Phylogeny of Judolia Mulsant, 1863 (coleoptera: cerambycidae)
Judolia Mulsant is a small Holarctic genus, the range of which covers Europe, North and East Asia and North America. Within the range there are several centers of diversification, to which species characterized by morphological differences are confined.
Рубрика | Биология и естествознание |
Вид | статья |
Язык | английский |
Дата добавления | 10.10.2024 |
Размер файла | 2,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Phylogeny of Judolia Mulsant, 1863 (coleoptera: cerambycidae)
Andrew M. Zamoroka
Andrew M. Zamoroka, PhD, Associate Professor
Department of Biology and Ecology, Vasyl Stefanyk Precarpathian National University,
Ivano-Frankivsk,
Андрій М. Заморока. Філогенія роду квіткарка (Coleoptera: Cerambycidae: Judokia). Журнал Прикарпатського університету імені Василя Стефаника, 10 (2023), 63-75.
Judolia Mulsant, 1863 - невеликий голаркичний рід, ареал якого охоплює Європу, Північну і Східну Азію, Північну Америку. В межах ареалу існують декілька центрів диверсифікації, приурочені до яких види характеризуються значними морфологічними відмінностями. Це свідчить про реліктовість самого роду і його складні філогеографічну й еволюційну історії. У зв'язку з цим таксономія роду залишається проблематичною і нерозв'язаною. У сучасних морфо-таксономічних працях існує два кардинально протилежні бачення Judolia: монофілетичність і поліфіліфілетичність роду. У той час як працях з молекулярної філогенії завжди відмічається монофілетичність роду Judolia. Мета чинного дослідження полягає у остаточному вирішенні таксономічної дискусії довкола Judolia, поєднавши передові молекулярні філогенетичні та класичні морфологічні методи. Ключовим результатом наших досліджень стало підтвердження монофілетичного бачення Judolia шляхом одно- та мультигенного філогенетичного аналізів. Для одногенного аналізу було використано 658-ми нуклеотидові фрагменти І-ї субодиниці мітохондрієвого гену цитохром с оксидази (COI). Для мультигенного аналізу застосовувалась комбінація консенсусних секвенсів двох мітохондрієвих (16s rRNA, COI) та одного ядрового (28S rRNA) генів. В результаті було отримано філогенетичні максимально ймовірні дерева з високими ступенями підтримки гілок. Топографічно філогенетичні дерева розділені на три великі клади, які представляють три морфологічно відмінні групи роду Judolia. Синтез молекулярних і морфологічних даних дав нам можливість встановити внутрішньородову структуру Judolia, розподіливши її на чотири підроди: Pachytodes nom. & stat. res., Florijudolia subgen. nov., Judolia, Sierrojudolia subgen. nov. Окрім того, генетична і морфологічна подібності родів Oedecnema і Judolidia стали визначальними для поміщення їх у підрід Judolia. У свою чергу підрід Judolia розділено на чотири інфрароди: Boreojudolia infragen. nov., Oedecnema stat. nov., Judolia, Judolidia stat. nov. Також подано нову загальну схему внутрішньородової таксономії Judolia рівно як і ключі до її визначення.
Ключові слова: скрипунові жуки, молекулярна філогенія, мультигенний аналіз, еволюція, кладистика, інтегративна таксономія.
Abstract
judolia mulsant coleoptera cerambycidae
Judolia Mulsant, 1863 is a small Holarctic genus, the range of which covers Europe, North and East Asia and North America. Within the range there are several centers of diversification, to which species characterized by significant morphological differences are confined. This indicates the relict nature of the genus as a whole and its complex phylogeographic and evolutionary history. Because of this, the taxonomy of the genus remains problematic and unresolved. In modern morpho-taxonomic publications, there are two radically opposite visions of Judolia: 1) genus is monophyletic and 2) genus is polyphyletic. While publications on molecular phylogeny always note the monophyletic nature of the genus Judolia. The aim of the current study is to finally resolve the taxonomic debate surrounding Judolia by combining advanced molecular phylogenetic and classical morphological methods. The key result of our study was the confirmation of the monophyletic view of Judolia by means of single- and multigene phylogenetic analysis. For single-gene analysis, 658 nucleotide fragments of the 1st subunit of the mitochondrial cytochrome c oxidase (COI) gene were used. A combination of consensus sequences of two mitochondrial (16s rRNA, COI) and one nuclear (28S rRNA) genes was used for multigene analysis. As a result, the most likelihood phylogenetic trees with a high degree of branch support were obtained. Topographically, the phylogenetic trees are divided into three large clades, which represent three morphologically distinct groups of the genus Judolia. The synthesis of molecular and morphological data allowed establishing the intrageneric structure of Judolia, dividing it into four subgenera: Pachytodes nom. & stat. res., Florijudolia subgen. nov., Judolia, Sierrojudolia subgen. nov. In addition, the genetic and morphological similarity of the genera oedecnema and Judolidia became decisive for their assignment to the subgenus Judolia. In turn, the subgenus Judolia is divided into four infragenera: Boreojudolia infragen. nov., Oedecnema stat. nov., Judolia, Judolidia stat. nov. A new scheme of the intrageneric taxonomy of Judolia is also presented, as well as keys to its morphological identification.
