Глюконеогенез. Пентозофосфатный путь

Пентозофосфатный путь, называемый также гексомонофосфатным шунтом, служащий альтернативным путём окисления глюкозы. Гидрированные коферменты, снабжающие водородом биосинтетические процессы, окислительно-восстановительные реакции, включающие защиту клеток.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 14.02.2024
Размер файла 31,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

2

Размещено на http://www.allbest.ru/

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ

Кафедра биохимии и клинической лабораторной диагностики

Реферативная работа по дисциплине «Биохимия»

На тему: «Глюконеогенез. Пентозофосфатный путь»

Выполнил: студент медико-биологического факультета

Золотухин Никита Сергеевич

Проверил: профессор кафедры биохимии и КЛД

д.м.н. Байкеев Рустем Фрунзевич

Казань 2024

Пентозофосфатный путь превращения глюкозы

Пентозофосфатный путь, называемый также гексомонофосфатным шунтом, служит альтернативным путём окисления глюкозо-6-фосфата. Пентозофосфатный путь состоит из 2 фаз (частей) - окислительной и неокислительной.

В окислительной фазе глюкозо-6-фосфат необратимо окисляется в пентозу - рибулозо-5-фосфат, и образуется восстановленный NADPH.

В неокислительной фазе рибулозо-5-фосфат обратимо превращается в рибозо-5-фосфат и метаболиты гликолиза.

Пентозофосфатный путь обеспечивает клетки рибозой для синтеза пуриновых и пиримидиновых нуклеотидов и гидрированным ко-ферментом NADPH, который используется в восстановительных процессах.

Суммарное уравнение пентозофосфатного пути выражается следующим образом:

3 Глюкозо-6-фосфат + 6 NADP+ > 3 СО2 + 6 (NADPH + Н+) + 2 Фруктозо-6-фосфат + Глицеральдегид- 3 -фосфат.

Ферменты пентозофосфатного пути, так же, как и ферменты гликолиза, локализованы в цитозоле.

Наиболее активно Пентозофосфатный путь протекает в жировой ткани, печени, коре надпочечников, эритроцитах, молочной железе в период лактации, семенниках.

Окислительный этап

В окислительной части пентозофосфатного пути глюкозо-6-фосфат подвергается окислительному декарбоксилированию, в результате которого образуются пентозы. Этот этап включает 2 реакции дегидрирования.

Первая реакция дегидрирования - превращение глюкозо-6-фосфата в глюконолактон-6-фосфат - катализируется МАDР+-зависимой глюкозо-6-фосфатдегидрогеназой и сопровождается окислением альдегидной группы у первого атома углерода и образованием одной молекулы восстановленного кофермента NADPH.

Далее глюконолактон-6-фосфат быстро превращается в 6-фосфоглюконат при участии фермента глюконолактонгидратазы.

Фермент 6-фосфоглюконатдегидрогеназа катализирует вторую реакцию дегидрирования окислительной части, в ходе которой происходит также и декарбоксилирование. При этом углеродная цепь укорачивается на один атом углерода, образуется рибулозо-5-фосфат и вторая молекула гидрированного NADPH (рис. 7-62).

Восстановленный NADPH ингибирует первый фермент окислительного этапа пентозофосфатного пути - глюкозо-6-фосфатдегидрогеназу. Превращение NADPH в окисленное состояние NADP+ приводит к ослаблению ингибирования фермента. При этом скорость соответствующей реакции возрастает, и образуется большее количество NADPH.

Суммарное уравнение окислительного этапа пентозофосфатного пути можно представить в виде:

Глюкозо-6-фосфат + 2 NADP+ + Н2О > Рибулозо-5-фосфат + 2 NADPH + Н+ + СО2.

