups were divided into tree subgroups: one subgroup received no MT, animals of the second and third subgroups obtained different modes of MT administrations - single peroral by gavage introductions, 1 h after light switching on (group HCD ZT01) and 1 h before light switching off (group HCD ZT11) (modes "morning" and "evening", respectively). Thus, the experimental subgroups are indicated below as normal body mass (control), HCD, HCD ZT01, HCD ZT11.

Melatonin (Alcon Biosciences, USA) was administered daily by gavage for 7 wk (30 mg/kg) either 1 h after lights- on (Zeitgeber time (ZT) 01) or 1 h before lights-off (ZT11). Melatonin treatment was began at 6th week of study after obesity is developed.

Food and water consumption were measured daily at the same time (09:00 to 10:00 h) and body weights were determined once a week. Body weight gain, relative daily food (kcal/day/g body weight) and relative daily water consumption (ml/day/g body weight) was determined for each rat.

On the last day of the experiment, the animals were decapitated, and then the brown adipose tissue was isolated from the interscapular region and weighed for the calculation of the relative mass. Also the visceral (epididymal, retroperitoneal, mesenteric, perirenal) fat pads were dissected and immediately weighed.

Histological examination was performed to characterize the morphology and functional status of brown adipose tissue. Fragments of brown adipose tissue in the size of 1x1 cm were fixed in 4 % of paraformaldehyde in 0.1 M phosphate buffer for 72 h, after which they were dehydrated and embedded into paraffin according to a standard procedure. From the paraffin blocks, 5 pm sections were performed and stained with Bemer's hematoxylin and eosin. Further examination of sections was performed using a light microscope BX41 (Olympus, Japan). Microphotographs were taken using the DP20 (Olympus, Japan) digital camera and the QuickPHOTO MICRO software (Promicra, Czech Republic).

The cross-sectional area of the nucleus, cells and lipid droplets, nuclear-cytoplasmic ratio (NCR), the number of lipid inclusions per one cell and the optical density of the tissue were used as criteria for assessing the morphology and functional status of brown adipocytes. All parameters were measured using the ImageJ software (National Institutes of Heath, USA).

Statistical data analysis was performed using the Statistica 6.0 (Stat-Soft, USA) and Microsoft Excel 2010 software (Microsoft, USA). The distribution of values was estimated using Shapiro-Wilk W-test. Since the deviation of these values distribution of from the normality was minor, to evaluate the differences between the values we used Student's t-test. The differences with probability of the null hypothesis p < 0.05 were considered significant. The obtained results are presented as the mean ± standard error of mean.

Results and discussion. In control group (Fig. 1 A) brown adipocytes have polygonal cell morphology with round-shaped central-located nucleus. In cytoplasm accommodate a few amount droplets of lipid (Fig. 1, asterisk), which did not stain with water-soluble dyes, thats why they look like white bubble. Another part of cytoplasm, which contain a large number of mitochondria, show eosinophilic properties. After consumption HCD (Fig. 1 B) brown adipocytes become resembles morphology of white adipocytes: round cells with peripheral-located oval nucleus, because practically unilocular lipid droplet occupy almost all space of cytoplasm. Described changes indicate about decrease of brown adipocytes functional activity [33, 34]. If melatonin used at morning time of day (group HCD ZT01, Fig. 1 C), adipocytes represent improvement, although the shape of cells remain circularized, nucleus become at the centre of cell and accordingly lipid droplets size goes down, also their number rise. But, melatonin administration at the evening time of day (group HCD ZT01, Fig. 1 D) give a more stronger effect: adipocytes in line with control have polygonal cell morphology and round central nucleus (characteristics, which completely reverse manifestation of obesity-associated phenotype of brown adipocyte), they demonstrate maintain multilocular little lipid droplets. Thats changes have marked pronounced functional activation of brown adipocytes thermogenesis [35].

Fig. 1. Microphotographs of rats' brown adipose tissue sections: A - control group, B - HCD group, C - group HCD ZT01, D - group HCD ZT11; hematoxylin-eosin staining; oc. x10, ob. x100. Notes: * - lipid droplets

In HCD group the area of brown adipocytes (Fig. 2) was increase by 30 %, but in case melatonin administration this parameter decrease in group HCD ZT01 by 16 % and in group HCD ZT11 by 50 % (compare to control). In turn in rely to HCD group melatonin provoke significant reduction in group HCD ZT01 by 35 % and in group HCD ZT11 by 60 %. Besides, was difference between HCD ZT01 and HCD ZT11 groups by 40 %. It can be explain by changing their function during obesity development - to deposit exceed lipids, that why they have rise in size in HCD group and become as white adipocytes [36]. In continuation of this pathologic changes under diet-induced obesity (group HCD) adipocytes undergo to magnification area of lipid droplets by 44 %, and melatonin application decline its by 28 % in HCD ZT01 and by 61 % in HCD ZT11 both in relation to control level; that is in compare to HCD group by 50 % and 73 % in HCD ZT01 and HCD ZT11, respectively, (also have fixed significant difference between morning and evening administration by 47 %). Obtained data demonstrate starting lipolysis process after melatonin application, moreover most effectively it manifested in HCD ZT11 group, which can be connected with targeting REVERB nuclear receptor by melatonin [37] (which involve in regulate circadian rhythm expression of a key lipolysis enzymes in adipocytes [38]), through its more sensing because REV-ERB mRNA high level in brown adipocytes is fixed at the beginning of night [39].

