Методы исследования сырья
Систематические, случайные, грубые погрешности аналитических определений. Правильность и воспроизводимость определений. Понятие и применяемые приборы при турбидиметрии и нефелометрии. Адсорбционная, осадочная, ионообменная и аффинная хроматографии.
Рубрика | Химия |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 27.12.2012 |
Размер файла | 84,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Обработка результатов, погрешности аналитических определений: систематические, случайные, грубые погрешности; правильность и воспроизводимость определений. Вычисление результатов анализа
аналитический погрешность нефелометрия хроматография
Основной задачей физического эксперимента является измерение численных значений наблюдаемых физических величин. Измерением называется операция сравнения величины исследуемого объекта с величиной единичного объекта. Так, например, за единицу длины принят метр, и в результате измерения длины некоторого отрезка определяется, сколько метров содержится в этом отрезке.
Принято различать прямые и косвенные измерения. При прямом измерении производится непосредственное сравнение величины измеряемого объекта с величиной единичного объекта. В результате искомая величина находится прямо по показаниям измерительного прибора, например, сила тока по отклонению стрелки амперметра, вес по растяжению пружинных весов и т.д. Однако гораздо чаще измерения проводят косвенно, например, площадь прямоугольника определяют по измерению длин его сторон, электрическое сопротивление по измерениям силы тока и напряжения и т.д. Во всех этих случаях искомое значение измеряемой величины получается путем соответствующих расчетов.
Результат всякого измерения всегда содержит некоторую погрешность. Поэтому в задачу измерений входит не только нахождение самой величины, но также и оценка допущенной при измерении погрешности. Абсолютной погрешностью приближенного числа называется разность между этим числом и его точным значением, причем ни точное значение, ни абсолютная погрешность принципиально неизвестны и подлежат оценке по результатам измерений. Относительной погрешностью приближенного числа называется отношение абсолютной погрешности приближенного числа к самому этому числу. Если оценка погрешности результата физического измерения не сделана, то можно считать, что измеряемая величина вообще неизвестна, поскольку погрешность может, вообще говоря, быть того же порядка, что и сама измеряемая величина или даже больше. В этом состоит отличие физических измерений от бытовых или технических, в которых в результате практического опыта заранее известно, что выбранный измерительный инструмент обеспечивает приемлемую точность, а влияние случайных факторов на результат измерений пренебрежимо мало по сравнению с ценой деления применяемого прибора.
Погрешности физических измерений принято подразделять на систематические, случайные и грубые. Систематические погрешности вызываются факторами, действующими одинаковым образом при многократном повторении одних и тех же измерений. Систематические погрешности скрыты в неточности самого инструмента и неучтенных факторах при разработке метода измерений. Обычно величина систематической погрешности прибора указывается в его техническом паспорте. Что же касается метода измерений, то здесь все зависит от квалификации экспериментатора. Хотя суммарная систематическая погрешность во всех измерениях, проводимых в рамках данного эксперимента, будет приводить всегда либо к увеличению, либо к уменьшению правильного результата, знак этой погрешности неизвестен. Поэтому на эту погрешность нельзя внести поправку, а приходится приписывать эту погрешность окончательному результату измерений.
Случайные погрешности обязаны своим происхождением ряду причин, действие которых неодинаково в каждом опыте и не может быть учтено. Они имеют различные значения даже для измерений, выполненных одинаковым образом, то есть носят случайный характер. Допустим, что сделано n повторных измерений одной и той же величины. Если они выполнены одним и тем же методом, в одинаковых условиях и с одинаковой степенью тщательности, то такие измерения называются равноточными.
Пусть минимальный интервал значений измеряемой величины, через который ведутся отсчеты (цена деления прибора), будет h, а среднее арифметическое всех результатов измерений пусть будет x . Обозначим через ki число тех результатов, которые отклонились от среднего x на величину Дx= ih. Отложив по оси абсцисс величину абсолютных погрешностей Дx, а по оси ординат значения k, получим ступенчатый график, называемый гистограммой (рис.1).
