Nonsynaptic epileptiform activity in CA3-CA1 regions of the hippocampus in low-Ca2+ and Cd2+-containing milieu
Comparison of epileptiform activity of the hippocampus in in vitro models of nonsynaptic epilepsy. The role of cadmium ions in reducing the intracellular calcium concentration. Distribution of epileptiform activity in the regions of the hippocampus.
Рубрика | Биология и естествознание |
Вид | статья |
Язык | английский |
Дата добавления | 17.06.2022 |
Размер файла | 187,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
4
Размещено на http://www.allbest.ru/
Nonsynaptic epileptiform activity in CA3-CA1 regions of the hippocampus in low-Ca2+ and Cd2+-containing milieu
O.S. Zapukhliak, O.V. Netsyk, D.S. Isaev
O.O. Bogomoletz Institute of Physiology of National Academy of Science of Ukraine, Kyiv;
In our work we compare seizure-like-activity in CA1 and CA3 regions of the hippocampus in two common models of nonsynaptic epilepsy in vitro: low-Ca2+ and Cd2+ models. Under low-Ca2+ conditions, the concentration of Ca2+ is insufficient to produce synaptic release. Cd2+ ions block Ca2+ channels, which result in a decrease of intracellular concentration of Ca2+ in presynaptic sites. We found that delay time for seizure appearance in CA1 area is longer than in CA3 in both models. The frequency of epileptic-like discharges in low-Ca2+ model was higher than in Cd2+-model. We did not find a difference in patterns of seizure-like discharges, which suggests a similar mechanism explored in studied models. The difference in distribution andfrequency of nonsynaptic seizure-like activity in the hippocampus is discussed in the paper. Key words: nonsynaptic epileptiform activity; low-Ca2+ model of seizures; CA3-CA1 regions of the hippocampus; rat brain slices.
О.С. Запухляк, О.В. Нецик, Д.С. Ісаєв
НЕСИНАПТИЧНА ЕПІЛЕПТИФОРМНА АКТИВНІСТЬ У ДІЛЯНКАХ СА3-СА1 ГІПОКАМПА ЩУРІВ У НИЗЬКОКАЛЬЦІЄВОМУ ТА КАДМІЙВМІСНОМУ СЕРЕДОВИЩАХ
У нашій роботі порівнювали епілептиформну активність у ділянках СА3-СА1 гіпокампа на двох моделях неси- наптичної епілепсії in vitro: з низьким вмістом Са2+, а також наявністю Cd2+. У разі 1-ї моделі концентрації Са2+ було недостатньо для синаптичного вивільнення медіатора. В іншій серії експериментів іони кадмію блокували Са2+- канали, що призводило до зниження внутрішньоклітинної концентрації кальцію у пресинаптичних ділянках. Ми виявили, що латентний час розвитку епілептиформної активності в зоні CA1 довший, ніж у CA3 в обох випадках. Частота епілептиформних спалахів у дослідах з низьким вмістом Са2+ була більшою, ніж з іонами кадмію. У представлених результатах не виявлено відмінностей у двох моделях епілептиформної активності, що вказує на аналогічний механізм їх розвитку. В роботі також обговорюється різниця в розподілі несинаптичної епілептиформної активності в досліджуваних ділянках гіпокампа.
Ключові слова: несинаптична епілептиформна активність; ділянки СА3-СА1 гіпокампа; кадмій.
О.С. Запухляк, О.В. Нецик, Д.С. Исаев
НЕСИНАПТИЧЕСКАЯ ЭПИЛЕПТИФОРМНАЯ АКТИВНОСТЬ В ЗОНАХ СА3-СА1 ГИППОКАМПА КРЫС В НИЗЬКОКАЛЬЦИЕВОЙ И КАДМИЙСОДЕРЖАЩЕЙ СРЕДЕ
В нашей работе мы сравниваем эпилептиформую активность гиппокампа в двух моделях несинаптической эпилепсии in vitro: с низким содержанием Са2+, а также в присутствие Cd2+. Что касается 1-й модели, концентрации Са2+ было недостаточно для синаптического высвобождения медиатора. В другой серии экспериментов ионы кадмия блокировали Са2+-каналы, что приводило к снижению внутриклеточной концентрации кальция в пресинаптических участках. Мы обнаружили, что латентный период развития эпилептиформной активно сти в зоне CA1 длиннее, чем в CA3 в обоих моделях. Частота эпилептиформных вспышек в опытах с низким содержанием Са2+ была больше, чем с ионами кадмия. В представленных результатах не выявлено различий в двух моделях эпилептиформной активности, что указывает на аналогичный механизм их развития. В работе также обсуждается разница в распределении несинаптической эпилептиформной активности в исследуемых участках гиппокампа. Ключевые слова: несинаптическая эпилептиформная активность; CA3-CA1 гиппокамп; кадмий.