In the other hand, the number of lipid droplets did not change during obesity development. Intriguing, that in group HCD ZT11 (evening melatonin administration) lipid droplets amount rise in relation to control by 16 % and in compare with HCD by 22 %. Similar results were obtained after melatonin uses in rats with standard diet [40]. This effect connected with activation of melatonin receptor in brown adipocytes and enhance lipolysis, as well as UCP1 producing [41, 42]. Also was shown that increase lipid droplets number and decrease their area are testify about strong activity of cells in heat production [43].

At standard histological tissue processing, lipids, which are deposited in the adipocytes in the form of inclusions, are washed out during the dehydration of the tissue. Therefore, the places of their localization in the cytoplasm of the cell after staining with eosin remain uncoloured. At a smaller magnification of the lens, it is possible to estimate the overall brightness, which depends directly on the amount of lipids in the tissue - optical density of brown adipose tissue. As HCD group consume high-calorie diet and consequently has enriched of lipid adipocytes, tissue shown less optical density by 34 % in relation on control. After melatonin induction the optical density reverse to level of control and, respectively, grow by 45 % in HCD ZT01 and by 46 % in HCD ZT11 without no significant difference between group with morning/evening administration melatonin. Thats data suggest about decrease lipid content in brown adipocytes and also increased eosinophilic part of cytoplasm. Its can be in relation with mitochondria amount grown, because melatonin influence on mitochondria metabolism due to localization on mitochondria membrane melatonin receptors MT1 and MT2 [44, 45].

Fig. 2. The morphometric analysis data of rats' brown adipose tissue. Notes: * - a significant difference between the control and experimental groups, p < 0.05; # - a significant difference between the HCD and experimental groups, p < 0.05; &- a significant difference between the groups HCD ZT01 and HCD ZT11, p < 0.05

In general, melatonin administration influence on fat deposition and body weight (Table 1) [46, 47]. There no significant difference change in related brown adipose tissue mass, which can be explain functional rebuilding of tissue: in HCD lipid droplets content amplify, while in HCD ZT01 and HCD ZT11 enlarged respectively cell's number, which connected with enhance functional activity adipocytes.The literature data is contradictory about change brown adipose tissue mass after melatonin intervention: some shown itsincreased activity and volume grown [48, 49], other - decreased mass, but rise of activity too [50]. Presented different data can be depend on various dose, route and time of melatonin administration.

melatonin visceral circadian

Table 1. General characteristics of changes in mass of brown adipose tissue, visceral adipose tissue and food intake

Control

HCD

HCD ZT01

HCD ZT11

Related visceral adipose tissue mass (%)

1,78 ±0,03

2,93 ±0,31*

2,11 ±0,14 * #

1,79 ±0,18 # &

Related brown adipose tissue mass (%)

0,68 ± 0,05

0,73 ± 0,03

0,71 ± 0,04

0,77 ± 0,04

Relative daily food consumption (kcal/day/g body weight)

0,25 ± 0,02

0,34 ± 0,02*

0,33 ± 0,02*

0,35 ± 0,04*

Relative daily water consumption (ml/day)

39 ± 0,75

32 ± 0,43*

30 ± 0,59*

33 ± 0,69*

Notes: Data are presented as the M ±SEM; * р<0.05 compared with control value; # p< 0.05 compared HCD with experimental groups; &р<0.05 compared HCD ZT01 with HCD ZT11.

During consumption of HCD the related visceral adipose tissue weight significant grow in compare with control by 65 %, that is confirm developed obesity. Morning melatonin introduction lower related visceral adipose tissue weight by 28 % in compare with HCD group, and by 18,5 % in compare with control. Thus, in HCD ZT01 group related visceral adipose tissue mass has intermediate place: its significant differ both from control and HCD group. Evening melatonin administration reduce related visceral adipose tissue weight by 39 % in rely to HCD and reach control value. Shown changes occur without any alterations in food and water consumption.

Conclusions. High-calorie diet change morpho- functional state brown adipocytes, closer their phenotype to

white adipocytes. Melatonin treatment improve brown adipose tissue state (adipocyte size and lipid contain) in rats with diet-induced obesity, moreover after evening administration brown adipocyte activity increased in obese rats even in comparison with non-obese. Also activated brown adipose tissue may be one of the way to spread excess lipids, since related visceral adipose tissue mass decrease without reduction food and water consumption.