Keywords: the longhorn beetles, molecular phylogeny, multigene analysis, evolution, cladistics, integrative taxonomy.
INTRODUCTION
The longhorn beetles (Cerambycidae) are the one of the most divers families of beetles, comprising near 33 thousand species worldwide (Slipinski & Escalona, 2013; Wang, 2017; Zamoroka et al., 2022). Morphological and ecological variability of the longhorn beetles exhibits the multidirectional evolutionary processes, starting from adaptive radiation and multiple mimicry, ending with numerous cases of homoplasy and convergence (Zamoroka, 2022 b). Such enormous diversity requires extraordinary approaches to solving problems related to their systematics. Modern biology offers a number of advanced molecular tools (Hebert et al., 2003; Pentinsaari et al., 2016) that, in combination with classic and computational morphological and anatomical studies, create a new and better opportunities for the implementation of integrative taxonomy in general, and for the longhorn beetles in particular (Zamoroka et al., 2022).
Judolia Mulsant, 1863 is a genus within tribe Lepturini in the subfamily Lepturinae (Zamoroka, 2022 a; Monne & Nearns, 2023). Judolia widespread within Holarctic, including Europe, North and East Asia, North America (Nakane & Ohbayashi, 1957; Danylevsky, 2014; Vitali, 2018; Monne & Nearns, 2023). Despite the fact that Judolia is a small genus (18 species), within its range it forms separate, isolated centers of species diversity. This indicates a fairly significant evolutionary age and intricate history of the genus. Due to this, historically, different interpretations of the Judolia taxonomy have developed. Today, there are two diametrically opposed visions of the internal taxonomy of the genus Judolia: 1) monophyly (Ozdikmen, 2011; Vitali, 2018) and 2) polyphyly (Sama, 2003; Lobl & Smetana, 2010; Danilevsky, 2014). This creates significant difficulties for faunistic works, since one or another researcher has to choose one of the existing systems of the genus, which at the same time contradict each other.
The few available molecular studies, mostly cursory on the genus Judolia, support its monophyly (Sykorova, 2008; Semaniuk & Zamoroka, 2020; Zamoroka et al., 2022). In addition, particular studies show that genera such as Oedecnema Dejean, 1835 and Judolidia Plavilstshikov, 1936 should be considered as part of the genus Judolia (Semaniuk & Zamoroka, 2020; Zamoroka et al., 2022). Solving the question of the internal phylogeny of Judolia and establishing natural taxonomy is an important task of modern taxonomy of the longhorn beetles.
The current study presents the results of the most comprehensive phylogenetic analysis that confirms the monophyly of the genus Judolia with its congeners Oedecnema and Judolidia.
MATERIALS AND METHODS
To resolve the intrageneric phylogenetic relationships of Judolia, we used 102 partial gene sequences (Tab. 1), representing the mitochondrial genes 16S ribosomal RNA (16S rRNA) and cytochrome c oxidase subunit I (COI) and nuclear gene 28S ribosomal RNA (28S rRNA). Only COI sequences available for each individual were used for broad phylogenetic analysis. This made it possible to trace the distribution of specimens by species and confirm the correctness of the final identification. It also demonstrated the wide intraspecies variability of single nucleotide substitutions. To eliminate this factor, where possible, consensus sequences were generated and used together with 16S rRNA and 28S rRNA gene sequences to construct a hybrid tree (for details see Zamoroka et al., 2022).
Analysis was performed using Seaview 5.0, a multi-platform software for multiple sequence alignment, molecular phylogenetic analyses, and tree reconciliation (Gouy et al., 2021).
The Multiple alignments were generated using the MUSCLE (Multiple Sequence Comparison by Log-Expectation) algorithm built into Seaview 5.0. Alignments were revised and edited manually to correct regions containing missing data and to exclude unalignable positions.
Phylogenetic trees were constructed using maximum-likelihood methods with PhyML algorithm (Guindon et al., 2010). Analyses were performed following a general time-reversible (GTR) model of sequence evolution with approximate likelihood-ratio test (aLRT) for branch support based on the Log Ratio between the likelihood value of the current tree and that of the best alternative (Anisimova & Gascuel, 2006; Guindon et al., 2010). The optimal tree's structure was estimated using the best combination of nearest-neighbor interchange (NNI) and Subtree Pruning Regrafting (SPR) algorithms. The neighbor-joining algorithm (BioNJ) optimizing trees topology for estimation of branch distances was used (Gascuel, 1997).
