Оптимизация реактора синтеза аммиака

Этапы расчета материального баланса реактора синтеза аммиака. Сущность аммиака как целевого продукта. Характеристика скорости прямой, обратной и суммарной реакций. Анализ зависимости расчетного объема от технологических параметров, тепловой баланс.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 19.01.2013
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Оптимизация реактора синтеза аммиака

Исходные данные

N2+3H2=2NH3 (CH4 )+ДH°

Состав исходной смеси (объемные %):

CH4=1; остальное- H2 и N2 в соотношении 3:1.

A- N2, B- H2, C- NH3

Расход газа 100000-150000 м3/ч

Концентрация аммиака на выходе - не ниже 13 об.%

Цели и задачи работы

1) Рассчитать материальный баланс реактора синтеза аммиака;

2) Определить зависимость равновесных параметров от температуры, давления, начальной концентрации реагентов и степени превращения;

3) Рассчитать скорость химической реакции в зависимости от технологических параметров. Определить оптимальные условия проведения процесса

4) Исследовать зависимость расчетного объема от технологических параметров

5) Рассчитать тепловой баланс реактора синтеза аммиака.

Введение

ОХТ - это наука об экономичных способах переработки природного сырья в различные виды продукции и энергии. Производство зависит от качества добываемого сырья. Снижение эффективности изысканий природного сырья связанно с оскудением месторождения, что в скором времени приведет к дефициту сырья.

При составлении любого технологически аппаратурного оформления процесса, следует соблюдать следующие принципы:

1. Принцип уменьшения числа оборудования и совмещение технологических операций;

2. Принцип уменьшения технологических размеров аппарата;

3. Принцип увеличения степени использования сырья, при одновременном увеличении интенсивности процесса;

4. Принцип рационального использования энергоресурсов системы (пример, теплота химической реакции)

5. Принцип уменьшения вредных выбросов и соблюдение предельно-допустимых концентраций;

6. Принцип создания современной АСУТП (автоматической системы управления технологическим процессом), которая должна обеспечить быстрый сбор и переработку информации, и надежный контроль над технологическим процессом.

Сырье - основной элемент химико-технологического процесса. Для того чтобы использовать сырье, его нужно обогатить (ввести полезную составляющею).

Принципы обогащения:

1. Сырье разделяют по крупности, т.е. крупные отделяют от мелких;

2. Отделяют жидкую составляющею от твердой;

3. Сырье измельчают для увеличения площади поверхности контакта.

Показатели технологического процесса:

· Производительность - изменение количества полученной продукции в течение времени: П=Ga/t;

· Интенсивность - отношение производительности к основной геометрической характеристики аппарата (например - диаметр): J=П/d;

· Выход продукта (или степень превращения) - отношение количества (объема, массы) вещества израсходованного в результате химической реакции к его начальному количеству: Х=(Са0 - С а)/ Са0;

· Объемная скорость - показывает какой объем вещества прошел в единицу времени, через единицу объема (величина обратная времени):

U=1/t.

Основные цели химической технологии:

1) Снижение себестоимости;

2) Увеличение производительности труда;

3) Повышение качества продукции.

1.Аналитический обзор

1.1 Развитие азотной промышленности

Во всех индустриально развитых странах азотная промышленность является в настоящее время одной из основных ведущих отраслей. Доказательством этого служат цифры, характеризующие стремительный рост производство связанного азота. В 1955г во всем мире было произведено аммиака около 8 млн. т, в 1965г - 20 млн. т, в 1975г - 66 млн. т, в 1980г - 100 млн. т, в 1985 - 120 млн. т.

Такое бурное развитие азотной промышленности диктуется в первую очередь необходимостью удовлетворения неудержимо растущего населения земного шара продуктами земледелия. Без минеральных удобрений, и в первую очередь азотных, невозможно решить задачи интенсификации сельского хозяйства.

Производству азотных удобрений и их основы, аммиака, в нашей стране всегда уделялось первостепенное внимание. Среднегодовой прирост темпа аммиака за последние 20 лет составлял 10-19%.

Производство аммиака, как известно, отличается большой энергоемкостью. Историю развития производства аммиака можно рассматривать как борьбу за повышение полезного использования электрической, тепловой, и механической энергии. На первых установках производства аммиака к. п. д. на превышал 10-11%. Использование природного газа в производстве аммиака увеличило общий энергетический к. п. д. до 40%.