References

1. From obesity to diabetes and cancer: epidemiological links and role of therapies / C. Garcоa-Jimйnez, M. Gutiйrrez-Salmeron, A. Chocarro- Calvo et al. // British journal of cancer., 2016. - Vol. 114, № 7. - Р. 716-722.

2. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for

3. the Global Burden of Disease Study 2013 / M. Ng, T. Fleming, M. Robinson et al. // The lancet., 2014. - Vol. 384, № 9945. - Р. 766-781.

4. The official data of the WHO Bulletin published in May 2017. Available from: http://www.who.int

5. Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis / M. Razzoli, A. Frontini, A. Gurney et al. // Molecular metabolism, 2016. - Vol. 5, № 1. - Р. 19-33.

6. Cinti S. The role of brown adipose tissue in human obesity / S. Cinti // Nutrition, metabolism and cardiovascular diseases, 2006. - Vol. 16, № 8. - Р. 569-574.

7. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance / A.L. Poher, J. Altirriba, C. Veyrat-Durebex et al. //Frontiers in physiology. - 2015. - Vol. 6, №4. - Р. 1-9.

8. Tapia P. Biology and pathological implications of brown adipose tissue: promises and caveats for the control of obesity and its associated complications / P.Tapia, M.Fernandez - Galilea, F.Robledo et al. //Biological Reviews. - 2018. - Vol. 93, № 2. - Р. 1145-1164.

9. Cannon B. Brown adipose tissue: function and physiological significance / B.Cannon, J. A. N. Nedergaard // Physiological reviews. - 2004. - Vol. 84, № 1. - Р. 277-359.

10. Nedergaard J. Unexpected evidence for active brown adipose tissue in adult humans / J. Nedergaard, T. Bengtsson, B. Cannon // American Journal of Physiology-Endocrinology and Metabolism, 2007. - Vol. 293. - Р. E444-E452.

11. Identification and importance of brown adipose tissue in adult humans / A.M. Cypess, S. Lehman, G. Williams et al. // New England Journal of Medicine, 2009. - Vol. 360, № 15. - Р. 1509-1517.

12. Cold-activated brown adipose tissue in healthy men / W.D. van Marken Lichtenbelt, J.W. Vanhommerig, N.M. Smulders et al. // New England Journal of Medicine, 2009. - Vol. 360, № 15. - Р. 1500-1508.

13. Activation of human brown adipose tissue by a Я3-adrenergic receptor agonist / A.M. Cypess, L.S. Weiner, C. Roberts-Toler et al. // Cell metabolism, 2015. - Vol. 21, № 1. - Р. 33-38.

14. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis / J.D. Crane, R. Palanivel, E.P. Mottillo et al. // Nature medicine, 2015. - Vol. 21, № 2. - Р. 166.

15. Brown adipose tissue transplantation reverses obesity in Ob/Ob mice / X. Liu, S. Wang, Y. You et al. // Endocrinology, 2015. - Vol. 156, № 7. Р. 2461-2469.

16. Butler M. Circadian regulation of endocrine functions / M. Butler, L.J. Kriegsfeld, R. Silver // Hormones, Brain and Behavior Online, Elsevier Inc., 2010. - Р. 473-507.

17. Role of melatonin in metabolic regulation / A. Korkmaz, T. Topal, X. Tan et al. // Reviews in Endocrine and Metabolic Disorders, 2009. - Vol. 10, № 4. - Р. 261-270.

18. Melatonin and reproduction revisited / R.J. Reiter, D.X. Tan, C. Manchester et al. //Biology of reproduction, 2009. - Vol. 81, № 3. - Р. 445-456.

19. Guerrero J.M. Melatonin-immune system relationships / J.M. Guerrero, R.J. Reiter // Current topics in medicinal chemistry, 2002. - Vol. 2, № 2. - Р. 167-179.

20. Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways / A. Jenwitheesuk, C. Nopparat, S. Mukda et al. // Interna. j. of mol. sci., 2014. Vol. 15, № 9. - Р. 16848-16884.

21. Melatonin, immune function and aging / V. Srinivasan, J. M.Maestroni, D.P. Cardinali et al. // Immunity & Ageing, 2005. - Vol. 2, № 1. - Р. 17.

22. Garaulet M. Chronobiology and obesity: the orchestra out of tune / M. Garaulet, P. Gomez-Abellan, J.A. Madrid // Clinical Lipidology, 2010. - Vol. 5, № 2. - Р. 181-188.

23. Chronobiological aspects of obesity and metabolic syndrome / P. Gomez-Abellan, J.A. Madrid, J.M. Ordovas et al. // Endocrinologоa y Nutricion (English Ed.), 2012. - Vol. 59, № 1. - Р. 50-61.