Если устремить число измерений к бесконечности, а интервал h к нулю, то гистограмма переходит в пределе в непрерывную кривую, которая является кривой распределения погрешностей. При некоторых условиях, которые обычно выполняются при проведении измерений, эта кривая представляет собой график функции Гаусса, имеющей следующий вид:
(1)
где параметр у определяет ширину распределения. Несколько кривых Гаусса для разных значений параметра у показаны на рис.2.
Третий тип погрешностей, с которыми приходится иметь дело грубые погрешности или промахи. Под грубой погрешностью измерения понимается погрешность, существенно превышающая ожидаемую при данных условиях. Она может быть сделана вследствие неправильного применения прибора, неверной записи показаний прибора, ошибочно прочитанного отсчета, неучета множителя шкалы и т.п.
Точность измерений - понятие, характеризующее качество измерений. Чем выше точность, тем меньше и систематическая и случайная погрешность. Иногда классточности измерительного прибора выражают как погрешность, отнесенную к концу шкалы, т. е.
где Х - абсолютное значение измеряемой величины, отнесенное к концу шкалы.
Правильность измерений характеризует либо отсутствие, либо малость систематической погрешности, т. е. случай, когда
Воспроизводимость измерений характеризует малость случайной погрешности при повторных измерениях одной и той же величины в одинаковых условиях одним и тем же методом, т. е.
Сходимость измерений характеризует близость друг к другу результатов измерений, выполненных в различных условиях, различными методами, различным и экземплярам и однотипных приборов, на различных типах приборов.
Достоверность результата измерений определяется с использованием теории вероятности и характеризует вероятность показания результата однократного измерения в наперед заданный интервал отклонений результата от истинного или от действительного значения измеряемой величины. Поскольку оценка вероятности дается не с безусловной 100% достоверностью, эта категория характеризует степень доверия к результатам измерения.
Грамотное использование категорий теории погрешности дает возможность для каждого конкретного случая выбрать средства и методы измерения, обеспечивающие получение результата, погрешности которого не превышают заданных границ с заданной вероятностью.
Определение случайной, систематической и общей погрешности дают возможность составить представление о том, какие значащие цифры в конечном значении действительного значения измеряемой величины являются существенными, т. е. содержат полезную информацию о точности измерений, а какие значащие цифры в записи результата являются излишними. В большинстве случаев при записи действительного значения результата измерений ограничиваются записью одной значащей цифрой того разряда, которому соответствует погрешность измерений. Например, результат Х=1, 00781 ± 0,001 имеет смысл записывать как Х= 1,008 ± 0,001, поскольку пятая цифра после запятой вообще информации об измеренной величине не несет, а значение третьей цифры должно быть округлено до 8. При округлении пользуются правилом, что если первая из заменяемых цифр равна или больше 5, остающаяся цифра увеличивается на единицу. Если эта цифра меньше 5, то она при записи отбрасывается.
Вычисление погрешностей. В дальнейшем будем предполагать, что
1) грубые погрешности исключены;
2) поправки, которые следовало определить (например, смещение нулевого деления шкалы), вычислены и внесены в окончательные результаты;
3) все систематические погрешности известны (с точностью до знака).
В этом случае результаты измерений оказываются все же не свободными от случайных погрешностей. Если случайная погрешность окажется меньше систематической, то, очевидно, нет смысла пытаться уменьшить величину случайной погрешности ? все равно результаты измерений не станут значительно лучше и, желая получить большую точность, нужно искать пути к уменьшению систематической погрешности. Наоборот, если случайная погрешность больше систематической, то именно случайную погрешность нужно уменьшить в первую очередь и добиться того, чтобы случайная погрешность стала меньше систематической, с тем чтобы последняя опять определяла окончательную погрешность результата. На практике обычно уменьшают случайную погрешность до тех пор, пока она не станет сравнимой по величине с систематической погрешностью. Как будет видно из дальнейшего, случайная погрешность уменьшается при увеличении числа измерений.