INTRODUCTION
activity hippocampus cadmium ion epileptiform calcium
Fast glutamatergic and GABAergic synaptic transmission plays a key role in epileptiform synchronization of hippocampal network. However, under certain in vitro and in vivo experimental conditions the hippocampal formation is prone to dramatic neuronal synchronization that is independent of active chemical synaptic transmission [1, 2]. In the early 1980s, it was shown that perfusion of hippocampal slices with low-Ca2+ aCSF (at concentrations sufficient to block synaptic transmission) results in spontaneous long-lasting seizure-like activity (SLA) in area CA1 and under certain conditions in area CA3 and the dentate gyrus of the hippocampus [3, 4]. Later, it was shown that similar discharges could be evoked at normal external Ca2+ levels and even with intact synaptic transmission, as long as there was a sufficient increase in neuronal excitability [1, 5]. The observed activity approximated low-Ca2+ discharges in frequency, duration, and propagation speed, and the addition of postsynaptic receptors antagonists to the perfusion aCSF had no effect on this type of bursting, thus proving its nonsynaptic origin [1].
Four mechanisms are considered to account for abnormal neuronal synchronization in the absence of chemical synaptic transmission: electrical field interactions, fluctuations in extracellular ion concentrations, ephaptic transmission, and electrotonic coupling through gap-junctions [6]. Under suitable conditions of tight and laminar hippocampal cellular organization, electrical field effects sustain dramatic neuronal synchronization and provide a means for synaptically-independent propagation of epileptiform activity across the hippocampus [7, 8]. Reduction of extracellular space due to cell swelling promotes the spread of excitation between neuronal membranes through ephaptic interactions and together with field effects accounts for increased neuronal excitability under hypo-osmotic conditions [6, 9]. Excessive fluctuations of extracellular K+ during seizures alter membrane excitability and underlie propagation of nonsynaptic activity across the tissue, although at a rate almost a hundred times slower than electrical field propagation [3, 10, 11]. Increased number of gap junctions occur in the CA1 area during prolonged perfusion with low-Ca2+ solutions, affecting the frequency, duration, and amplitude of nonsynaptic discharges [8, 12]. Hence, while nonsynaptic interactions have a subliminal impact on normal network functioning, they become extremely effective in neuronal synchronization under pathological conditions. In this respect, a low- Ca2+ milieu provides a suitable conditions for studying the impact of nonsynaptic interactions on hippocampal local synchronization. On the other hand, activity of voltage-dependent Ca2+ channels regulates synaptic transmission and blockade of these channels results in appearance of nonsynaptic local synchronization [1]. The aim of our study was to compare effect of removing Ca2+ from extracellular milieu and blockade of voltage-gated Ca2+ channels on patterns of network activity in hippocampus.
METHODS
All experimental procedures were performed on Wistar rats according to the guidelines set by the National Institutes of Health for the humane treatment of animals and approved by the Animal Care Committee of Bogomoletz Institute of Physiology of National Academy of Science of Ukraine.
Hippocampal slice preparation. Postnatal day 12-14 rats were deeply anesthetized using sevoflurane and decapitated. Transverse brain slices were prepared according to the technique described previously [13]. Briefly, brains were removed and placed in the ice-cold aCSF of the following composition (in mmol/l): NaCl - 125, KCl - 3.5, CaCl2 - 2, MgCl2 - 1.3, NaH2PO4 - 1.25, NaHCO3 - 24 and glucose - 11; pH of aCSF was adjusted to 7.3-7.35. The cerebellum and the frontal lobe were removed, and 500 ^m thick slices were cut using Vibroslice NVSL (“World Precision Instruments”, Sarasota, FL). Slices were allowed to equilibrate at the room temperature and under constantly oxygenated aCSF for at least 1.5-2 hours before the experiment.