24. Evidence of a role for melatonin in fetal sheep physiology: direct actions of melatonin on fetal cerebral artery, brown adipose tissue and adrenal gland / C. Torres-Farfan, F.J. Valenzuela, M. Mondaca et al. // The Journal of physiology, 2008. - Vol. 586, № 16. - Р. 4017027.

25. Functional expression of MT2 (Mel1b) melatonin receptors in human PAZ6 adipocytes / L. Brydon, L. Petit, P. Delagrange et al. // Endocrinology, 2001. - Vol. 142, № 10. - Р. 4264-4271.

26. Melatonin: a mitochondrial targeting molecule involving mitochondrial protection and dynamics / D.X. Tan, L. Manchester, L. Qin et al. // Internat. j. of mol. sci., 2016. - Vol. 17, № 12. - Р. 2124.

27. Yang F. Adaptive thermogenesis of brown adipose tissue in tree shrews (Tupaia belangeri): Role of melatonin / F. Yang, L. Zhang, W. Zhu // J. of Zoological and Biosci. Res., 2017. - Vol. 1, № 4. - Р. 1-7.

28. Roman S. Brown adipose tissue and novel therapeutic approaches to treat metabolic disorders / S.Roman, A.Agil, M. Peran et al. //Translational Research. - 2015. - Vol. 165, № 4. - Р. 464-479.

29. McMillan A.C. Induction of thermogenesis in brown and beige adipose tissues: molecular markers, mild cold exposure and novel therapies / A.C. McMillan, M.D. White // Current Opinion in Endocrinology, Diabetes and Obesity, 2015. - Vol. 22, № 5. - Р. 347-352.

30. Sellix M.T. For Management of Obesity and Diabetes: Is Timing the Answer? / M.T. Sellix // Endocrinology, 2016. - Vol. 157, № 12. - Р. 4545-4549.

31. Yamada R.G. Compass in the data ocean: Toward chronotherapy / R. G. Yamada, H.R. Ueda // Proceedings of the National Academy of Sciences, 2017. - Vol. 114, № 20. - Р. 5069-5071.

32. Chronomedicine and type 2 diabetes: shining some light on melatonin / A.C. Forrestel, S.U. Miedlich, M. Yurcheshen et al. // Diabetologia, 2017. - Vol. 60, № 5. - Р. 808-822.

33. Effect of C60 fullerene nanoparticles on the diet-induced obesity in rats / T. Halenova, N. Raksha, T. Vovk et al. // International journal of obesity (2005), 2018. - Vol. 42, № 12. - Р. 1987-1998.

34. Adipose-specific deficiency of fumarate hydratase in mice protects against obesity, hepatic steatosis, and insulin resistance / H. Yang, J.W. Wu, S. P. Wang et al. // Diabetes, 2016. - Vol. 65, № 11. - Р. 3396-3409.

35. Increased inflammation, oxidative stress and mitochondrial respiration in brown adipose tissue from obese mice / M. Alcala, M. Calderon-Dominguez, E. Bustos et al. // Scientific reports, 2017. - Vol. 7, № 16082.DOI:10.1038/s41598-017-16463-6.

36. Gao A.W. Mitochondrial fission: firing up mitochondria in brown adipose tissue / A.W. Gao, R.H. Houtkooper // The EMBO journal, 2014. - Vol. 33, № 5. - Р. 401-402.

37. Roberts-Toler C. Diet-induced obesity causes insulin resistance in mouse brown adipose tissue / C. Roberts-Toler, B.T. O'Neill, A.M. Cypess // Obesity, 2015. - Vol. 23, № 9. - Р. 1765-1770.

38. Kojetin D.J. REV-ERB and ROR nuclear receptors as drug targets / D.J. Kojetin, T.P. Burris // Nature reviews Drug discovery, 2014. - Vol. 13, № 3. - Р.197-216.

39. Circadian clocks and insulin resistance / D.J. Stenvers, A. Scheer, P. Schrauwen et al. // Nature Reviews Endocrinology, 2019. - Vol. 15. - Р. 75-86.

40. Brown adipose tissue exhibits a glucose-responsive thermogenic biorhythm in humans / P. Lee, R. Bova, L. Schofield et al. // Cell metabolism, 2016. - Vol. 23, № 4. - Р. 602-609.

41. Kalmukova O. The effects of different time of melatonin administration on differentiation and functional status of the brown adipocytes in vivo / O. Kalmukova, M.E. Dzerzhinsky // Cell and Organ Transplantology, 2018. - Vol. 6, № 1. - Р. 80-85.

42. Significance and application of melatonin in the regulation of brown adipose tissue metabolism: relation to human obesity / D.X. Tan, C. Manchester, L. Fuentes-Broto et al. // Obesity Reviews, 2011. - Vol. 12, № 3. - Р. 167-188.