Поскольку из-за наличия случайных погрешностей результаты измерений по своей природе представляют собой тоже случайные величины, истинного значения xист измеряемой величины указать нельзя. Однако можно установить некоторый интервал значений измеряемой величины вблизи полученного в результате измерений значения xизм, в котором с определенной вероятностью содержится xист. Тогда результат измерений можно представить в следующем виде:
(2)
где x погрешность измерений. Вследствие случайного характера погрешности точно определить ее величину невозможно. В противном случае найденную погрешность можно было бы ввести в результат измерения в качестве поправки и получить истинное значение xист.. Задача наилучшей оценки значения xист и определения пределов интервала (2) по результатам измерений является предметом математической статистики. Воспользуемся некоторыми ее результатами.
Пусть проведено n измерений величины x. Тогда за лучшую оценку истинного значения результата измерений принимается среднее арифметическое значение
(3)
где xi результат i -го измерения.
Для оценки случайной погрешности измерения существует несколько способов. Наиболее распространена оценка с помощью стандартной или средней квадратичной погрешности ? (ее часто называют стандартной погрешностью или стандартом измерений).
Средней квадратичной погрешностью называется величина
(4)
где n число наблюдений.
Если число наблюдений очень велико, то подверженная случайным колебаниям величина Sn стремится к постоянному значению:
.
Именно этот предел и входит в качестве параметра в распределение Гаусса (1). Квадрат этой величины называется дисперсией измерений. В действительности, по результатам измерений всегда вычисляется не, а ее приближенное значение Sn, которое, вообще говоря, тем ближе к, чем больше n.
Все сказанное выше о погрешностях относится к погрешностям отдельного измерения. Однако важнее знать, насколько может уклоняться от истинного значения x среднее арифметическое x, полученное по формуле (3) для n повторных равноточных измерений. Теория показывает, что средняя квадратичная погрешность среднего арифметического S равна средней квадратичной погрешности отдельного результата измерений Sn, деленной на корень квадратный из числа измерений n, то есть
(5)
Это фундаментальный закон возрастания точности при росте числа наблюдений.
Пусть означает вероятность того, что результат измерений отличается от истинного на величину, не большую, чем x. Вероятность в этом случае носит название доверительной вероятности, а интервал значений измеряемой величины от x до x +x называется доверительным интервалом.
Определим доверительный интервал. Чем большим будет установлен этот интервал, тем с большей вероятностью xист попадает в этот интервал. С другой стороны, более широкий интервал дает меньшую информацию относительно величины xист. Если ограничиться учетом только случайных погрешностей, то при небольшом числе измерений n для уровня доверительной вероятности полуширина доверительного интервала (2) равна
(6)
где t, n коэффициент Стьюдента.
Таблица 1.
Коэффициенты Стьюдента.
? =0,68 |
,95 |
0,99 |
||||
n |
t ,n |
n |
t ,n |
n |
t ,n |
|
2 |
2,0 |
2 |
12,7 |
2 |
63,7 |
|
3 |
1,3 |
3 |
4,3 |
3 |
9,9 |
|
4 |
1,3 |
4 |
3,2 |
4 |
5,8 |
|
5 |
1,2 |
5 |
2,8 |
5 |
4,6 |
|
6 |
1,2 |
6 |
2,6 |
6 |
4,0 |
|
7 |
1,1 |
7 |
2,4 |
7 |
3,7 |
|
8 |
1,1 |
8 |
2,4 |
8 |
3,5 |
|
9 |
1,1 |
9 |
2,3 |
9 |
3,4 |
|
10 |
1,1 |
10 |
2,3 |
10 |
3,3 |
|
15 |
1,1 |
15 |
2,1 |
15 |
3,0 |
|
20 |
1,1 |
20 |
2,1 |
20 |
2,9 |
|
30 |
1,1 |
30 |
2,0 |
30 |
2,8 |
|
100 |
1,0 |
100 |
2,0 |
100 |
2,6 |
Смысл понятий "доверительный интервал" и "доверительная вероятность" состоит в следующем: пусть 0.95, тогда можно утверждать с надежностью 95%, что истинное значение величины xист не отличается от оценки (3) больше, чем на xсл. Значения коэффициентов t ,n в зависимости от и n табулированы (см. табл. Чтобы окончательно установить границы доверительного интервала необходимо расширить его с учетом систематической погрешности xсист. Систематическая погрешность, как правило, указана в паспорте или на шкале прибора, а в простейших случаях может быть принята равной половине цены деления младшего разряда шкалы. Обычно (хотя, строго говоря, и неверно) суммарная погрешность определяется как корень квадратный из суммы квадратов случайной и систематической погрешностей:
(7)
Определенная согласно (7) величина ?x является абсолютной погрешностью. Очевидно, что при одном и том же значении ?x результат может оказаться достаточно точным при измерении некоторой большой величины, тогда как при измерении малой величины его точность будет недостаточной. Например, пусть имеется возможность измерять линейные размеры с погрешностью x=1 мм. Ясно, что это заведомо превышает необходимую точность при измерении, скажем, размеров комнаты, но измерение окажется слишком грубым при определении толщины монеты. Таким образом, становится понятной необходимость введения относительной погрешности, которая определяется как
(8)
и выражается, обычно, в процентах. Как видно, выражение (8) позволяет оценить величину погрешности по отношению к самой измеряемой величине. Очевидно, что в тех случаях, когда измеряемая величина представляет собой условное число, например, астрономическое время в данный момент (но не интервал времени между двумя событиями), пространственная координата (но не расстояние между двумя точками) и т.п., определение относительной погрешности смысла не имеет. Действительно, точность определения текущего времени по одним и тем же часам одинакова и в 12 часов, и в 1 час.
Рассмотрим теперь случай, когда при повторении измерений в одних и тех же условиях устойчиво получаются одинаковые значения x=x0. В этом случае систематическая погрешность настолько превышает случайную, что влияние случайной погрешности полностью маскируется. Истинное значение x отнюдь не равно x0. Оно, по-прежнему, остается неизвестным, и для него можно записать x=x0±x, причем погрешность x определяется в данном случае воспроизводящимися от опыта к опыту ошибками, связанными с неточностью измерительных приборов или метода измерений. Такую погрешность x, как отмечалось, называют систематической. Для более точного определения физической величины x в данном случае необходимо изменить постановку самого опыта: взять прибор более высокого класса точности, улучшить методику измерений и т.п.
Класс точности прибора (приведенная погрешность) это выраженная в процентах относительная погрешность, которую дает данный прибор при измерении им наибольшего значения измеряемой величины, указанной на шкале прибора. Тогда абсолютная погрешность оказывается одинаковой по всей шкале прибора. Например, пусть имеется амперметр класса 1,5 со шкалой 20 А. При измерении им любого значения тока абсолютная погрешность будет равна 0,015·20 = 0,3 А. Нетрудно видеть, что при измерениях в конце шкалы относительная погрешность оказывается меньше, приближаясь к приведенной. Класс точности обычно указывается на шкале прибора соответствующей цифрой. Если на шкале такого обозначения нет, то данный прибор внеклассный, и его приведенная погрешность более 4%.
Рассмотрим, каким образом оценить случайную погрешность косвенно измеряемой величины y, которая является функцией некоторого числа m непосредственно измеряемых величин xi, т.е.
(9)
Само среднее значение y можно найти из известной функциональной зависимости (9), подставляя в качестве аргументов усредненные по всем проведенным опытам значения непосредственно измеренных величин xi . Соответствующие вычисления показывают, что абсолютная погрешность y в этом случае определяется по формуле
(10)
где обозначает так называемую частную производную.
Частная производная это такая производная, которая вычисляется от функции f по аргументу xi , притом как все остальные аргументы считаются постоянными.
Относительная погрешность для косвенно измеряемой величины y определяется как
(11)
Формулу (10) применяют в тех случаях, когда в зависимости (9) измеряемые величины xi входят, в основном, в виде слагаемых, а формула (11) оказывается особенно удобной тогда, когда правая часть (9) представляет собой произведение величин xi . Учитывая простую связь между абсолютной и относительной погрешностями, легко по известной величине y вычислить и наоборот. Рассмотрим применение формул (10) и (11) на примере. Пусть функциональная зависимость косвенно измеряемой величины y от непосредственно измеряемых величин xi имеет следующий простой вид:
.
Поскольку функция y представляет собой сумму двух слагаемых, находим частные производные
и подставляем их в формулу (10):
,
причем абсолютные погрешности x1 и x2 должны быть предварительно определены, как указано выше, по формулам (4) - (7).