Современные энерготехнологические агрегаты аммиака практически автономны и имеют производительность 450-500 тыс. т. в год и общий энергетический к. п. д.50-52%. Это обеспечено достижениями химической технологии, химического и энергетического машиностроения, металлургической и приборостроительной промышленности, а также высокой квалификацией строителей, монтажников, эксплуатационников.

1.2 Характеристика исходного сырья

Сырьем для получения продуктов в азотной промышленности является атмосферный воздух и различные виды топлива.

В число постоянных составляющих воздуха входят следующие газы (в% по объему): азот - 78,16; кислород - 20,90; аргон - 0,93; гелий, неон, криптон, ксенон и другие инертные газы - 0,01. В технических расчетах принимают, что воздух содержит 79% азота и 21% кислорода.

Для синтеза аммиака в некоторых схемах необходима азотоводородная смесь в соотношении N2: H2=1: 3. Азот получают разделением воздуха или же совместно с водородом в виде азотоводородной смеси. В других схемах используют и чистый жидкий азот для тонкой очистки синтез - газа от вредных примесей, и газообразный, вводя его в строго корректируемом соотношении в конвертированный газ. В последнем случае воздух подвергают разделению методом глубокого охлаждения.

Поскольку ресурсы атмосферного азота огромны, то сырьевая база азотной промышленности в основном определяется вторым видом сырья - топливом, применяемым для получения водорода или водородсодержащего газа. В настоящее время основным сырьем в производстве аммиака является природный газ.

Синтез-газ из твердых топлив. Первым из основных источников сырья для получения синтез - газа явилось твердое топливо, которое перерабатывалось в газогенераторах водяного газа по следующим реакциям:

C+H2O - CO +H2; ДH>0

C+O2 -CO2; ДH<0

Такой способ получения заключается в попеременной подаче через слой крупнокускового твердого топлива (антрацита, кокса, полукокса) воздушного и парового дутья. Синтез - газ получают на стадии парового дутья, а необходимая температура слоя топлива достигается в течение стадии воздушного дутья. Цикл работы генератора составляет 3-5 мин. Полученный водяной газ содержит 50-53% Н2 и ~365 СО.

Для дальнейшего использования в производстве водяной газ необходимо очистить от сернистых соединений и провести конверсию оксида углерода по реакции:

CO+H2O-CO2+H2; ДH<0

а затем удалить диоксид углерода полностью в случае его применения для синтеза аммиака.

Недостатками процесса являются его периодичность, низкая единичная производительность газогенератора, а также высокие требования к сырью по количеству и температуре плавления золы, его гранулометрическому составу и другим характеристикам.

Другим направлением является газификация топлива в виде пыли. Этот процесс позволяет использовать практически любые виды топлива. Его особенностями является высокая турболизация в зоне реакции за счет подачи встречных потоков топливной смеси и хорошее смешение парокислородной смеси с топливной пылью.

Синтез - газ из жидких углеводородов. По технологическим схема переработки в синтез - газ жидкие топлива можно разделить на две группы. Первая группа включает топливо, перерабатываемые высокотемпературной кислородной конверсией. Сюда относятся тяжелые жидкие топлива - мазут, крекинг - остатки и т.п. Вторая группа - легкие прямоточные дистилляты (нафта), имеющие конечную температуру кипения не выше 200-220°С; она включает бензин, лигроины, смеси светлых дистиллятов. Вторая группа жидких топлив перерабатывается в синтез - газ каталитической конверсией водяным паром в трубчатых печах.

Достоинством этого метода является возможность получения синтез - газ под давлением, легкость регулирования состава синтез - газа, малый расход электроэнергии. К недостаткам можно отнести высокие требования к углеводородному составу исходного сырья по содержанию в нем непредельных и циклических углеводородов, серы и других примесей, большой удельный расход углеводородов.

Синтез-газ из природного газа. Синтез - газ из углеводородных газов (природного, попутного, газов переработки других топлив) в настоящее время является основным источником получения аммиака. По использованию окислителя и технологическому оформлению можно выделить следующие варианты процесса получения водородосодержащих газов: высокотемпературная кислородная конверсия, каталитическая парокислородная конверсия в шахтных реакторах, каталитическая паро-углекислотная конверсия в трубчатых печах.

1.3 Характеристика целевого продукта

АММИАК (от греч. hals ammoniakos, букв. - амонова соль; так назывался нашатырь, который получали близ храма бога Амона в Египте) NH3, бесцветный газ с резким запахом. Молекула имеет форму правильной пирамиды (см. рис. 1). Связи N-- Н полярны;4,85*10-30 Кл*м (0-150°С); энергия связи N--Н 389,4 кДж/моль. Поляризуемость молекулы 22,6*10-25 см3.