пентозофосфатный окисление глюкоза

Реакции окислительного этапа служат основным источником NADPH в клетках. Гидрированные коферменты снабжают водородом биосинтетические процессы, окислительно-восстановительные реакции, включающие защиту клеток от активных форм кислорода. NADPH как донор водорода участвует в анаболических процессах, например в синтезе холестерина. Это источник восстановительных эквивалентов для цитохрома Р450, катализирующего образование гидроксильных групп при синтезе стероидных гормонов, жёлчных кислот, при катаболизме лекарственных веществ и других чужеродных соединений (см. разделы 8, 11, 12). Высокая активность фермента глюкозо-6-фосфатдегидрогеназы обнаружена в фагоцитирующих лейкоцитах, где NADPH-оксидаза использует восстановленный NADPH для образования супероксидного иона из молекулярного кислорода. Супероксидный ион генерирует другие активные формы кислорода, под действием которых и повреждаются молекулы ДНК, белков, липидов бактериальньж клеток. Синтез жирных кислот из углеводов в печени является основным путём утилизации NADPH и обеспечивает регенерацию окисленной формы NADP+. В печени глюкозо-6-фосфатдегидрогеназа, как и ключевые ферменты гликолиза и биосинтеза жирных кислот, индуцируется при увеличении соотношения инсулин/глюкагон после приёма богатой углеводами пищи.

Несмотря на то, что NADPH образуется также при окислении малата до пирувата и диоксида углерода (при участии НАDР+-зависимой малатдегидрогеназы) и дегидрировании изо-цитрата (при участии НАВР+-зависимой изоцитратдегидрогеназы), в большинстве случаев потребности клеток в восстановительных эквивалентах удовлетворяются за счёт пентозофосфатного пути.

Реакции окислительного пути протекают только в том случае, если восстановленный кофермент NADPH возвращается в исходное окисленное состояние NADP+ при участии NADPH-зависимых дегидрогеназ (т.е. при условии использования гидрированного NADPH в восстановительных процессах). Если потребности клетки в NADPH незначительны, рибо-зо-5-фосфат образуется в результате обратимых реакций неокислительного этапа пентозофосфатного пути, используя в качестве исходных веществ метаболиты гликолиза - глицеральдегид-3-фосфат и фруктозо-6-фосфат.

Неокислительный этап

Неокислительный этап пентозофосфатного пути включает серию обратимых реакций, в результате которых рибулозо-5-фосфат превращается в рибозо-5-фосфат и ксилулозо-5-фосфат, и далее за счёт переноса углеродных фрагментов в метаболиты гликолиза - фруктозо-6-фосфат и глицеральдегид-3-фосфат. В этих превращениях принимают участие ферменты: эпимераза, изомераза, транскетолаза и трансальдолаза. Транскетолаза в качестве кофермента использует тиаминдифосфат. Неокислительный этап пентозофосфатного пути не включает реакции дегидрирования и поэтому используется только для синтеза пентоз.

Рибулозо-5-фосфат служит субстратом для двух ферментов. Фермент рибулозо-5-фосфат-З-эпимераза изменяет стехиометрическое положение одной ОН-группы у третьего атома углерода, превращая рибулозо-5-фосфат в ксилулозо-5-фосфат. Другой фермент - рибулозо-5-фосфатизомераза - катализирует превращение рибулозо-5-фосфата в рибозо-5-фосфат (рис. 7-63). Рибозо-5-фосфат, образующийся в неокислительной фазе, обеспечивает клетки рибозой, необходимой для синтеза нуклеотидов, которые служат предшественниками и структурными компонентами ко-ферментов дегидрогеназ и нуклеиновых кислот.

Ферменты транскетолаза и трансальдолаза катализируют перенос двух- и трёхуглеродных фрагментов, соответственно используя в качестве донора углеродных фрагментов кетозу, а альдозу - в качестве акцептора. Эти реакции протекают в 2 этапа: сначала происходит отщепление углеродного фрагмента от молекулы-донора, -а затем - перенос этого фрагмента на молекулу, выполняющую роль акцептора. Транскетолаза в неокислительной фазе пентозофосфатного пути катализирует 2 реакции. В первой реакции (рис. 7-64) транскетолаза расщепляет связь С-С между кетогруппой и соседним атомом углерода в молекуле ксилулозо-5-фосфат, в результате чего кетосахар превращается в альдозу, глицеральдегид-3-фосфат, содержащую на 2 атома углерода меньше. Образующийся после расщепления двухуглеродный фрагмент остаётся ковалентно связанным в каталитическом центре фермента с коферментом тиаминдифосфатом. Далее фермент переносит двухуглеродный фрагмент на альдегидную группу альдосахара, образую новую кетозу - седргептулозо-7-фосфат.

Трансальдолаза переносит трёхуглеродный фрагмент от седогептулозо-7-фосфата на глицеральдегид-3-фосфат, образуя эритрозо-4-фосфат и фруктозо-6-фосфат (рис. 7-65).