Пусть теперь функциональная зависимость косвенно измеряемой величины y от непосредственно измеряемых величин xi имеет следующий вид:
.
В этом случае для определения погрешности косвенно измеряемой величины y воспользуемся формулой (11). Для этого сначала найдем логарифм, а затем частные производные:
Поставляя в (11), найдем
.
Нетрудно видеть, что предварительное логарифмирование существенно упростило вид частных производных. Измеряемая величина y, вообще говоря, имеет какую-то размерность. Брать логарифм от размерной величины конечно же нельзя. Чтобы устранить некорректность, достаточно разделить y на постоянную, равную единице данной размерности (если y длина, то разделим на 1 м). После логарифмирования получится дополнительное слагаемое, которое все равно исчезнет при взятии частных производных (производная от постоянной равна нулю), поэтому наличие такого слагаемого обычно подразумевается.
При обработке результатов измерений предлагается следующий порядок операций.
При прямых (непосредственных) измерениях
1. Вычисляется среднее из n измерений:
.
2. Определяется среднеквадратичная погрешность среднего арифметического:
3. Задается доверительная вероятность ? и определяется коэффициент Стьюдента t,n для заданного ? и числа произведенных измерений n по табл. 1.
4. Находится полуширина доверительного интервала (абсолютная погрешность результата измерений):
где xсл = t,n S.
5. Оценивается относительная погрешность результата измерений
6. Окончательный результат записывается в виде
1. Для каждой серии измерений величин, входящих в определение искомой величины, производится обработка в описанной выше последовательности. При этом для всех измеряемых величин задают одно и то же значение доверительной вероятности ? .
2. Оценивается точность результата косвенных измерений по формуле (10) либо (11), где производные вычисляются при средних значениях величин.
3. Определяется относительная погрешность результата серии косвенных измерений.
4. Окончательный результат записывается в виде
Возможен и другой подход к оценке погрешности результата косвенного измерения. Вместо определения искомой величины через средние значения xi как можно для каждого выполненного опыта вычислить
а затем найти y как среднее арифметическое согласно (3) и далее абсолютную погрешность y по формулам (4)- (6). Оба способа дают близкие результаты.
Размещено на Allbest.ru
...Подобные документы
Хроматографическая система - метод разделения и анализа смесей веществ. Механизм разделения веществ по двум признакам. Сорбционные и гельфильтрационные (гельпроникающие) методы. Адсорбционная, распределительная, осадочная и ситовая хроматография.
реферат [207,8 K], добавлен 24.01.2009Обращенно-фазовая хроматография. Химически привитые сорбенты в колоночной жидкостной хроматографии для получения гидрофобных распределительных систем. Элюотропный ряд растворителей. Гель-проникающия, ионообменная и распределительная хроматография.
реферат [19,8 K], добавлен 15.02.2009Основные требования к растворителям. Элюирующая сила растворителя и элюотропные ряды. Элюотропные серии для адсорбционной хроматографии на силикагеле. Вопрос о чистоте растворителя, адсорбционная очистка методом классической колоночной хроматографии.
реферат [41,5 K], добавлен 12.01.2010Комплектные приборы с высокой степенью автоматизации для жидкостной хроматографии. Принципиальная схема жидкостного хроматографа. Современные насосы для жидкостной хроматографии. Устройства для формирования градиента. Инжекторы для ввода пробы, детекторы.
контрольная работа [210,5 K], добавлен 12.01.2010Сущность метода хроматографии, история его разработки и виды. Сферы применения хроматографии, приборы или установки для хроматографического разделения и анализа смесей веществ. Схема газового хроматографа, его основные системы и принцип действия.
реферат [130,2 K], добавлен 25.09.2010Возникновение и развитие хроматографии. Классификация хроматографических методов. Хроматография на твердой неподвижной фазе: газовая, жидкостная (жидкостно-адсорбционная). Хроматография на жидкой неподвижной фазе: газо-жидкостная и гель-хроматография.