Extracellular recordings and data acquisition. For extracellular recordings, slices were transferred to a submerged recording chamber and perfused with oxygenated aCSF (23-25°C) at a rate of 2-3 ml/min. Temperature control was performed with the Dual Temperature Controller (TC-144, “Warner Instruments”). Field potentials were obtained from the CA3 and CA1 pyramidal cell layer with extracellular glass microelectrodes (2-3 МП) filled with normal aCSF. Signals were amplified using a differential amplifier (“A-M Systems”, Carlsborg, WA), digitized at 10 kHz using an analog-to-digital converter (NI PCI-6221; National Instruments, Austin, TX); online analysis was performed using the WinWCP program (“Strathclyde Electrophysiology Software”, University of Strathclyde, Glasgow, UK). Offline analysis was performed using Clampfit (“Axon Instruments”) and Origin 8.0 (“OriginLab”, Northampton, MA). A two-sample t-test, was used for statistical analysis. Data are presented as mean ± SE.
Induction of nonsynaptic epileptiform activity. Nonsynaptic epileptiform discharges were induced by perfusion hippocampal slices with “low-Ca2+ aCSF” of the following composition (mmol/l): NaCl - 115, KCl - 5, MgCl2 - 1, NaH2PO4 - 1.25, NaHCO3 - 24, D-glucose - 11; pH 7.35-7.4. In separate set of experiments epileptiform bursting was induced by perfusing hippocampal slices with cadmium-containing aCSF of the following composition (mmol/l): NaCl - 115, KCl - 5, CaCl2 - 1, MgCl2 - 1, NaH2PO4 - 1.25, NaHCO3 - 2 4, D-glucose - 11 and C dCl2 - 15 цМ; pH 7.35-7.4.
A total of 52 hippocampal slices were used in this study. Student's t-test was used for statistical analysis. Data presented as mean ± SE; the difference between groups was considered significant when P < 0.05. All chemicals were purchased from “Sigma” (USA).
RESULTS AND DISCUSSION
Consistent with previous studies, perfusion of hippocampal slices with low-Ca2+ or Cd2+ aCSF resulted in the appearance of spontaneous epileptiform discharges in both hippocampal zones [5, 10] (Fig.1). In CA1 zone epileptiform discharges were induced in 82% of slices perfused with low-Ca2+ aCSF, while in CA3 zone SLA were induced only 41% of slices (29/35 and 15/35 respectively). During perfusion with Cd2+-containing aCSF nonsynaptic bursting was induced in CA1 in 41% of slices and in CA3 - in 82% (7/17 and 14/17 respectively, Fig. 2). Nonsynaptic discharges represented high-frequency population spikes that either fired continuously or were arranged in recurrent bursts (Fig. 2). We refer to the two observed types of recurrent nonsynaptic discharges as intermitted and persistent bursts of population spikes (Fig. 2b, c). Persistent bursts represented a period of high frequency population spikes firing that had a spindle shape with maximum spike amplitude in the middle of the burst (Fig. 2c). Intermitted bursts were never spindle-like, the amplitude of the spikes was greater than in persistent bursts and normally stayed the same throughout the burst (Fig. 2b). Along with population spikes, we observed slow shifts of baseline potential, which we refer to as slow waves (Fig. 1b).
Fig. 1. Electrographic recording of nonsynaptic seizure-like activity induced in low-Ca2+ aCSF; a - simultaneous recording of spontaneous epileptiform activity in CA3 and CA1 hippocampal zones during perfusion with low-Ca2+ aCSF; b - population spikes superimposed on slow potential shift; c - single population spikes
SLA in Cd2+-containing aCSF
Fig. 2. Types of nonsynaptic seizure-like activity induced by aCSF containing Cd2+; a - population spikes recorded in CA1 hippocampal area, the portion of recording outlined in the box is shown enlarged on the left; b - intermitted bursts of SLA; c - persistent bursts of SLA
Nonsynaptic bursting had a longer latency to onset within region CA1 than within CA3 (Fig.3a). The delay time for the SLA at low-Ca2+ was 21.08 ± 2.17 min (n = 31) in area CA1 and 14.68 ± 1.79 min (n = 29, P = 0.03) in region CA3 (Fig. 3 a). Similarly, at Cd2+ spontaneous activity was induced with the latency of 15.66 ± 2.27 min in region CA1 (n = 15) and 10.14 ± 1.37 min (n = 14, P = 0.05) in region CA3 (Fig. 3a).