Table 1. The GenBank accession numbers of genes sequences used in the study |
||
Species |
Voucher number |
|
Judolia cerambyciformis |
HQ954555.1; MH115502.1; KU916580.1; KU916384.1; KU912066.1; KU909940.1; KU908754.1; KU908370.1; KU906517.1; KM286357.1; KM451327.1; KM451035.1; KM449455.1; KM448066.1; KM446449.1; KM445280.1; KM445175.1; KM441882.1; KM441504.1 |
|
Judolia cometes |
LC733226.1; OP562678.1 |
|
Judolia cordifera |
MN556948 |
|
Judolia erratica |
KM445976.1 |
|
Judolia instabilis |
MW597084.1 |
Judolia montivagans MF635948.1; KM850814.1; KM849403.1; KM849195.1; KM848332.1;
KM847151.1; KM847126.1; KM842964.1; KM842910.1; KM842500.1; KM842277.1; KM842171.1; KM845560.1; JF888507.1; JF888506.1; JF888505.1; JF888504.1; JF888503.1; JF888502.1; HQ961913.1; KR915309.1; KU875313.1; KU875312.1; KU875311.1; AY165712.1
Judolia quadrata |
KM841928.1; KM845861.1; KU875314.1 |
|
Judolia sexmaculata |
HM034788.1; KM445106.1; KM444180.1; KM443765.1; KJ963423.1; KJ963030.1; KJ967085.1; KJ965124.1; HQ559267.1; HM046539.1 |
|
Judolidia bangi |
HM034785.1; MW983329.1; HM046536.1 |
|
Oedecnema gebleri |
HM034778.1; MN905230.1; OL663430.1; OL663429.1; OL663428.1; KY683625.1; HM046530.1; MN851222.1 |
|
Anoplodera sexguttata |
KU912642.1 |
|
Anoploderomorpha izumii |
FJ559044.1 |
|
Anastrangalia dubia sequensi |
HM034772.1; KY683642.1; AF332923.1; MN609573.1; HM046524.1 |
|
Cerambyx cerdo |
HQ954095.1 |
|
Cerambyx scopolii |
JF889538.1 |
|
Gibbocerambyx aurovirgatus |
KF737736.1; KF737799.1; KF142115.1 |
|
Hemadius oenochrous |
AB703463.1; AB703463.1 |
|
Leptura annularis |
HM034792.1; HQ954574.1; KY683714.1; KY683632.1; KU914996.1; KM443478.1; KM451359.1; HM046542.1 |
|
Leptura aurosericans |
KF737720.1; KF737783.1; KF142136.1 |
|
Leptura duodecemguttata |
HQ832604.1; KY683662.1; HQ832607.1 |
|
Leptura quadrifasciata |
KU919023.1 |
RESULTS
One gene phylogeny. Pairwise similarity/difference analysis of COI sequences (Fig. 1) revealed two groups of species with the most similar sequences. The first group constitute of three species including Oe. gebleri, J. sexmaculata and J. montivagans with 89,1% of average similarity level. The most similar sequences (91.5%) were observed between Oe. gebleri and J. sexmaculata. The species pair of J. sexmaculata and J. montivagans similar on 87,8% and pair J. sexmaculata and J. montivagans showed 88,0% of similarity.
Figure 1. Pairwise percentage variation in COI sequences within the studied species
The second group is represented by three other species including J. quadrata, J. cometes and J. cordifera, for which the average COI similarity level was 87.9%. Judolia quadrata and J. cometes were the most similar pairs - 89.0%, then J. quadrata and J. cordifera - 89.0%, and finally J. cometes and J. cordifera - 86%.
The two groups the most distinct from the other species are: 1) J. bangi and 2) J. erratica and J. cerambyciformis. The average level of sequence divergence of J. bangi is 19.53%, with the highest divergence observed in pairs with: J. quadrata - 20.8%, J. cordifera - 20.1% and J. cerambyciformis - 20.6%. In the second group, J. erratica shows the highest level of differences from the other species, especially of J. quadrata - 21.4%, J. cometes - 20.3% and J. cordifera - 20.5%.
The resultant analysis of the 71 sequence of 658-nucleotide fragments of the mitochondrial COI gene, the most likelihood phylogenetic tree (Fig. 2) of the relationship of the studied species was obtained. The key consequence from this was the proof of monophyly of the genus Judolia. The phylogenetic tree of Judolia consists of 4 clades with a high degree of monophyletic support SH=0.98. Topographically, the resulting phylogenetic tree is clearly divided into two basal and two crown clades.
Figure 2. COI tree illustrating the phylogenetic hypothesis of relationships within genus Judolia; the branch support SH-like values are shown with the threshold rule SH>0.50
Basal clades represent two groups of species: 1) J. erratica and J. cerambyciformis (SH=0.90) and 2)
J. bangi (SH=0.50). The clade of J. erratica and J. cerambyciformis is the most ancient in evolutionary terms in the genus Judolia. It is probably a relict group represented by a very limited number of species. The revealed position of the J. bangi clade is weakly confirmed by the approximate likelihood ratio test (SH=0.50). This may indicate the inadequacy of using only one gene (COI) to establish real phylogenetic relationships for J. bangi among Judolia.