Эта реакция подобна реакции альдольного расщепления гликолитического пути, за исключением того, что в данном случае трёхуглеродный фрагмент, содержащий кетогруппу, переносится на альдосахар глицеральдегид-3-фосфат, а в гликолитическом пути кетофрагмент высвобождается в виде дигидроксиацетонфосфата.

В следующей реакции, катализируемой транс-кетолазой, происходит перенос двухуглеродного фрагмента от ксилулозо-5-фосфата на эритрозо-4-фосфат. Продуктами этой реакции являются фруктозо-6-фосфат и глицеральдегид-3-фосфат (рис. 7-66).

Так как все реакции неокислительного этапа обратимы, образование рибозо-5-фосфата может происходить не только в результате изомерного превращения продукта окислительной фазы пентозофосфатного пути рибулозо-5-фосфата в рибозо-5-фосфат под действием изомеразы, но также и из промежуточных продуктов гликолиза - фруктозо-6-фосфата и глицеральдегид-3-фосфата. Последовательность превращений, приводящих к образованию рибозо-5-фосфата из таких продуктов гликолитического пути, можно представить в виде:

2 Фруктозо-6-фосфат + Глицеральдегид-3-фосфат > 2 Ксилулозо-5-фосфат + Рибозо-5-фосфат 2 Ксилулозо-5-фосфат > 2 Рибулозо-5-фосфат 2 Рибулозо-5-фосфат > 2 Рибозо-5-фосфат.

Суммарный результат метаболизма 3 молекул рибулозо-5-фосфата в неокислительной фазе пентозофосфатного пути - образование 2 молекул фруктозо-6-фосфата и 1 молекулы глицеральдегид-3-фосфата. Далее фруктозо-6-фосфат и глицеральдегид-3-фосфат могут превратиться в глюкозу. С учётом стехиометрического коэффициента, равного 2, для образования 5 молекул глюкозы (содержащих 30 атомов углерода) потребуются 4 молекулы фруктозо-6-фосфата и 2 молекулы глицеральдегид-3-фосфата (в сумме содержащие также 30 атомов углерода) или, соответственно, 6 молекул рибулозо-5-фосфата. Таким образом, неокислительный путь можно представить как процесс возвращения пентоз в фонд гексоз.

Пентозофосфатный цикл

Окислительный этап образования пентоз и неокислительный этап (путь возвращения пентоз в гексозы) составляют вместе циклический процесс.

Такой процесс можно описать общим уравнением:

6 Глюкозо-6-фосфат + 12 NADP+ + 2 Н2О > 5 Глюкозо-6-фосфат + 12 NADPH +12 Н+ + 6 СO2.

Это означает, что из 6 молекул глюкозы образуются 6 молекул рибулозо-5-фосфат (пентозы) и 6 молекул СО2. Ферменты неокислительной фазы превращают 6 молекул рибулозо-5-фосфат в 5 молекул глюкозы (гексозы). При последовательном проведении этих реакций единственным полезным продуктом является NADPH, образующийся в окислительной фазе пентозофосфатного пути. Такой процесс назьюают пентозофосфатным циклом.

Протекание пентозофосфатного цикла позволяет клеткам продуцировать NADPH, необходимый для синтеза жиров, не накапливая пентозы.

Энергия, выделяющаяся при распаде глюкозы, трансформируется в энергию высокоэнергетического донора водорода - NADPH. Гидрированный NADPH служит источником водорода для восстановительных синтезов, а энергия NADPH преобразуется и сохраняется во вновь синтезированных веществах, например жирных кислотах, высвобождается при их катаболизме и используется клетками.

ГЛЮКОНЕОГЕНЕЗ (от греч. glykys-сладкий, neos-новый и genesis-рождение, происхождение), синтез моносахаридов (гл. обр. глюкозы) из неуглеводных предшественников, происходящий в живыхклетках под действием ферментов.