Рис. 1. Структура молекулы NH3 (длина связи - в нм).

У атома N имеется неподеленная пара электронов, которая обусловливает способность аммиака к образованию донорно-акцепторной и водородной связей. Существование водородных связей и значительная полярность молекул аммиака - причины сильного взаимодействия между ними, вследствие чего физические свойства аммиака во многом аномальны по сравнению со свойствами однотипных соединений (РН3, SbH3, AsH3). Для NH3 т. пл. -77,7°С, т. кип. -33,35°С; tкрит. 133°С, Ркрит. 11,425 кПа; Н°исп 23,27 кДж/моль, Н°пл, 5,86 кДж/моль; для газа Ср° 35,63 Дж/(моль*К), Н°o6p -45,94 кДж/моль, S°298 192,66 Дж/моль*К).

Твердый аммиак - бесцветные кристаллы с кубической решеткой. В жидком аммиаке молекулы ассоциированы вплоть до критической температуры, электролитическая диссоциация совершенно ничтожна, произведение концентраций [NH] ; [NH2] составляет 10-22 (-33,4°С); 8*106 Ом*см;25,4 ( - 77 °С). Жидкий аммиак растворяет щелочные и щелочно-земельные металлы: Al, Eu, Yb, P, S, I и др. Растворы металлов в жидком аммиаке имеют металлическую проводимость, поскольку содержат ионы металла и сольватированные электроны; они являются сильнейшими восстановителями. Растворенные в аммиаке соединения с полярной ковалентной или ионной связью диссоциируют на ионы. В жидком аммиаке многие веществава способны отщеплять протон, кислотные свойства проявляют в нем даже углеводы, амиды, некоторые углеводороды.

Аммиак хорошо растворим (но хуже, чем в воде) в спирте, ацетоне, хлороформе, бензоле и других органических растворителях. Образует гидраты с двумя (т. пл. ок. - 90 °С), одной ( - 79 °С) и 0,5 ( - 78,2 °С) молекулами воды.

Разложение аммиака на водород и азот становится заметным выше 1200-1300 °С, в присутствии катализаторов - выше 400°С. Аммиак весьма реакционноспособен. Для него типичны реакции присоединения, в частности протона при взаимодействии с которыми в результате образуются соли аммония, которые по многим свойствам подобны солям щелочных металлов.

Аммиак - основание Льюиса, присоединяет не только Н+ , но и др. акцепторы электронов, напр. BF3 с образованием BF3*NH3. Дает аммины при взаимодействии с солями. Щелочные и щелочно-земельные металлы реагируют с жидким и газообразным аммиаком, давая амиды. При нагревании в атмосфере аммиака многие металлы и неметаллы (Zn, Cd, Fe, Cr, B, Si и др.) образуют нитриды. Жидкий аммиак взаимодействует с серой по реакции: 10S + 4NH3 -> 6H2S + N4S4. Около 1000°С аммиак реагирует с углем, образуя HCN и астично разлагаясь на N2 и Н2. Большое практическое значение имеет реакция аммиака с СО2, ведущая к образованию карбамата аммония NH2COONH4, который при 160-200 °С и давлении до 40 МПа распадается на воду и мочевину.

Рис. 2. Зависимость равновесного содержания NH3 в газовой смеси (Н2: N2 = 3) от давления при разных температурах.

Водород в аммиаке может быть замещен галогенами. Аммиак горит в атмосфере О2, образуя воду и N2. Каталитическим окислением аммиака получают NO промежуточный продукт в производстве HNO3. Каталитическое окисление аммиака в смеси с СН4 дает HCN. Такие сильные окислители, как Н2О2, К2Сr2О7 и КМnО4, окисляют аммиак в водных растворах. Газообразный аммиак окисляется Вr2 и С12 до N2.

1.4 Физико-химические основы процесса

Синтез аммиака из элементов осуществляется по уравнению:

N2+3H2-2NH3; ДH<0

Реакция обратимая, экзотермическая, характеризуется большим отрицательным энтальпийным эффектом (ДH298 = - 91,96 кДж/моль) и при высоких температурах становится еще более экзотермической (ДH725 =-112,86 кДж/моль). Согласно принципу Ле Шателье при нагревании равновесие смещается влево, в сторону уменьшения выхода аммиака. Изменение энтропии в данном случае тоже отрицательно (ДS298=-198,13 кдж/моль К) и не благоприятствует протеканию реакции.