The crown group of our phylogenetic tree consists of two other sister clades: 1) J. cordifera, J. cometes and J. quadrata (SH=0.99) and 2) J. montivagans, J. sexmaculata and Oe. gebleri (SH=0.96). Both clades are evolutionarily progressive and represent species-rich groups within Judolia. It should be noted that in the J. montivagans + J. sexmaculata + Oe. gebleri clade, Oe. gebleri is the terminal taxon, which makes the clade paraphyletic in relation to the existing taxonomy.
Multigene phylogeny. The hybrid phylogenetic tree (Fig. 3), constructed by combining consensus sequences for three genes (16S rRNA+COI+28S rRNA), showed the monophyly of the genus Judolia. Three clades constituted the phylogenetic tree. These include the first clade J. erratica + J. cerambyciformis (SH=0.88), the second clade J. cordifera + J. quadrata + J. cometes + J. instabilis (SH=1.00) and the third clade J. montivagans + Oe. gebleri + J. sexmaculata + J. bangi (SH=0.93).
Like in the phylogenetic tree based on only COI gene, the basal clade of the hybrid phylogenetic tree is the first clade represented by the two species J. erratica and J. cerambyciformis. The crown part of the obtained phylogenetic tree consists of the second and the third clades.
The main difference between COI and three genes hybrid tree is the position of J. bangi. According to the results of the multigene analysis, J. bangi is part of the third clade, grouping with J. sexmaculata and Oe. gebleri. These three species, according to the consensus sequences of the three genes 16S rRNA+COI+28S rRNA, show significant similarity each other. In particular, the level of similarity for the pair J. bangi and J. sexmaculata was 91.8%; for J. sexmaculata and Oe. gebleri was 92.8%; Oe. gebleri and J. bangi was 88.7%. These are significantly higher similarity scores than for a single COI gene (Fig. 1). That is, the additional contribution of both mitochondrial and nuclear ribosomal 16S rRNA and 28S rRNA genes to the overall similarity statistics makes it possible to determine the phylogenetic position of J. bangi more clearly with greater confidence. In general, the terminal taxon of the third clade is J. bangi, not Oe. gebleri as shown in the COI tree. It should be emphasized that all three mentioned species are distributed in the Palearctic, while the fourth species of the third clade, J. montivagans, is distributed in the Nearctic and occupies basal most position. This demonstrates the complex phylogeographic history and intricate evolutionary patterns of the third clade.
Figure 3. The hybrid three genes (16S rRNA+COI+28S rRNA) tree based on consensus sequences illustrating the phylogenetic hypothesis of relationships within genus Judolia; the branch support SH-like
values are shown with the threshold rule SH>0.50
Taxonomical revision of Judolia. Based on the results of the phylogenetic analysis, as well as morphological data, we propose solution to the intrageneric taxonomy of Judolia. Thus, the genus Judolia consists of at least four subgenera, three of which established on the combination of molecular and morphological and one exceptionally on morphological data. Three species namely Judolia impura (LeConte, 1857), Judolia japonica (Tamanuki, 1943), Judolia miyatakei N. Ohbayashi & Bi, 2020 remain unclassified due to lack of study material. The proposed system is shown below (synonymy is omitted).
Genus Judolia Mulsant, 1863 1.1. Subgenus Pachytodes Pic, 1891 nom. & stat. res.
Subordinated taxa:
Judolia (Pachytodes) cerambyciformis (Schrank 1781)
Judolia (Pachytodes) erraticus (Dalman, 1817)
1.2. Subgenus Florijudolia subgen. nov.
Description / Diagnosis: Pronotum bell-shaped, laterally tuberculated (Fig. 4 c). Pronotal posterior margin with a clearly defined wide transverse furrow, interrupted in the middle.
Type species: Judolia quadrata (LeConte, 1873)
Etymology: From Latin flos and generic name Judolia - flower Judolia.
Subordinated taxa:
Judolia (Florijudolia) cordifera (Olivier, 1800) comb. nov.
Judolia (Florijudolia) cometes (Bates, 1884) comb. nov.
Judolia (Florijudolia) instabilis (Haldeman, 1847) comb. nov.
Judolia (Florijudolia) quadrata (LeConte, 1873) comb. nov.
Morphologically suggested species:
Judolia (Florijudolia) gaurotoides (Casey, 1893) comb. nov.
Judolia (Florijudolia) bottcheri (Pic, 1911) comb. nov.
Judolia (Florijudolia) longipes (Gebler, 1832) comb. nov.
Subgenus Judolia Mulsant, 1863
Subordinated taxa:
1.3.(1). Infragenus Boreojudolia infragen. nov.