Fig. 3. Comparison of SLA characteristics in low-Ca2+ and Cd2+-containing aCSF; a - mean values for the delay time for non- synaptic epileptiform activity; b - mean values for the frequency of population spikes
The frequency of continuous population spikes in region CA1 was 1.48 ± 0.2 s-1 (n = 31) at low-Ca2+ in aCSF and 0.68 ± 0.17 s-1 (n = 13) in Cd2+ aCSF (P = 0.02); in area CA3 the frequency of population spikes was 1.79 ± 0.33 s-1 (n = 17) at low-Ca2+ and 0.87 ± 0.2 s-1 (n = 14, P = 0.01) at Cd2+ in aCSF (Fig. 3b). Slow waves had duration > 2 sec and appeared irregularly with a mean frequency of 0.02 ± 0.005 Hz at low-Ca2+ and 0.05 ± 0.01Hz at Cd2+ (P = 0.1). It is worth noting that these discharges do not resemble the negative potential shifts observed originally in low-Ca2+ solution and are not considered the same type of discharges (Haas and Jefferys, 1984).
Perfusion of hippocampal slices with low- Ca2+ aCSF is known to induce nonsynaptic bursting [10]. It is important to note that in the present work we did not observe slow negative potential shifts that were previously recorded in low-Ca2+ milieu and are known to arise from extracellular accumulation and consequent influx of K+ into glia [3, 6]. Slow redistribution of K+ transients mediated by glial spatial buffering mechanisms likely accounts for the slow propagation of low-Ca2+ negative potential shifts previously seen [6, 14]. However, in vivo experiments have shown that elevation of K+ transforms low-Ca2+ bursts into persistent spike activity [15]. While in the neonatal brain K+ buffering mechanisms are not completely developed, it is likely that persistent spike activity, as shown in the present study, represents another form of low-Ca2+ nonsynaptic bursting [6].
Previous studies have shown that the CA1 area is more prone to nonsynaptic discharges than CA3 due to compact cellular organization and lower extracellular volumes compared to the remainder of the hippocampus [3, 6]. Our results are consistent with this observation, as nonsynaptic SLA were more likely induced in the CA1 area than in CA3 at low-Ca2+.
In the present study, low-Ca2+ and Cd2+ aCSF induced a similar profile of epileptiform discharges. In both cases, nonsynaptic SLA represented population spikes that in previous studies were shown to be synchronized action potentials of pyramidal cells. However, the frequency of population spikes was significantly higher in low-Ca2+ compared to Cd2+ in both the CA3 and CA1 regions respectively. This observation may be explained by the slightly different conditions that are provided by low-Ca2+ compared to Cd2+ aCSF. Aside from blocking synaptic transmission, under low-Ca2+ neuronal excitability is altered mainly via two mechanisms: 1) decreasing surface charge screening and 2) reducing Ca2+-activated K+ conductance [13, 16]. Both mechanisms bring the cellular membrane closer to the excitation threshold, thus making neurons more sensitive to extracellular potentials generated by the adjacent firing cells, which in term results in increased neuronal synchronization through ephaptic and electrical field interactions. Additionally,
low-Ca2+ solution increases dye coupling between hippocampal pyramidal cells, possibly promoting additional synchronization of small neuronal clusters through gap junctions [12]. Taken together, these factors likely account for a higher frequency of population spikes recorded in low-Ca2+ compared to Cd2+ aCSF.
Conclusions
1. Application of low-Ca2+ aCSF or addition to aCSF of 15qM Cd2+ results in the appearance of recurrent nonsynaptic discharges as bursts of population spikes.
2. Delay time for seizure appearance in CAlarea is longer than in CA3 in both models of nonsynaptic seizures.
3. The frequency of nonsynaptic seizures in low-Ca2+ model of seizures was greater than in Cd2+ model.
4. Low-Ca2+ model and Cd2+ model cause similar patterns of nonsynaptic seizure-like activity.
References
1. Bikson M, Baraban SC, Durand DM. Conditions sufficient for nonsynaptic epileptogenesis in the CA1 region of hippocampal slices. J Neurophysiol. 2002;87(1):62-71.