Реакция синтеза аммиака протекает с уменьшением объема. Согласно уравнению реакции 4 моль исходных газообразных компонентов образуют 2 моль газообразного продукта. В условиях равновесия содержание аммиака в смеси будет больше при высоком давлении, чем при низком.

Оценка условий термодинамического равновесия позволяет сделать вывод, что максимального выхода аммиака можно достичь, проводя процесс при высоком давлении и низкой температуре. Однако даже при очень высоких температура (выше 1000°С) процесс синтеза в гомогенной газовой фазе практически не осуществим.

Синтез аммиака протекает с заметной скоростью только в присутствие катализатора, причем катализаторами данной реакции служат твердые вещества. Гетерогенный - каталитический синтез аммиака имеет сложный механизм, который может быть описан следующими стадиями:

диффузия молекул азота и водорода к поверхности катализатора;

хемосорбция молекул реагентов на поверхности катализатора;

поверхностная химическая реакция с образованием неустойчивых промежуточных комплексов и взаимодействия между ними;

десорбция продукта;

диффузия продукта реакции (аммиака) в газовую фазу.

Исследование кинетики и механизма реакции позволило сделать вывод о том, что лимитирующей стадией процесса является хемосорбция азота. Тогда механизм синтеза аммиака в сокращенной схеме:

N2+Z - ZN2

ZN2+3H2 - NH3+Z

N2+3H2 - 2NH3

где Z - свободный центр поверхности катализатора, ZN2 - хемосорбированная частица.

Скорость обратимой реакции получения аммиака из элементов на большинстве известных катализаторов описывается уравнением Темкина-Пыжева:

где k1 и k2 - константы скоростей образования и разложения аммиака; PN, PH, PNH - парциальные давления азота, водорода, аммиака; б - постоянная, удовлетворяющая неравенству 0<б<1 и характеризующая степень покрытия поверхности катализатора азотом.

При проведении процесса при атмосферном давлении величина а для промышленных катализаторов в интервале температур 400-500°С равна 0,5. Скорость реакции синтеза аммиака зависит от температуры, давления и реакционной смеси. Оптимальными считают такие значения указанных параметров, при которых скорость процесса максимальна. Чтобы определить оптимальную температуру синтеза Тm, надо продифференцировать по температуре кинетическое уравнение (1), приравнять полученное выражение к нулю и найти Тm. Выполнив эти действия, что с увеличением содержания в циркуляционном газе аммиака и уменьшением содержания азотоводородной смеси оптимальная температура падает.

Рис. 4. Колонна синтеза аммиака под высоким давлением: 1-люк для выгрузки катализатора; 2-центр, труба; 3-корпус; 4-люк для загрузки катализатора; 5 -теплообменник; 6-трубы для ввода холодного газа; 7 - катализатор.

Из уравнения Темкина-Пыжева видно, что скорость прямой реакции синтеза пропорциональна P1,5, а скорость обратной реакции пропорциональна P0,5. Отсюда очевидно, что с ростом давления наблюдаемая скорость процесса увеличивается. И термодинамические, и кинетические факторы свидетельствуют в пользу проведения процесса при высоких давлениях (увеличивается равновесный выход, повышается скорость синтеза). Конденсация аммиака также улучшается при высоком давлении. Вместе с тем повышение давления увеличивает расход электроэнергии на компрессию, повышает требования к машинам и аппаратам. Присутствие инертных примесей в реакционной смеси снижает общее давление, и с увеличением содержания метана, аргона и гелия в смеси уменьшает скорость реакции синтеза. Анализируя кинетическое уравнение, видим, что скорость прямой реакции обратно пропорциональна парциальному давлению аммиака, а для обратной реакции характерна прямая пропорциональность. Таким образом, с повышением содержания аммиака общая скорость реакции падает. Реакция синтеза аммиака обратимая, поэтому полного превращения азота и водорода в аммиак за время их однократного прохождения через аппарат не происходит. Условия равновесия процесса и кинетические закономерности его протекания на железных катализаторах обуславливают возможность превращения в аммиак только 20-40% исходной реакционной смеси.

Для более полного использования реагентов необходима их многократная циркуляция через колонну синтеза.