43. Melatonin Multiple Effects on Brown Adipose Tissue Molecular Machinery / C.A.P. de Souza, C. Congentino Gallo, L. Scodeler de Camargo et al. // Journal of pineal research, 2018. - e12549.doi: 10.1111/jpi.12549

44. Oelkrug R. Brown adipose tissue: physiological function and evolutionary significance / R. Oelkrug, E.T. Polymeropoulos, M. Jastroch // Journal of comparative physiology B, 2015. - Vol. 185, № 6. - Р. 587-606.

45. Tan D.X. Mitochondria: the birth place, battle ground and the site of melatonin metabolism in cells / D.X. Tan, R.J. Reiter // Melatonin Research, 2019. - Vol. 2, № 1. - Р. 44-66.

46. Cecon E. Melatonin receptors: molecular pharmacology and signalling in the context of system bias / E. Cecon, A. Oishi, R. Jockers // British journal of pharmacology, 2018. - Vol. 175, № 16. - Р. 3263-3280.

47. Kalmykova O. The effects of different mode of melatonin administration on the development of high-calorie diet-induced obesity in rats / O. Kalmykova, A. Yurchenko, M. Dzerzhinsky // Bulletin of Taras Shevchenko National University of Kyiv-Problems of Physiological Functions Regulation, 2018. - Vol. 25, № 2. - Р. 19-25.

48. Kalmykova O. Effect of melatonin different time administration on the development of diet-induced obesity in rats / O. Kalmykova, A. Pustovalov, I. Vareniuk // Bulletin of Taras Shevchenko National University of Kyiv-Problems of Physiological Functions Regulation, 2018. - Vol. 23, № 2. - Р. 20-27.

49. Melatonin Increases Brown Adipose Tissue Volume and Activity in Melatonin Deficient Patients: a Proof-of-Concept Study / B. Halpern, M. C. Mancini, C. Bueno et al. // Diabetes, 2019; db180956.https://doi.org/10.2337/db18-0956.

50. Fernandez Vazquez G. Melatonin increases brown adipose tissue mass and function in Zьcker diabetic fatty rats: implications for obesity control / G. Fernandez Vazquez, R.J. Reiter, A. Agil // Journal of pineal research, 2018. - 64(4). - e12472-12482.

51. Hagelstein K.A. Effects of photoperiod, cold acclimation and melatonin on the white rat / K.A. Hagelstein, Jr.G.E. Folk // Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1979. - Vol. 62(2). P. 225-229.

52. Garcоa-Jimйnez C., Gutiйrrez-Salmeron M., Chocarro-Calvo A., Garcia-Martinez J. M., Castano A., De la ViejaA. From obesity to diabetes and cancer: epidemiological links and role of therapies. British journal of cancer. 2016; 114(7): 716-722.

53. Ng M., Fleming T., Robinson M., Thomson B., Graetz N., Margono C., et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. The lancet.2014; 384(9945): 766-781.

54. The official data of the WHO Bulletin published in May 2017. Available from: http://www.who.int

55. Razzoli M., Frontini A., Gurney A., Mondini E., Cubuk C., Katz L. S., et al. Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis. Molecular metabolism. 2016; 5(1): 19-33.

56. Cinti S. The role of brown adipose tissue in human obesity. Nutrition, metabolism and cardiovascular diseases.2006;16(8): 569-574.

57. Poher A. L., Altirriba J., Veyrat-Durebex C., Rohner-Jeanrenaud F. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Frontiers in physiology. 2015;6 (4): 1-9.

58. Tapia P., Fernandez - Galilea M., Robledo F., Mardones P., Galgani J. E., Cortйs V. A. Biology and pathological implications of brown adipose tissue: promises and caveats for the control of obesity and its associated complications. Biological Reviews. 2018; 93(2): 1145-1164.

59. Cannon B., Nedergaard J. A. N. Brown adipose tissue: function and physiological significance. Physiological reviews. 2004; 84(1): 277-359.

60. Nedergaard J., Bengtsson T., Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. American Journal of Physiology-Endocrinology and Metabolism.2007; 293: E444-E452.

61. Cypess A. M., Lehman S., Williams G., Tal I., Rodman D., Goldfine A. B.,et al. Identification and importance of brown adipose tissue in adult humans. New England Journal of Medicine. 2009;360(15): 1509-1517.

62. van Marken Lichtenbelt W. D., Vanhommerig J. W., Smulders N. M., Drossaerts J. M., Kemerink G. J., BouvyN. D., et al. Cold-activated brown adipose tissue in healthy men. New England Journal of Medicine. 2009;360(15):1500-1508.