2. Feng Z, Durand DM. Low-calcium epileptiform activity in the hippocampus in vivo. J Neurophysiol. 2003;90(4):2253-60.
3. Jefferys JG, Haas HL. Synchronized bursting of CA1hippocampal pyramidal cells in the absence of synaptic transmission. Nature. 1982;300(5891):448-50.
4. Snow RW, Dudek FE. Synchronous epileptiform bursts without chemical transmission in CA2, CA3 and dentate areas ofthe hippocampus. Brain Res. 1984;298(2):382-5.
5. Xiong ZQ, Stringer JL. Prolonged bursts occur in normal calcium in hippocampal slices after raising excitability and blocking synaptic transmission. J Neurophysiol. 2001;86(5):2625-8.
6. Jefferys JG. Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. Physiol Rev. 1995;75(4):689-723.
7. Ghai RS, Bikson M, Durand DM. Effects of applied electric fields on low-calcium epileptiform activity in the CA1 region of rat hippocampal slices. J Neurophysiol. 2000;84(1):274-80.
8. Zhang M, Ladas TP, Qiu C, Shivacharan RS, Gonzalez-Reyes LE, Durand DM. Propagation of epileptiform activity can be independent of synaptic transmission, gap junctions, or diffusion and is consistent with electrical field transmission. J Neurosci. 2014;34(4):1409-19.
9. Talnov AN, Isaeva E, Savotchenko AV, Dovgalets GV, Ochoa JG, Holmes GL, Isaev D. Electrolyte therapy reduces spike-and-wave discharges in the WAG/ Rij rat model of absence epilepsy. Epilepsy Behav. 2012;24(4):399-402.
10. Haas HL, Jefferys JG. Low-calcium field burst discharges of CA1 pyramidal neurones in rat hippocampal slices. J Physiol. 1984;354(1):185-201.
11. Lian J, Bikson M, Shuai J, Durand DM. Propagation of
nonsynaptic epileptiform activity across a lesion in rat hippocampal slices. J Physiol. 20o1;537(Pt 1):191.
12. Perez-Velazquez JL, Valiante TA, Carlen PL. Modulation
of gap junctional mechanisms during calcium-free induced field burst activity: a possible role for electrotonic coupling in epileptogenesis. J Neurosci. 1994;14(7):4308-17.
13. Isaev D, Ivanchick G, Khmyz V, Isaeva E, Savrasova
A, Krishtal O, Holmes GL, Maximyuk O. Surface charge impact in low-magnesium model of seizure in rat hippocampus. J Neurophysiol. 2012;107(1):417-23.
14. Konnerth A, Heinemann U, Yaari Y Slow transmission of
neural activity in hippocampal area CA1 in absence of active chemical synapses. Nature. 1984;307(5946):69-71.
15. Feng Z, Durand DM. Effects of potassium concentration
on firing patterns of low-calcium epileptiform activity in anesthetized rat hippocampus: Inducing of persistent spike activity. Epilepsia. 2006;47(4):727-36.
16. Cain SM, Snutch TP. T-type calcium channels in
burst-firing, network synchrony, and epilepsy. BBA Biomembranes. 2013;1828(7):1572-8.
Размещено на Allbest.ru
...Подобные документы
Коннекторный и рестриктазно-лигазный методы конструирования рекомбинантных молекул ДНК in vitro, их применение в генной инженерии. Реакция лигирования; рестриктазные операции. Использование метода амплификации сегментов ДНК в полимеразной цепной реакции.
презентация [985,3 K], добавлен 17.08.2015Характеристика біотехнології отримання ембріонів in vitro, напрямки та перспективи її вдосконалення. Умови середовища культивування ооцит-кумулюсних комплексів. Впровадження біоритмічно осцилюючих параметрів культивування біологічних мікрооб’єктів.
статья [150,5 K], добавлен 21.09.2017Культура ткани в размножении пшеницы. Гормональная регуляция в культуре ткани, схема контроля органогенеза. Роль гуминовых кислот в процессе стимуляции роста растений, их влияние на характер белкового и углеводного обмена растений пшеницы in vitro.
курсовая работа [1,9 M], добавлен 05.11.2011Skeletal system: protection of internal organs, movement in union with muscles, storage of minerals (calcium, phosphorus) and lipids. Axial, appendicular skeleton. Surface anatomy of the bone. Structure/function of joints, muscle and ligament attachments.