Чтобы выделить аммиак, азотоводородную смесь вместе с аммиаком охлаждают до температуры сжижения аммиака. Достичь полной конденсации аммиака не удается; небольшая часть его остается в азотоводородной смеси. Не прореагировавшая азотоводородная смесь с остаточным аммиаком вновь возвращается на синтез аммиака.

Обоснование выбора давления процесса синтеза аммиака. Выбор давления процесса синтеза аммиака диктуется рядом соображений. Термодинамические и кинетические факторы (равновесное содержание аммиака и скорость реакции) свидетельствуют в пользу высоких давлений. Конденсация аммиака из газовой смеси также облегчается при высоких давлениях. Однако при этом имеет место значительный расход энергии на компрессию и повышенные требования к машинам, аппаратам и арматуре.

При пониженных давления упрощается аппаратурное оформление процесса, снижается расход энергии на компрессию, при этом несколько увеличиваются энергозатраты на циркуляцию газа и выделение аммиака.

В качестве критерия оптимальности в работе были приняты приведенные затраты, которые складываются из себестоимости продукта и доли капиталовложений с учетом нормального коэффициента эффективности

3 = С + Е К/П

где 3 - приведенные затраты, руб/т; С - себестоимость аммиака, руб/т; К - капитальные затраты на агрегат, руб.; Е - нормативный коэффициент эффективности, год-1; П-производительность агрегата по аммиаку, т/год.

Проведенные расчеты показали, что при принятых исходных данных наиболее экономичным является среднее давление порядка 30 Мпа. Приведенные затраты с понижением давления увеличиваются, что связано с большими энергоматериальными и капитальными затратами на стадиях выделения аммиака из газовой смеси.

Известно, что по мере увеличения объемной скорости газового потока содержание аммиака в выходящем газе уменьшается. Однако производительность катализатора увеличивается с увеличением скорости газа, так как снижение процентного содержания аммиака в выходящем газе компенсируется влиянием увеличения количества образующегося аммиака.

Основные условия высокой стабильной производительности установок синтеза аммиака:

высокая степень очистки азотоводородной смеси от каталитических ядов и инертных примесей;

поддержание соотношения N2: H2 близкого к 1: 3;

оптимальная температура процесса по длине каталитической зоны;

снижение содержания аммиака на входе в контактный аппарат;

совершенная конструкция контактного аппарата (колонна синтеза).

Основные принципы управления процессом синтеза аммиака

Эксплуатация систем синтеза аммиака сложна из-за наличия многочисленных прямых и обратных связей между регулируемыми и регулирующими параметрами процесса.

Наибольшая эффективность достигается при оптимизации таких параметров процесса, как давление, температурный режим, объемная скорость, состав газа, подаваемого в реактор синтеза аммиака, по основным компонентам (Н2, N3, NНз) и примесям (яды, инерты):

1) Факторы, изменение которых приводит к изменению давления в системе. Изменение температурного уровня в реакторе влечет за собой изменение одновременно двух величин: равновесного содержания аммиака и скорости реакции. Причем увеличение температуры приводит к снижению равновесного содержания и ускорению реакции синтеза аммиака. Поэтому в промышленных условиях, обеспечивающих предельную для данных условий степень превращения (близкую к равновесной), подъем температуру приводит к пропорциональному снижению степени превращения. Изменение газовой нагрузки на входе в реактор влияет на давление в системе следующим образом: при уменьшении нагрузки степень конверсии увеличивается, что вызывает повышение температуры в зоне катализа и, в свою очередь, к увеличению давления в системе.

И наоборот, увеличение газовой нагрузки на реактор (в известных пределах) приводит к снижению давления в системе. Кроме того, при повышении объемных скоростей, с одной стороны, снижается степень конверсии, а с другой - температурный уровень в зоне катализа и увеличивается производительность реактора по аммиаку. Последнее связано с тем, что уменьшение производительности реактора от снижения концентрации аммиака в выходящем газе компенсируется увеличением объемной скорости, так как в процентах это увеличение значительно больше снижения концентрации аммиака.