Description / Diagnosis: Scutellum deeply sunken between the bases of the elytra. Type species: Judolia montivagans (Couper, 1864)
Etymology: From Ancient Greek Bopedg and generic name Judolia - northern Judolia.
(1).1. Judolia (Judolia / Boreojudolia) montivagans (Couper, 1864) comb. nov.
1.3.(2). Infragenus Oedecnema Dejean, 1835 stat. nov.
(2).1. Judolia (Judolia / Oedecnema) gebleri (Ganglbauer, 1887) comb. nov.
(3). Infragenus Judolia Mulsant, 1863
(3).1. Judolia (Judolia / Judolia) sexmaculata (Linnaeus, 1758) comb. nov. Morphologically suggested species:
(3).2. Judolia (Judolia / Judolia) dentatofasciata (Mannerheim, 1852) comb. nov.
1.3.(4). Infragenus Judolidia Plavilstshikov, 1936 stat. nov.
(4).1. Judolia (Judolia / Judolidia) bangi (Pic, 1901) comb. nov. Morphologically suggested species:
(4).2. Judolia (Judolia / Judolidia) znojkoi (Plavilstshikov, 1936) comb. nov.
1.4. Subgenus Sierrojudolia subgen. nov.
Description / Diagnosis: Pronotum subspherical with evenly rounded lateral side, without a distinct tubercle (Fig. 4 b). Pronotal posterior margin without transverse furrow. Males bear a pair of metasternal tooth-like structures - a secondary sexual feature.
Type species: Judolia scapularis (Van Dyke, 1920)
Etymology: From Spanish Sierra and generic name Judolia - mountain Judolia. The species of Sierrojudolia are widespread within the Sierra Nevada - mountains in the west of North America.
Morphologically suggested species:
Judolia (Sierrojudolia) scapularis (Van Dyke, 1920) comb. nov.
Judolia (Sierrojudolia) sexspilota (LeConte, 1859) comb. nov.
Judolia (Sierrojudolia) swainei (Hopping, 1922) comb. nov.
1.5. Judolia incertae sedis
Judolia impura (LeConte, 1857)
Judolia japonica (Tamanuki, 1943)
Judolia miyatakei N. Ohbayashi & Bi, 2020
Key to Judolia subgenera.
Pronotum subspherical, laterally evenly rounded, without a distinct tubercle (Fig. 4 a, b) (2)
Pronotum of a different shape (3)
Pronotal posterior margin without transverse furrow (Fig. 4 b). Males bear metasternal teeth
on the disc 1. subgenus Sierrojudolia subgen. nov.
Pronotal posterior margin with a deep transverse furrow (Fig. 4 a). Males have no metasternal teeth on the disc 2. subgenus Pachytodes nom. & stat. res.
Pronotum bell-shaped, laterally with well-defined tubercle (Fig. 4 c). Pronotal posterior margin with a deep transverse furrow, often interrupted in the middle
3. subgenus Florijudolia subgen. nov.
Pronotum subconical, more or less elongated, with a vague lateral tubercle (Fig. 4 d, e). Pronotal posterior margin without or with indistinct very shallow transverse furrow 4. Subgenus Judolia
Key to infragenera of subgenus Judolia
(1а) Pronotum very elongated (especially in males) (Fig. 4 e) (2а)
- Pronotum slightly elongated (Fig. 4 d) (3а)
(2а) Elytral apices deeply truncated. Genae as long as eye diameter. Males bear secondary sexual
features: hypertrophied hind limbs and pair of metasternal longitudinal lameles
4.1. infragenus Oedecnema stat. nov.
Elytral apices rounded. Genae shorter than eye diameter
4.2. infragenus Judolidia stat. nov.
(3а) Scutellum deeply sunken between the bases of the elytra
4.3. infragenus Boreojudolia infragen. nov.
Scutellum and elytral bases surfaces on the same level
4.4. infragenus Judolia
Figure 4. Pronotum shape variation in Judolia: (a) subspherical - Judolia (Pachytodes) erraticus; (b) subspherical - Judolia (Sierrojudolia) scapularis comb. nov.; (c) bell-shaped - Judolia (Florijudolia) instabilis comb. nov.; (d) subconical - Judolia (Judolia / Boreojudolia) montivagans comb. nov.; (e) subconical -
Judolia (Judolia / Oedecnema) gebleri comb. nov.
DISCUSSION
Based on the obtained results, the genus Judolia should be considered unambiguously monophyletic. With the current study, it was confirmed Ozdikmen's (2011) assumption based on morphological data that Judolia and Pachytodes are congeneric. At the same time, our findings clearly confirmed the results of secondary phylogenetic studies by other authors regarding the monophyletic nature of Judolia. In particular, we confirmed the finds of Sykorova (2008) on close relation of Judolia and Pachytodes. In addition, our results are fully consistent with the previous data of Semanuk & Zamoroka (2020) on the belonging of Oedecnema to Judolia and the data of Zamoroka et al. (2022) on the need for transfer Judolidia to Judolia.