63. Cypess A. M., Weiner L. S., Roberts-Toler C., Elia E. F., Kessler S. H., Kahn P. A., et al. Activation of human brown adipose tissue by a Я3- adrenergic receptor agonist. Cell metabolism. 2015;21(1): 33-38.

64. Crane J. D., Palanivel R., Mottillo E. P., Bujak A. L., Wang H., Ford R. J., et al. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nature medicine. 2015;21(2): 166-172.

65. Liu X., Wang S., You Y., Meng M., Zheng Z., DongM., et al. Brown adipose tissue transplantation reverses obesity in Ob/Ob mice. Endocrinology. 2015; 156(7): 2461-2469.

66. Butler, M., Kriegsfeld, L. J., & Silver, R. Circadian regulation of endocrine functions. In Hormones, Brain and Behavior Online Elsevier Inc.; 2010. p. 473-507.

67. Korkmaz A., Topal T., Tan D. X., Reiter R. J. Role of melatonin in metabolic regulation. Reviews in Endocrine and Metabolic Disorders. 2009; 10(4): 261-270.

68. Reiter R. J., Tan D. X., Manchester L. C., Paredes S. D., Mayo J.

69. ,Sainz R. M. Melatonin and reproduction revisited. Biology of reproduction. 2009;81(3): 445-456.

70. Guerrero J. M., Reiter R. J. Melatonin-immune system relationships. Current topics in medicinal chemistry. 2002;2(2): 167-179.

71. Jenwitheesuk A., Nopparat C., Mukda S., Wongchitrat P., Govitrapong P. Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways. International journal of molecular sciences. 2014;15(9): 16848-16884.

72. Srinivasan V., Maestroni G. J. M., Cardinali D. P., Esquifino A. I., Perumal S. P., Miller S. C. Melatonin, immune function and aging. Immunity & Ageing. 2005;2(17):E 1-10.

73. Garaulet M., Gomez-Abellan P., Madrid J. A. Chronobiology and obesity: the orchestra out of tune. Clinical Lipidology.2010;5(2): 181-188.

74. Gomez-Abellan P., Madrid J. A., Ordovas J. M., Garaulet M. Chronobiological aspects of obesity and metabolic syndrome. Endocrinologia y Nutriciфn (English Edition).2012;59(1): 50-61.

75. Torres - Farfan C., Valenzuela F. J., Mondaca M., Valenzuela G. J., Krause B., Herrera E. A., et al. Evidence of a role for melatonin in fetal sheep physiology: direct actions of melatonin on fetal cerebral artery, brown adipose tissue and adrenal gland. The Journal of physiology.2008;586(16): 4017-4027.

76. Brydon L., Petit L., Delagrange P., Strosberg A. D., Jockers R. Functional expression of MT2 (Mel1b) melatonin receptors in human PAZ6 adipocytes. Endocrinology.2001142(10): 4264-4271.

77. Tan D. X., Manchester L., Qin L., Reiter R. Melatonin: a mitochondrial targeting molecule involving mitochondrial protection and dynamics. International journal of molecular sciences.2016; 17(2124): E1-21.

78. Yang F., Zhang L., Zhu W. Adaptive thermogenesis of brown adipose tissue in tree shrews (Tupaia belangeri): Role of melatonin. Journal of Zoological And Bioscience Research.2017;1(4): 1-7.

79. Roman S., Agil A., Peran M., Alvaro-Galue E., Ruiz-Ojeda F. J., Fernandez-Vazquez G., et al. Brown adipose tissue and novel therapeutic approaches to treat metabolic disorders. Translational Research. 2015;165(4):464-479.

80. McMillan A. C., White M. D. Induction of thermogenesis in brown and beige adipose tissues: molecular markers, mild cold exposure and novel therapies. Current Opinion in Endocrinology, Diabetes and Obesity. 2015;22(5):347-352.

81. Sellix,M. T. For Management of Obesity and Diabetes: Is Timing the Answer?. Endocrinology. 2016; 157(12):4545-4549.

82. Yamada R. G., Ueda H. R. Compass in the data ocean: Toward chronotherapy. Proceedings of the National Academy of Sciences. 2017; 114(20): 5069-5071.

83. Forrestel A. C., Miedlich S. U., Yurcheshen M., Wittlin S. D., Sellix M. T. Chronomedicine and type 2 diabetes: shining some light on melatonin. Diabetologia. 2017; 60(5): 808-822.

84. Halenova T., Raksha N., Vovk T., Savchuk O., Ostapchenko L., Prylutskyy Y., et al. Effect of C60 fullerene nanoparticles on the diet-induced obesity in rats, International Journal of Obesity. 2018; 42:1987-1998.

85. Yang H., Wu J. W., Wang S. P., Severi I., Sartini L., Frizzell N., et al. Adipose-specific deficiency of fumarate hydratase in mice protects against obesity, hepatic steatosis, and insulin resistance. Diabetes. 2016;65(11):3396-3409.