реферат [28,1 K], добавлен 01.05.2009Жидкостно-адсорбционная хроматография на колонке. Высокоэффективная жидкостная хроматография. Ионообменная жидкостная хроматография. Тонкослойная хроматография. Хроматография на бумаге. Гельпроникающая (молекулярно-ситовая хроматография).
реферат [746,2 K], добавлен 28.09.2004Сущность и принцип реализации ионообменной хроматографии, ее назначение и сферы применения. Варианты и типы протекания механизма ионного обмена, их отличия. Характеристика наиболее распространенных анионитов, имеющих четвертичные аммонийные группы.
реферат [30,6 K], добавлен 07.01.2010Понятие и структура полимерных сорбентов, история их создания и развития, значение в процессе распределительной хроматографии. Виды полимерных сорбентов, возможности их использования в эксклюзионной хроматографии. Особенности применения жестких гелей.
реферат [29,6 K], добавлен 07.01.2010Явления, происходящие при хроматографии. Два подхода к объяснению - теория теоретических тарелок и кинетическая теория. Газовая, жидкостная, бумажная хроматография. Ионообменный метод. Случаи применения ионообменной хроматографии. Гельхроматографирование.
реферат [69,4 K], добавлен 24.01.2009Геометрическая структура адсорбентов. Роль адсорбентов в хроматографии. Свойства адсорбентов, их классификация и селективность. Недостатки цеолитов как адсорбентов. Силикагель и его адсорбционная активность. Природа адсорбента и их модифицирование.
реферат [24,8 K], добавлен 10.02.2010Осуществление разделения методом адсорбционной хроматографии в результате взаимодействия вещества с адсорбентами. Нормально-фазная распределительная хроматография с привитыми фазами. Обращенно-фазная распределительная хроматография с привитыми фазами.
реферат [109,8 K], добавлен 07.01.2010Сущность и содержание ионно-парной хроматографии, ее использование в жидкостной хроматографии и экстракции для извлечения лекарств и их метаболитов из биологических жидкостей в органическую фазу. Варианты ионно-парной хроматографии, отличительные черты.
реферат [28,7 K], добавлен 07.01.2010Понятие и основные этапы протекания метода эксклюзионной хроматографии, его принципиальная особенность и сферы применения, разновидности и их отличительные признаки. Характеристика оборудования, используемого в процессе эксклюзионной хроматографии.
реферат [54,4 K], добавлен 07.01.2010Основные методы количественного химического анализа, применяемые при определении нефтепродуктов в водах. Удаление экстрагента путем выпаривания. Интенсивность флуоресценции растворов различных нефтепродуктов в гексане. Метод газовой хроматографии.
статья [96,9 K], добавлен 02.06.2009Изучение сути и назначения метода адсорбционной очистки газов, который основан на способности некоторых твердых тел избирательно поглощать газообразные компоненты из газовых смесей. Промышленные адсорбенты. Адсорбционная емкость адсорбентов (активность).
лекция [343,7 K], добавлен 25.12.2011Строение и физико-химические свойства лактоферрина. Методы рентгеновской и оптической дифракции. Ознакомление с условиями проведения гель-хроматографии белков. Анализ олигомерных форм лактоферрина методами гель-хроматографии, светорассеяния и аббеляции.
дипломная работа [1,1 M], добавлен 28.04.2012Общая характеристика процесса хроматографии. Физико-химические основы тонкослойной хроматографии, классификация методов анализа. Варианты хроматографии по фазовым состояниям. Контроль качества пищевых продуктов посредством метода ТСХ, оборудование.
курсовая работа [371,8 K], добавлен 27.12.2009Ультрафиолетовая спектроскопия, применяемая при исследовании атомов, ионов, молекул твердых тел, для изучения их уровней энергии, вероятностей переходов. Приборы, применяемые для УФ-спектроскопии. Спектры поглощения классов органических соединений.
контрольная работа [2,9 M], добавлен 08.04.2015Жидкостная хроматография как метод разделения веществ в растворе. Вопросы, на которые отвечает хроматография. Многоканальное фотометрическое детектирование в хроматографии. Задача сравнения хроматограмм, особенности обработки аналитических данных.
реферат [692,0 K], добавлен 24.01.2012