Расход свежего синтез - газа в соотношении N2: H2=1: (2,5-3) зависит от режима работы, активности катализатора, заданной производительности установки. Синтез - газ, удаляемый из системы в виде аммиака и продувочных и танковых газов, непрерывно поступает от компрессора. При избытке синтез-газа давление в реакторе синтеза повышается до допустимого предела компрессора, а избыток его сбрасывается. Если же расход синтез - газа уменьшается (или недостаточен), вращение компрессора уменьшается, и давление в системе снижается до достижения баланса между поступающим на синтез газом и получающимся аммиаком. I

Скорость реакции синтеза аммиака зависит от состава газовой смеси. оптимальным составом при равновесии, согласно закону действующих масс, является стехиометрический. Отклонение от равновесия ведет к более низкому значению оптимального соотношения вследствие влияния кинетических факторов. Максимальная скорость реакции в промышленных условиях наблюдается при соотношении Н2: N2=2,5-2,8. Поэтому в промышленных условиях при работе систем синтеза с предельным выходом аммиака (близким к равновесному) отклонение состава от оптимального соотношения приводит к снижению скорости процесса синтеза и, соответственно, к увеличению давления.

Увеличение содержания аммиака в газе на входе в реактор (повышение температуры вторичной конденсации) приводит к увеличению давления, так как снижается скорость реакции синтеза за счет торможения процесса продуктом реакции (аммиаком). Уменьшение начальной концентрации аммиака приводит более высоким степеням превращения и соответственно к снижению давления в системе.

Изменение содержания инертного газа в синтез - газе на входе в реактор приводит к изменению давления в системе за счет изменения эффективного давления, определяемого по уравнению:

Рэфф=Робщ(1-i) 2

где i - содержание инертных газов, доли от общего объема.

Изменение эффективного давления приводит соответственно к изменению степени конверсии и скорости реакции синтеза аммиака. Причем с ростом содержания инертных газов давление в системе синтеза увеличивается, а при их снижении - уменьшается.

Изменение активности катализатора также приводит к изменению давления в системе.

Температура, скорость процесса, чистота синтез - газа является основными причинами, приводящими к изменению активности катализатора. Так, при работе даже на чистом синтез - газе активность катализатора, подвергшегося действию высоких температур (530°С) в течении длительного времени, снижается необратимо за счет постоянно протекающих в катализаторе ре-кристаллизационных процессов.

Оптимальным в системе синтеза аммиака является возможно более низкое давление, обеспечивающее заданную производительность агрегата по аммиаку с учетом затрат на выделение продукта из циркуляционного газа.

2) Изменение температурного уровня в зоне катализатора возможно за счет следующих факторов.

Изменение давления. При повышении давления температурный уровень в реакторе повышается, так как возрастает степень превращения и соответственно тепловыделение, идущее на повышение температуры. Уменьшение давления приводит к снижению температуры.

Изменение расхода свежего синтез - газа. При поступлении избыточного давления свежего синтез - газа наблюдается рост давления и соответственно повышение температуры в зоне катализа. При уменьшении расхода синтез - газа снижаются давление и температурный уровень в реакторе. Изменение газовой нагрузки на реактор. При снижении газовой нагрузки увеличивается степень конверсии и соответственно повышается температурный уровень в реакторе. Наоборот, увеличение газовой нагрузки снижает температуру в реакторе.

Содержание аммиака на входе в реактор. Уменьшение содержания аммиака повышает температурный уровень в зоне катализатора, так как при этом увеличивается степень конверсии, а увеличение содержания аммиака во входящем газе наоборот снижает температурный уровень в реакторе.

Содержание инертных газов в синтез - газе. Уменьшение содержания инертных газов приводит к повышению эффективного давления и соответственно повышение скорости процесса и степени конверсии, в результате чего температурный уровень в реакторе повышается. При увеличении содержания инертных газов температурный уровень в реакторе понижается.

1.5 Технологическая схема процесса

Рис. 3. Агрегат синтеза аммиака мощностью 1360 т/сут: 1-компрессоры; 2-подогреватели; 3-аппарат для тарирования орг. соед.; 4-адсорбер H2S; 5-трубчатая печь (первичный риформинг); 6-шахтный конвертор (вторичный риформинг); 7-паровые котлы; 8-конверторы СО; 9-абсорбер СО2; 10-кипятильник; 11 -регенератор р-ра моноэтаноламина; 12-насос; 13-аппарат для гидрирования остаточных СО и СО2; 14-воздушные холодильники; 15-конденсац. колонна; 16-испаритель жидкого NH3 (для охлаждения газа и выделения NH3); 17-колонна синтеза NН3; 18-водоподогреватель; 19-теплообменник; 20-сепаратор.

2.Расчетная часть

2.1 Материальный баланс

2.2 Равновесие химических реакций

Рис.

Рис.

2.3 Кинетика химических реакций

Рис.

2.4 Расчет реакторов. Адиабатический режим

Рис.