презентация [1,8 M], добавлен 10.03.2013The role of deuterium in molecular evolution is most interesting question of nowdays science comprises two points mainly: the evolution of deuterium itself as well as the chemical processes going with participation of deuterium.
статья [426,3 K], добавлен 23.10.2006Генетическая инженерия как конструирование in vitro функционально активных генетических структур. История развития этой науки. Получение генномодифицированных (трансгенных) сортов растений и продуктов питания, животных. Генетическое загрязнение планеты.
реферат [49,4 K], добавлен 15.09.2015Особенности роста и развития растений. Культура и морфогенетические особенности каллусных тканей. Клональное микроразмножение отдаленных гибридов. Применение культур растительной ткани. Вспомогательное использование методов in vitro в селекции растений.
реферат [7,0 M], добавлен 22.09.2009Принципы классификации бактерий, их разновидности и общая характеристика. Научная классификация рода Salmonellа. Краткое описание семейства Enterobacteriaceae. Рост и развитие патогенов in vivo и in vitro. Сальмонеллезная инфекция, распространение.
курсовая работа [64,8 K], добавлен 03.06.2014Криоконсервация — заморозка биологического материала, обеспечивающая сохранение и жизнеспособность клеток после разморозки; объекты и температурный режим, криоповреждения и криопротекторы. Методы биоинженерии: экстракорпоральное оплодотворение, in vitro.
курсовая работа [57,6 K], добавлен 16.06.2014Методы трансгенеза в животноводстве. Использование половых клеток семенников. Факторы повышения экспрессии трансгенов в организме животных. Особенности пересадки ядер клеток, культивируемых in vitro. Перспективы генно-инженерных работ в животноводстве.
реферат [38,6 K], добавлен 26.09.2009Получение регенерантов из каллусной ткани и изучение их свойств. Тестирование индукции каллусного потенциала двух сортов шалота с различными гормонами и гормональными комбинациями. Исследование свойств регенерантов на предмет хромосомных перестроек.
практическая работа [763,8 K], добавлен 14.08.2015Розвиток допоміжних репродуктивних технологій. Різновиди штучного запліднення. Інсемінація спермою чоловіка. Інсемінація спермою донора. Запліднення in vitro. Інтрацитоплазматичне введення єдиного сперматозоїда. Донація яйцеклітин. Сурогатне материнство.
презентация [589,0 K], добавлен 27.10.2012Применение клеточных технологий в селекции растений. Использование методов in vitro в отдаленной гибридизации. Работы по культивированию каллуса с целью получения нового селекционного материала. Гибридизация соматических клеток и ее основные результаты.
реферат [28,6 K], добавлен 10.08.2009Исследование взаимодействия чистых молочнокислых бактерий и дрожжевых грибов Saccharomyces cerevisiae, входящих в состав микробиологического препарата "Эмбико", с корнями растений огурца (Cucumis sativus L.) сортов Конкурент и Феникс плюс in vitro.
реферат [1,8 M], добавлен 25.04.2014Viruses as a special form of life, their role in Microbiology. Russian scientist DI Ivanov - discoverer of the tobacco mosaic virus and the founders of virology. History of discovery. Biography of the scientist and his major works. History of Virology.
презентация [2,3 M], добавлен 22.05.2014The cardiovascular system comprises of the heart, blood and lymphatic system. The function of the heart is to pump blood around the body. Three main functions of the blood: transport, regulation, and protection. The protective role of lymphatic system.
презентация [430,1 K], добавлен 02.04.2012Theoretical bases of the economic and legal substantiation of realization of innovative activity. The technique of the estimation of the innovative project in public health services. Personnel management in scientific organizations, and life safety.
дипломная работа [70,4 K], добавлен 21.06.2010Business situations. Company's Activities. Increase in use of the Internet. The analysis of requirements of buyers. Kinds of activity of campaign. Manufacturers of the goods, suppliers of the goods and services. Commercial services also are direct.
лекция [11,4 K], добавлен 31.03.2009Russian Revolution and its influence on communist party of Australia. Association of communist organization of Australia and United States of America. Activity of the American students. Activity of group of commissions on a maintainance and access.
эссе [39,2 K], добавлен 23.06.2010Directions of activity of enterprise. The organizational structure of the management. Valuation of fixed and current assets. Analysis of the structure of costs and business income. Proposals to improve the financial and economic situation of the company.
курсовая работа [1,3 M], добавлен 29.10.2014