A key result of the current study is the elucidation of intrageneric relationships in Judolia. In particular, we proved that Pachytodes is the basal clade of the genus Judolia, while it is evolutionarily early and clearly separated from the rest of the phylogenetic tree. Therefore, it should be considered as a separate subgenus. It should be noted that Pic (1891) originally introduced the name Pachytodes to designate a separate subgenus within Judolia. However, Pachytodes was later introduced as an independent genus (Sama, 2003) and subsequently synonymized by Ozdikmen (2011), suggesting that the name should no longer be used. Nevertheless, in the light of new evidence, we believe that the name Pachytodes should be used to designate a separate subgenus in the genus Judolia, in accordance with the original idea of Pic (1891).
The species group J. cordifera, J. quadrata, J. instabilis and J. cometes form one of the two crown clades of Judolia phylogenetic tree. This group has usually been considered part of the genus Judolia (Monne & Bezark, 2009), with the exception of J. cometes, which Danylevsky (2014) placed in the genus Pachytodes. However, our studies clearly demonstrate a close relationship between these species, which clearly form a monophyletic clade. This clade should be considered as an independent subgenus Florijudolia subgen. nov. as part of Judolia.
The terminal clade of the phylogenetic tree of the genus Judolia unites four species: J. montivagans, Oe. gebleri, J. sexmaculata and J. bangi with distinct morphology. Judolia sexmaculata was established as the type species for the genus Judolia (Mulsant, 1863). This means that the clade in which J. sexmaculata is nested, according to our system, represents the nominative subgenus Judolia in the genus Judolia. Previous studies as the terminal taxon of the clade placed Oe. gebleri (Semanuk & Zamoroka, 2020) or J. bangi (Zamoroka et al., 2022). However, none of them simultaneously included both species of Oe. gebleri and J. bangi. In the current study we solved the problem of interrelationships between Oedecnema, Judolidia and Judolia. Both species, Oe. gebleri and J. bangi, are closely related to J. sexmaculata, but far from each other and even more so from J. montivagans. Therefore, the clade consists of four successive sister branches of mentioned species. The basal of them is J. montivagans, the next successively branching from the clade Oe. gebleri, J. sexmaculata and J. bangi (Fig. 3). It should be noted that, Oe. gebleri is morphologically very different from other species. Based on its specific morphology, it was placed in an independent genus (Dejean 1835). Although some authors noted the morphological similarity of Judolia and Oedecnema, which indicates their relationship (Sama, 2003; Danylevsky, 2014). Danylevsky (2014) also points to an even greater morphological similarity between Judolidia and Judolidia. These seemingly minor observations by morphologists, supported by our phylogenetic analysis, indicate that Oedecnema, Judolia and Judolidia are congeneric. Considering the significant genetic relatedness of the species of this clade and the significant morphological difference between them, they should be considered as subordinate taxa (infragenera) in the subgenus Judolia.
CONCLUSION
In summary, based on the results of the molecular phylogenetic analysis, we proved the monophyletic nature of the genus Judolia. The phylogenetic tree of the genus Judolia consists of three clades that exhibit complex phylogeographic patterns and an intricate evolutionary history. Based on the synthesis of molecular and morphological data, it was possible to reveal the intrageneric taxonomic structure of Judolia. As a result, the genus Judolia is divided into four subgenera, two of which are described for the first time. The dilemma about the association of Oedecnema and Judolidia with Judolia was also resolved. Both of them nested as the rank of infragenera within the subgenus Judolia. Further prospects for the study of Judolia should be aimed at clarifying the phylogenetic position and taxonomy of J. impura, J. japonica, J. miyatakei, which could not be resolved in this study.
REFERENCES
Anisimova, M., & Gascuel, O. (2006). Approximate likelihood ratio test for branches: A fast, accurate
and powerful alternative. Systematic Biology, 55(4), 539-552.:
https://doi.org/10.1080/10635150600755453
Danilevsky, M. L. (2014). Longicom beetles (Coleoptera, Cerambycoidea) of Russia and adjacent countries. Part 1. HSC.
Dejean, P. F. M. A. (1835). Catalogue des Coleopteres de la Collection de M. le Comte Dejean. 2eme edition, Mequignon-Marvis Pere & Fils, Paris.
Gascuel, O. (1997). BIONJ: an improved version of the NJ algorithm based on a simple model of
sequence data. Molecular Biology Evolution, 14(7), 685-695.
https://doi.org/10.1093/oxfordjournals.molbev.a025808
Gouy, M., Tannier, E., Comte, N., & Parsons D. P. (2021). Seaview Version 5: A Multiplatform Software for Multiple Sequence Alignment, Molecular Phylogenetic Analyses, and Tree Reconciliation. Methods in Molecular Biology, 2231. 241-260. https://doi.org/10.1007/978-1-0716-1036-7 15
Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 59(3), 307-21. https://doi.org/10.1093/sysbio/syq010
Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. (2003). Biological identifications through
DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270, 313-321.
https://doi.org/10.1098/rspb.2002.2218
Lobl, I., & Smetana, A. (Eds.) (2010). Catalogue of Palaearctic Coleoptera, Vol. 6. Stenstrup: Apollo Books.