86. Alcala M., Calderon-Dominguez M., Bustos E., Ramos P., Casals N., Serra D., et al. Increased inflammation, oxidative stress and mitochondrial respiration in brown adipose tissue from obese mice. Scientific reports. 2017; 7: 16082.DOI:10.1038/s41598-017-16463-6

87. Gao A. W., Houtkooper R. H. Mitochondrial fission: firing up mitochondria in brown adipose tissue. The EMBO journal. 2014; 33(5): 401-402.

88. Roberts - Toler C., O'Neill B. T., Cypess A. M. Diet - induced obesity causes insulin resistance in mouse brown adipose tissue. Obesity. 2015; 23(9): 1765-1770.

89. Kojetin D. J., Burris T. P. REV-ERB and ROR nuclear receptors as drug targets. Nature reviews Drug discovery. 2014;13(3): 197-216.

90. Stenvers D. J., Scheer F. A., Schrauwen P., la Fleur S. E., Kalsbeek A. Circadian clocks and insulin resistance. Nature Reviews Endocrinology. 2019;15: 75-86.

91. Lee P., Bova R., Schofield L., Bryant W., Dieckmann W., Slattery A., et al. Brown adipose tissue exhibits a glucose-responsive thermogenic biorhythm in humans. Cell metabolism. 2016;23(4): 602-609.

92. Kalmukova O., Dzerzhinsky M. The effects of different time of melatonin administration on differentiation and functional status of the brown adipocytes in vivo. Cell and Organ Transplantology. 2018; 6(1): 80-85.

93. Tan D. X., Manchester L. C., Fuentes - Broto L., Paredes S. D., Reiter R. J. Significance and application of melatonin in the regulation of brown adipose tissue metabolism: relation to human obesity. Obesity Reviews. 2011; 12(3): 167-188.

94. de Souza C. A. P., Congentino Gallo C., Scodeler de Camargo L., Vargas Versignassi de Carvalho P., Fernandes Olesзuck I., Macedo F., et al. Melatonin Multiple Effects on Brown Adipose Tissue Molecular Machinery. Journal of pineal research. 2018;e12549.doi: 10.1111/jpi.12549

95. Oelkrug R., Polymeropoulos E. T., Jastroch M. Brown adipose tissue: physiological function and evolutionary significance. Journal of comparative physiology B. 2015; 185(6): 587-606.

96. Tan D. X., Reiter R. J. Mitochondria: the birth place, battle ground and the site of melatonin metabolism in cells. Melatonin Research. 2019; 2(1): 44-66.

97. Cecon E., Oishi A., Jockers R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. British journal of pharmacology. 2018; 175(16): 3263-3280.

98. Kalmykova O., Yurchenko A., Dzerzhinsky M. The effects of different mode of melatonin administration on the development of high- calorie diet-induced obesity in rats. Bulletin of Taras Shevchenko National University of Kyiv-Problems of Physiological Functions Regulation. 2018; 25(2): 19-25.

99. Kalmykova O., Pustovalov A., Vareniuk I., Dzerzhynsky M. Effect of melatonin different time administration on the development of diet- induced obesity in rats. Bulletin of Taras Shevchenko National University of Kyiv-Problems of Physiological Functions Regulation. 2018;23(2): 20-27.

100. Halpern B., Mancini M. C., Bueno C., Barcelos I. P., de Melo M. E., Lima M. S., et al. Melatonin Increases Brown Adipose Tissue Volume and Activity in Melatonin Deficient Patients: a Proof-of-Concept Study. Diabetes. 2019; db180956.https://doi.org/10.2337/db18-0956

101. Fernandez Vazquez G., Reiter R. J., Agil A. Melatonin increases brown adipose tissue mass and function in Zьcker diabetic fatty rats: implications for obesity control. Journal of pineal research. 2018,64(4): e12472-12482.

102. Hagelstein K. A., Folk Jr G. E. Effects of photoperiod, cold acclimation and melatonin on the white rat. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology. 1979,62(2): 225-229.

Размещено на Allbest.ru

...

Подобные документы

  • Hormones as organic substances, produced in small amounts by specific tissues (endocrine glands), secreted into the blood stream to control the metabolic and biological activities. Classification of hormones. The pro-opiomelanocortin peptide family.

    презентация [1,2 M], добавлен 21.11.2012

  • Foot distal extremity man is a set, which is in contact with the ground and serves as a support when moving. The main function of the foot of man. Basic types of muscles of the foot. The rear, medial, lateral and middle groups of muscles of the foot.

    презентация [3,1 M], добавлен 14.04.2015

  • The biosynthesis of 2H-labeled phenylalanine was done by converse of low molecular weight substrates in a new RuMP facultative methylotrophic mutant Brevibacterium methylicum. Isotope components of growth media and characteristics of bacterial growth.