Рассчитаем объем реактора при расходе газа:

Рис.

Изотермический режим

Рис.

Рис.

Рис.

Расчет при расходе газа:

Рис.

Рис.

Рис.

2.5 Тепловой баланс

Рис.

Рассчитаем при значении

Выводы

1) В ходе расчета материального баланса реактора синтеза аммиака были вычислены следующие величины:

Степень превращения аммиака х=0.232

Степень превращения водорода х=0.232

При различных расходах газа посчитаны количество молей исходных веществ и продуктов реакции, суммарное количество молей на входе и выходе из реактора (см. пункт 2.1).

2) Определены основные зависимости:

Равновесная степень превращения по мере увеличения температуры уменьшается, а по мере увеличения давления увеличивается.

Посчитаны константа равновесия и конечные мольные доли компонентов.

Конечная мольная доля инертного вещества и аммиака по мере увеличения температуры уменьшаются, а доли азота и водорода увеливаются. (см. пункт 2.2).

3) Рассчитаны скорости прямой, обратной и суммарной реакций.

При увеличении температуры скорость прямой и обратной реакций в разной степени увеличиваются, а скорость суммарной реакции имеет максимум.

Скорость суммарной реакции по мере увеличения давления увеличивается.

Скорость прямой реакции увеличивается по мере увеличения давления, а скорость обратной реакции уменьшается при тех же условиях.

Оптимальная температура по мере увеличения давления увеличивается.

(см. пункт 2.3)

4) Рассчитаны суммарная теплоемкость реакции, коэффициент адиабаты.

Рассчитаны оптимальные температуры и объемы реакторов идеального вытеснения и полного смешения для изотермического и адиабатического режима.

Представлены зависимости объемов реакторов от температуры и давления.

По мере увеличения температуры объемы реакторов уменьшаются.

Выбрана оптимальная температура Т=800

Выбран реактор идеального вытеснения и адиабатический режим, т.к. при прочих равных условиях объем РИВ меньше объема РПС.

5) При расчете теплового баланса были вычислены значения теплот вносимых и выносимых из реактора исходными реагентами и продуктами реакции, теплота химической реакции и теплота потерь.

Экзотермическая реакция, т.к. изменение энтальпии реакции величина отрицательная. (см. пункт 2.5)

реактор синтез аммиак реакция

Список использованной литературы

1.Общая химическая технология: Учеб. Для вузов/ под редакцией проф. И.П.Мухленова. - 5-е изд, стереот., 1,2 том - М.: «Издательский дом Альянс», 2009.

2.Общая химическая технология: Учеб. для вузов/ А. М. Кутепова, Т. И. Бондарева, М.Г. Беренгартен. - 3-е изд., перераб. - М.:ИКЦ «Академкнига», 2003.-528 с.

Размещено на Allbest.ru

...

Подобные документы

  • Последовательность расчета материального баланса реактора синтеза аммиака. Мольные потоки компонентов. Работа реакторов идеального вытеснения и полного смешения. Определение зависимости производительности реактора от давления и начальной концентрации.

    контрольная работа [197,0 K], добавлен 06.10.2014

  • Исследование свойств аммиака как нитрида водорода, бесцветного газа с резким запахом и изучение физико-химических основ его синтеза. Определение активности катализатора синтеза аммиака, расчет материального и теплового баланса цикла синтеза аммиака.

    курсовая работа [267,4 K], добавлен 27.07.2011

  • Технология синтеза аммиака. Материальный и тепловой балансы РИВ и РПС. Выбор адиабатического реактора для синтеза NH3. Расчет адиабатического коэффициента. Анализ зависимости объема реактора от начальной температуры, давления и степени превращения.

    курсовая работа [523,3 K], добавлен 22.04.2012

  • Сущность технологического процесса промышленного синтеза аммиака на установке 600 т/сутки. Анализ зависимости выхода аммиака от температуры, давления и времени контактирования газовой смеси. Оптимизация химико-технологического процесса синтеза аммиака.

    курсовая работа [963,0 K], добавлен 24.10.2011

  • Характеристика исходного сырья для получения продуктов в азотной промышленности. Физико-химическое основы процеса. Характеристика целевого продукта. Технологическое оформление процесса синтеза аммиака. Охрана окружающей среды в производстве аммиака.

    курсовая работа [267,9 K], добавлен 04.01.2009

  • Общие сведения о диоксиде серы, термодинамика окисления. Ванадиевые катализаторы для окисления, механизм и кинетика. Материальный и тепловой баланс РИВ. Обоснование выбора адиабатического реактора для синтеза аммиака, программа расчёта коэффициента.