Monne, M. A., & Bezark, L.G. (2009). Checklist of theCerambycidae of the Western Hemisphere.
http://www.cerambycoidea.com/titles/monnebezark2009.pdf
Monne, M. L., & Monne, M. A. (2017). General morphology, classification and biology of Cerambycidae. In: Wang, Q. (Ed.). Cerambycidae of the world: Bi-ology and pest management. CRC Press, Boca Raton - London - New York.
Monne, M. A., & Nearns, E. H. (2023). Catalogue of the Cerambycidae (Coleoptera) of Canada and United
States of America. Part II. Subfamilies Lepturinae and Necydalinae. Available from:
https://cerambycids.com/catalog
Mulsant, E. (1863). In: Histoire naturelle des coleopteres de France. Longicornes. Ed. 2. Paris: Magnin, Blanchard et Cie, successeurs de Louis Janet.
Nakane, T., & Ohbayashi, K. (1957). Notes on the genera and species of Lepturinae (Coleoptera, Cerambycidae) with special reference to their male genitalia. Scientific Reports of the Saikyo University, Kyoto (Natural Science & Living Science A series) 2 (4), 47-52.
Ozdikmen, H. (2011). A propose for acception of a single genus as Judolia Mulsant, 1863 instead of the genera Judolia Mulsant, 1863 and Pachytodes Pic, 1891 (Coleoptera: Cerambycidae: Lepturinae: Lepturini). Munis Entomology & Zoology, 6 (2), 900-904.
Pentinsaari, M., Salmela, H., Mutanen, M. et al. (2016). Molecular evolution of a widely-adopted taxonomic marker (COI) across the animal tree of life. Scientific Reports, 6, 35275. https://doi.org/10.1038/srep35275
Pic, M. (1891). Materiaux pour servir a l'etude Des longicornes. Premier cahier. Lyon: L. Jacquet.
Sama, G. (2003) Atlas of the Cerambycidae of Europe and the Mediterranean Area. Volume 1: Northern, Western, Central and Eastern Europe. British Isles and Continental Europe from France (excl. Corsica) to Scandinavia and Urals. Vit Kabourek, Zlin.
Semaniuk, D. V., & Zamoroka, A. M. (2020). Preliminary phylogenetic analysis of Lepturini (Insecta: Coleoptera: Cerambycidae). Conference: XVI International scientific conference for students and PhD students "Youth and Progress of Biology". Lviv. 121.
Slipinski, A., & Escalona, H. (2013). Australian longhorn beetles (Coleoptera: Cerambycidae). Volume 1: Introduction and subfamily Lamiinae. Csiro Publishing, Collingwood.
Sykorova, M. (2008). Molecular phylogeny of the subfamilies Spondylidinae andLepturinae (Coleoptera: Cerambycidae) based on mitochondrial 16S rDNA. South Bohemian University, Ceske Budejovice.
Vitali, F. (2018). Atlas of the Insects of the Grand-Duchy of Luxembourg: Coleoptera, Cerambycidae. Ferrantia 79, Musee national d'histoire naturelle, Luxembourg.
Wang, Q. (2017). Cerambycidae of the world: Biology and pest management. CRC Press, Boca Raton - London - New York.
Zamoroka, A. M. (2022 a). The longhorn beetles (Coleoptera, Cerambycidae) of Ukraine: Results of two centuries of research. Biosystem diversity, 30(1), 46-74. https://doi.org/10.15421/012206
Zamoroka, A. M. (2022 b). Molecular revision of Rhagiini sensu lato (Coleoptera, Cerambycidae): Paraphyly, intricate evolution and novel taxonomy. Biosystem diversity, 30(3), 295-309. https://doi.org/10.15421/012232
Zamoroka, A. M., Trocoli, S., Shparyk, V. Yu., & Semaniuk, D. V. (2022). Polyphyly of the genus Stenurella (Coleoptera, Cerambycidae): Consensus of morphological and molecular data. Biosystem diversity, 30(2): 119-136. https://doi.org/10.15421/012212
Размещено на Allbest.ru/
...Подобные документы
Видовой состав и экологические особенности божьих коровок исследованных территорий. Биотопическая приуроченность кокцинеллид в фауне города Гомель. Гигропреферендум божьих коровок. Анализ таксономической структуры. Определение семейств насекомых.
дипломная работа [1,5 M], добавлен 13.06.2016Морфологическая характеристика жужелицы. Фауна и население жужелиц таежных лесных экосистем и урбанизированной природной зоны. Основной видовой состав жужелиц п. Тарногский городок. Сравнительная характеристика населения жужелиц п. Тарногский городок.