Глюконеогенез осуществляется в направлении, обратном гликолизу. Большинство стадий этих двух процессов совпадают и катализируются одинаковыми ферментами. Исключение -- необратимые р-ции II-IV (см. схему в ст. Гликолиз), к-рые в глюконеогенезе протекают обходными путями. Так, синтез фосфоенол-пировиноградной к-ты из пировиноградной (р-ция IV) осуществляется след. образом: где АТФ-аденозинтрифосфат, АДФ-аденозиндифосфат, НАДН и НАД-соотв. восстановленная и окисленная формы кофермента никотинамидадениндинуклеотида, ГТФ - гуанозинтрифосфат, ГДФ-гуанозиндифосфат. Первая и вторая стадии этого процесса протекают в митохондриях. Образовавшаяся яблочная к-та способна проникать через мембрану митохондрий в цитоплазму и участвовать в дальнейших превращениях. У растений и бактерий обнаружены ферменты, осуществляющие синтез фосфоенолпиро-виноградной к-ты без промежут. стадий, а у нек-рых животных он протекает полностью в митохондриях, откуда эта к-та поступает в цитоплазму для участия в дальнейших р-циях глюконеогенеза. В цитоплазме может осуществляться также восстановительное карбоксилирование пировиноградной к-ты с образованием яблочной.

Фруктозо-6-фосфат образуется в результате необратимого гидролиза фруктозо-1,6-дифосфата. Глюкозо-6-фосфат дефосфорилируется с образованием глюкозы или превращ. в глюкозо-1-фосфат-ключевое промежут. соед. в синтезе углеводов.

Синтез одной молекулы глюкозы м. б. выражен суммарным ур-нием:

2СН3С(O)СООН + 2НАДН + 4АТФ + 2ГТФ -> -> С6Н12О6 + 2НАД + 4АДФ + 2ГДФ + 6Н3РО4

Кроме пировиноградной или молочной к-ты предшественниками глюкозы м. б. глицерин, а такжеаминокислоты, к-рые в результате превращений, происходящих в цикле трикарбоновых к-т иглиоксилатном цикле, образуют пировиноградную и фосфоенолпировиноградную к-ты. Растения и микроорганизмы могут синтезировать углеводы также из жирных к-т через ацетилкофермент А.

Осн. пункты контроля глюконеогенеза-регуляция синтезов фосфоенол-пировиноградной к-ты и глюкозо-6-фосфата. Первая р-ция катализируется пируваткарбоксилазой (активируется ацетилированным коферментом А), вторая - фруктозо-бис-фосфатазой (ингибируется аденозинмонофосфатом и активируется АТФ). Регуляция глюконеогенеза в организме человека и животных осуществляется также гормонами, напр. инсулин тормозит синтез ферментов глюконеогенеза, катехоламины, глюкагон и адренокортикотропин стимулируют глюконеогенез в печени, а паратиреоидный гормон-в почках.

Размещено на Allbest.ru

...

Подобные документы

  • Окислительно-восстановительные реакции, идущие с образованием молекулы АТФ. Облигатные аэробы, облигатные анаэробы, факультативные анаэробы. Рост и размножение бактерий. Пигменты и ферменты бактерий. Основные принципы культивирования микроорганизмов.

    реферат [12,8 K], добавлен 11.03.2013

  • Химическая классификация углеводов: полигидроксикарбонильные соединения. Свойства и структура моносахаридов, их химические свойства. Реакции брожения и их применение. Биосинтетические реакции углеводов. Производные моносахаров, гликозиды и их биосинтез.

    реферат [5,4 M], добавлен 27.08.2009

  • Окислительные реакции, происходящие в биологических объектах и обеспечивающие их энергией и метаболитами для осуществления процессов жизнедеятельности. Функции и ферменты биологического окисления, а также особенности микросомальной дыхательной цепи.

    презентация [5,8 M], добавлен 13.10.2013

  • Преобразование энергии в мышцах. Креатинфосфатый путь образования АТФ. Создание ступенчато повышающейся физической нагрузки. Статистическая обработка результатов исследования. Уровень инсулина, глюкоза и трактата в сыворотке крови спортсменов экстра.

    дипломная работа [110,9 K], добавлен 15.12.2008

  • Креатинфосфатный путь ресинтеза АТФ (офеатинкиназный, алактатный), его биохимическая оценка. Уравнение анаэробного расщепления гликогена. Аэробный путь ресинтеза аденозинтрифосфата. Биохимические изменения в мышцах, головном мозге, печени, крови, моче.

    курсовая работа [367,0 K], добавлен 19.12.2012

  • Методика и задачи проведения урока биологии на тему: "Строение клеток", а также формы работы с учащимися. Сравнительная характеристика прокариотических и эукариотических клеток. Структура, назначение и функции основных органоидов клеток живых организмов.