    статья [1,3 M], добавлен 23.10.2006

  • Vectors of the molecular cloning, their functions and basic properties. Double-stranded phage. Scope of Present Review. Life cycle and genetics of Lambda. Phage Lambda as a vector. Transfection of Recombinant Molecules. Storage of Lambda Stocks.

    курсовая работа [1,4 M], добавлен 11.12.2010

  • Animal physiology as a branch of the biological sciences life processes, bodily functions and behavior of animals. The history of physiology, its purpose, the main sections, concepts and relationship with other sciences. Basic life processes of animals.

    презентация [1,4 M], добавлен 22.12.2014

  • The origin history of fast food and features of his development in China, India, Europe, Russia and America. General description of negative influence of fast food on organism and health of the human. Fast food like a variety of chemical food additives.

    презентация [942,1 K], добавлен 12.03.2010

  • Acromegaly as an rare syndrome that result when the anterior pituitary gland produces excess growth hormone. Signs and symptoms, etiology and pathogenesis. The complications of acromegaly. Treatment: Hormone therapy, surgery on the pituitary gland.

    презентация [827,4 K], добавлен 28.12.2015

  • Food and Drug Administration как орган общественного здравоохранения федерального уровня. Закон о предотвращении вирусных инфекций в ответ на распространение зараженного столбняком дифтерийного токсина. Меры против нарушителей в отношении продуктов.

    презентация [4,5 M], добавлен 27.05.2014

  • The biography of John Smith, Washington Irving, Hugh Henry Brackenridge, Benjamin Franklin, Charles Brockden Brown, Edgar Allan Poe, Ralph Waldo Emerson, Philip Freneau, Nathaniel Hawthorne, Walt Whitman. General characteristics of American romanticism.

    курс лекций [88,2 K], добавлен 21.07.2009

  • Orderliness (methodical) of the general inspection. The patient's position in bed. Constitution types - set of congenital and acquired the morphological and functional characteristics of the organism. Distinctive features of the constitutional types.

    презентация [2,1 M], добавлен 22.02.2015

  • The connection of lexicology with other branches of linguistics. Modern Methods of Vocabulary Investigation. General characteristics of English vocabulary. The basic word-stock. Influence of Russian on the English vocabulary. Etymological doublets.

    курс лекций [44,9 K], добавлен 15.02.2013

  • General information about archaisms. The process of words aging. Analysis of ancient texts Shakespeare, Sonnet 2. "Love and duty reconcil’d" by Congreve. Archaisms in literature and mass media. Deliberate usage of archaisms. Commonly misused archaisms.

    курсовая работа [44,3 K], добавлен 20.05.2008

  • The concept of brand capital. Total branded product name for the whole company. Nestle as the largest producer of food in the world. Characteristics of technical and economic indicators. Nestle company’s brands. SWOT-analysis and Nestle in Ukraine.

    курсовая работа [36,2 K], добавлен 17.02.2012

  • Sources of pollution. Climate and weather conditions 1952 years that led to the emergence of smog in London. Effect on town. Health effects townspeople. Environmental impact. Factors that caused the repetition of this environmental disaster in 1962.

    презентация [748,6 K], добавлен 24.04.2015

  • Wimm-Bill-Dann as a producer in dairy products and one of the leader children’s food in Russia. The SWOT and PEST analysis of the enterprise. The individual critical reflection on learning outcomes. The ways of the effective communication with customers.

    контрольная работа [30,9 K], добавлен 17.02.2011

  • Global Warming is the greatest environmental threat of the 21st Century. The causes and effects of global warming. Explanation of the effects of global warming in both MEDCs and LEDCs. Evaluation of the different viewpoints held about global warming.

    презентация [639,6 K], добавлен 25.04.2014

  • Nature of infrared analysis and nature of mass spectrometry. Summary of the uses in forensic analysis. Critical comparison of infrared analysis and spectrometry. Gathering of the information about positional isomers with the help of infrared analysis.

    эссе [21,8 K], добавлен 08.12.2011

  • Сritical comparison of Infrared analysis and Mass Spectrometry. Summary of the uses in forensic, the molecular structural mass spectral. The method provides better sensitivity in comparison. To conclude, both techniques are helpful in the forensic study.

    реферат [20,1 K], добавлен 21.12.2011

  • General characteristic of the LLC DTEK Zuevskaya TPP and its main function. The history of appearance and development of the company. Characteristics of the organizational management structure. Analysis of financial and economic performance indicators.

    отчет по практике [4,2 M], добавлен 22.05.2015

  • As is generally known, science and education are one of resources of the state, one of fundamental forms of culture of civilization, as well as competitive advantage of every individual. Basics of general theory of systems (GTS) and systemic analysis.

    аттестационная работа [197,5 K], добавлен 13.10.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.