дипломная работа [1,6 M], добавлен 07.10.2016Charles Darwin, Darwin’s Critters. The Journey Home. The Ride Home. Ideas that Shaped Darwin’s Thinking. Darwin Presents His Case. Publication of On the Origin of Species by Means of Natural Selection. Inherited Variation & Artificial Selection.
презентация [6,8 M], добавлен 18.10.2013Hormones as organic substances, produced in small amounts by specific tissues (endocrine glands), secreted into the blood stream to control the metabolic and biological activities. Classification of hormones. The pro-opiomelanocortin peptide family.
презентация [1,2 M], добавлен 21.11.2012North Carolina: map, state flag, seal. The Dogwood as state flower. Humid, subtropical climate of the state. Top industries in North Carolina in 2000 year. Famouthe North Carolinians: Dolley Payne Madison, Thomas Clayton Wolfe. Cherokee Beer Zoo.
презентация [3,6 M], добавлен 02.12.2011Canada is a country occupying most of northern North America, extending from the Atlantic Ocean in the east to the Pacific Ocean in the west and northward into the Arctic Ocean. History of European colonization of Canada. Government and politics.
курсовая работа [1,3 M], добавлен 06.05.2010South West England. South-East Midlands. North-East England. Leinster and Greater Dublin. Dialects and accents amongst the four countries of the United Kingdom. The traditional dialects of Bedfordshire, Huntingdonshire and south Northamptonshire.
курсовая работа [45,1 K], добавлен 19.02.2012Areas with significant numbers of malaria cases: Africa, the Middle East, India, Southeast Asia, South America, Central America and parts of the Caribbean. Etiology, symptoms and diagnosis of the disease, methods of treatment and antimalarial immunity.
презентация [286,9 K], добавлен 02.10.2012Integration, globalization and economic openness - basical principles in attraction of capital inflows. Macroeconomic considerations. Private investment. Problems of official investment and managing foreign assets liabilities. Positive benefits from capit
курсовая работа [52,4 K], добавлен 25.02.2002Canada as the largest country of the North America. Geographical position of Canada, its climate, relief and environment. The population, religion and moving types. History of development of territory. A state system, the basic provinces of Canada.
реферат [20,6 K], добавлен 17.02.2010The relationship between Europe and Israel. Two Types of International Law. Double standards of United States of America at home and abroad, сriticism of it's foreign policy: support of dictatorships, imperialism, excessive militarism, arrogance.
реферат [28,0 K], добавлен 19.05.2010United Kingdom of Great Britain is an island nation in the north-west Europe. Four "historical provinces" is in contain of State: England, Scotland, Wales and Northern Ireland. Locks and Architectural building of United Kingdom of Great Britain.
презентация [23,5 M], добавлен 02.04.2015Iceland - a unique distant island where land is warm of the bench and the air fresh breath of glaciers. Nature and polar day. Time to be alone. Wildlife watching. The largest glacier in Europe. Waterfalls. A stay in Europe and America. Interesting facts.
презентация [2,9 M], добавлен 21.01.2015Понятие и функциональные возможности индексных массивов, принципы их формирования. Особенности использования функции array, range. Ассоциативные массивы, исследование их преимуществ и недостатков, этапы создания. Просмотр массива с помощью цикла.
презентация [144,3 K], добавлен 21.06.2014Problem: Nobody deals with workouts that have the form. Benefits of our gyms. The advantages described gym, range of services provided. Necessary and sufficient area of the premises under a fitness club. The number of visits to the gym in a week.
презентация [652,1 K], добавлен 09.12.2014Studies by Fischer and his colleagues and Dawson (2006) have investigated development in a wide range of domains, including understanding of social interaction concepts such as "nice" and "mean", skills in mathematics, and understanding "leadership".
реферат [20,2 K], добавлен 22.12.2009Risk Factors. The following symptoms may indicate advanced disease. A barium contrast study of the small intestine. Surgical removal is the primary treatment for cancer of the small intestine. The association of small bowel cancer with underlying.
презентация [4,1 M], добавлен 28.04.2014Forum for 21 Pacific Rim countries that seeks to promote free trade and economic cooperation throughout the Asia-Pacific region. History of establishment Asia-Pacific Economic Cooperation (APEC), speciality of membership, scope of work and structure.
реферат [366,7 K], добавлен 16.01.2012Tachycardia is a heart rate that exceeds the normal range. Symptoms and treatment methods of tachycardia. An electrocardiogram (ECG) is used to classify the type of tachycardia. It's important to get a prompt, accurate diagnosis and appropriate care.
презентация [596,2 K], добавлен 20.11.2014Області застосування методів цифрової обробки зображень. Динамічний діапазон фотоматеріалу. Графік характеристичної кривої фотоплівки. Загальне поняття про High Dynamic Range Imaging. Тональна компресія та відображення. Головні стегано-графічні методи.
контрольная работа [1,6 M], добавлен 10.04.2014