    курсовая работа [236,2 K], добавлен 16.09.2011

  • Сырье для производства аммиака и технологический процесс производства. Характеристика химической и принципиальной схемы производства. Методы абсорбции жидкими поглотителями. Колонна синтеза аммиака с двойными противоточными теплообменными трубками.

    контрольная работа [2,0 M], добавлен 11.12.2013

  • Физические и химические свойства аммиака. Промышленный способ получения. Физиологическое действие нашатырного спирта на организм. Выбор оптимальных условий процесса синтеза аммиака. Влияние давления, температуры и катализаторов. Пассивация и регенерация.

    реферат [318,6 K], добавлен 04.11.2015

  • Обоснование схемы движения материальных потоков, определение количественного состава продуктов, замер температуры и расчет теплового эффекта в зоне реакции по окислению аммиака. Изменение энергии Гиббса и анализ материально-теплового баланса процесса.

    контрольная работа [28,0 K], добавлен 22.11.2012

  • История получения аммиака. Строение атома азота. Образование и строение молекулы аммиака, ее физико-химические свойства. Способы получения вещества. Образование иона аммония. Токсичность аммиака и его применение в промышленности. Реакция горения.

    презентация [3,9 M], добавлен 19.01.2014

  • Хлороводород: производство, применение. Выбор адиабатического реактора для синтеза HCl. Программа расчета адиабатического коэффициента. Программа и анализ зависимости объема реактора от начальной температуры, степени превращения, начальной концентрации.

    курсовая работа [80,2 K], добавлен 17.05.2012

  • Анализ реакции синтеза этиламина, характеристика и свойства вещества. Расчёт расходных теоретических и практических коэффициентов. Материальный баланс синтеза целевого продукта и его тепловой баланс. Порядок реакции и технологическая схема процесса.

    курсовая работа [720,2 K], добавлен 25.01.2011

  • Выделяющийся аммиак. Соли аммония. Водород в аммиаке. Образование амидов металлов. Окислительно-восстановительная реакция. Водные растворы аммиака. Сульфат аммония. Нитрат аммония. Хлорид аммония или нашатырь. Промышленные установки синтеза аммиака.

    дипломная работа [35,3 K], добавлен 14.12.2008

  • Жизнь и научная работа Карла Боша и Фрица Габера. Создание промышленного способа синтеза аммиака и фиксации атмосферного азота. Деятельность ученых в период Первой мировой войны. Вручение Нобелевской премии Габеру. Современное производство аммиака.

    курсовая работа [907,4 K], добавлен 04.01.2012

  • Основные свойства и способы получения синтетического аммиака из природного газа. Использование аммиака для производства азотной кислоты и азотсодержащих солей, мочевины, синильной кислоты. Работа реакторов идеального вытеснения и полного смешения.

    курсовая работа [1,0 M], добавлен 20.11.2012

  • Характеристика способов получения аммиака. Цианамидный процесс - первый промышленный процесс, который использовался для получения аммиака. Работа современного аммиачного завода. Десульфуратор как техническое устройство по удалению серы из природного газа.

    реферат [22,1 K], добавлен 03.05.2011

  • В настоящее время в промышленных масштабах азотная кислота производится исключительно из аммиака. Физико-химические основы синтеза азотной кислоты из аммиака. Общая схема азотнокислотного производства. Производство разбавленной азотной кислоты.

    контрольная работа [465,6 K], добавлен 30.03.2008

  • Характеристика процесса проектирования реактора. Описание материальных моделей химических реакторов: идеального вытеснения, полного смешения. Технологическое оформление процесса синтеза аммиака. Основные требования, предъявляемые к промышленным реакторам.

    курсовая работа [620,7 K], добавлен 16.05.2012

  • Расчет полезного объема реактора и определение направлений оптимизации технологического процесса по приготовлению катализатора гидрохлорирования ацетилена. Составление материального и теплового баланса процесса и его технико-экономическое обоснование.

    дипломная работа [1,3 M], добавлен 05.12.2013

  • Характеристика химического равновесия в растворах и гомогенных системах. Анализ зависимости константы равновесия от температуры и природы реагирующих веществ. Описания процесса синтеза аммиака. Фазовая диаграмма воды. Исследование принципа Ле Шателье.

    презентация [4,2 M], добавлен 23.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.