    конспект урока [34,4 K], добавлен 16.02.2010

  • Биохимические показатели эритроцитов в условиях хранения в присутствии раствора глюкозы. Строение и дифференцировка эритроцитов, биохимические процессы при их созревании и старении. Реакция оксигенации, углеводный обмен. Получение гемолизата эритроцитов.

    дипломная работа [150,5 K], добавлен 20.03.2011

  • Ферменты, или энзимы - белковые молекулы или их комплексы, ускоряющие химические реакции в живых системах; коферменты и субстраты: история изучения, классификация, номенклатура, функции. Структура и механизм действия ферментов, их биомедицинское значение.

    презентация [2,2 M], добавлен 07.12.2014

  • Общие закономерности постсинтетической модификации белков. Процессы ковалентной модификации на уровне аминокислотных радикалов. Процессы, не включающие образование дериватов аминокислот. Посттрансляционное карбоксилирование остатков глутаминовой кислоты.

    реферат [242,9 K], добавлен 10.12.2011

  • Рассмотрение глюкозы как одного из основных энергетических ресурсов живого организма. Регулирование гормонами, вырабатываемыми разными железами, обмена глюкозы в организме и поддержании ее нормального уровня в крови. Сахарный диабет и гипогликемия.

    курсовая работа [1,0 M], добавлен 21.04.2012

  • Стандартные свободные энергии химических реакций, их вычисление. Измерение стандартного окислительно-восстановительного потенциала. Структура отдельной митохондодрии. Энергии ковалентных связей. Первый этап разложения глюкозы в клетках - гликолиз.

    реферат [5,9 M], добавлен 06.09.2015

  • Понятие и значение регуляции как направленного изменения интенсивности работы клеток, тканей, органов для достижения результата и удовлетворения потребностей организма. Типы регуляции и саморегуляции, а также системы, отвечающие за данные процессы.

    презентация [31,4 K], добавлен 15.02.2014

  • Влияние рН на биологические процессы. Подходы к биохимическому исследованию. Изотонические солевые растворы. Стадии фракционирования клеток. Перфузия изолированных органов. Культуры тканей и клеток. Зависимость ионизации аминокислот и белков от рН.

    реферат [1,6 M], добавлен 26.07.2009

  • Изучение фотосинтеза с момента его открытия Д. Пристли. Краткая хронология открытий ХХ в. в области фотосинтеза. Идея Тимирязева о непосредственном участии хлорофилла в акте фотосинтеза, обратимые окислительно-восстановительные превращения пигмента.

    реферат [21,3 K], добавлен 08.03.2011

  • Основные функции бокаловидных клеток как клеток эпителия слизистой оболочки кишечника и других органов позвоночных животных и человека. Форма клеток и особенности их локализации. Секрет бокаловидных клеток. Участие бокаловидных клеток в секреции слизи.

    реферат [2,9 M], добавлен 23.12.2013

  • Основные разновидности живых клеток и особенности их строения. Общий план строения эукариотических и прокариотических клеток. Особенности строения растительной и грибной клеток. Сравнительная таблица строения клеток растений, животных, грибов и бактерий.

    реферат [5,5 M], добавлен 01.12.2016

  • Клетка как единая система сопряженных функциональных единиц. Гомологичность клеток. Размножение прокариотических и эукариотических клеток. Роль отдельных клеток во многоклеточном организме. Разнообразие клеток в пределах одного многоклеточного организма.

    реферат [28,6 K], добавлен 28.06.2009

  • Этапы эволюции первейших земных организмов, их свойства и порядок деления клеток. Дискретные модели циклов жизни. Индивидуальное развитие клеток прокариотов и его этапы. Рекуррентная модель старения Маккендрика фон Фёрстера, процессы отбора в ней.

    реферат [1,5 M], добавлен 30.08.2009

  • Химический состав клеток, функции внутриклеточных структур, функции клеток в организме животных и растений, размножение и развитие клеток, приспособления клеток к условиям окружающей среды. Положения клеточной теории по М. Шлейдену и Т. Шванну.

    презентация [1,3 M], добавлен 17.12.2013

  • Клон – группа клеток и организмов, происшедших от общего предка путём бесполого размножения и являющихся генетически идентичными. История клонирования и основные открытия. Положительные и отрицательные стороны клонирования. Взгляды людей на этот процесс.

    реферат [151,9 K], добавлен 09.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.