Лантоноид. Элемент европий

Химические свойства лантаноидов, их взаимодействие со многими элементами периодической системы. История открытия, получения, свойства и применения элемента европия. Его электронная конфигурация. Правило Хунда. Строение и формула многоэлектронного атома.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 08.02.2013
Размер файла 134,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Лантоноиды

2. Европий

2.1 История открытия

2.2 Получение

2.3 Свойства европия

2.4 Применение

2.5 Электронная конфигурация европия

Заключение

Список литературы

лантаноид элемент европий атом

Введение

Европий входит в группу лантоноидов, широко используется в электронике и мирокэлектронике.

1. Лантоноиды

Лантаноиды - это 14 элементов, следующих за лантаном, у которых к электронной конфигурации лантана последовательно добавляются 14 4f-электронов. Общая электронная конфигурация лантаноидов - 4f2-145d0-16s2.

У церия на 4f-уровне находятся два электрона - один за счет увеличения порядкового номера по сравнению с лантаном на единицу, а другой переходит с 5d-уровня на 4f. До гадолиния происходит последовательное увеличение числа электронов на 4f-уровне, а уровень 5d остается незанятым. У гадолиния дополнительный электрон занимает 5d-уровень, давая электронную конфигурацию 4f75d16s2, а у следующего за гадолинием тербия происходит, аналогично церию, переход 5d-электрона на 4f-уровень (4f96s2). Далее до иттербия наблюдается монотонное увеличение числа электронов до 4f14, а у завершающего ряд лютеция вновь появляется 5d-электрон (4f145d16s2).

Периодический характер заполнения 4f-орбиталей сначала по одному, а потом по два электрона предопределяет внутреннюю периодичность свойств лантаноидов. Периодически изменяются металлические радиусы, степени окисления, температуры плавления и кипения, величины магнитных моментов, окраска и другие свойства (рис. 1). Участие 4f-электронов в образовании химической связи обусловлено предварительным возбуждением на уровень 5d. Энергия возбуждения одного электрона невелика, поэтому обычно лантаноиды проявляют степень окисления III (табл. 2, рис. 1).

Однако некоторые из них проявляют так называемые аномальные степени окисления - 2, 4. Эти состояния окисления связывают с образованием наиболее устойчивых электронных конфигураций 4f0, 4f7, 4f14. Так, Ce и Tb приобретают конфигурации f0 и f7, переходя в состояние окисления +4, тогда как Eu и Yb имеют соответственно конфигурации - f7 и f14 в состоянии окисления +2. Однако существование Pr (IV), Sm (II), Dy (IV) и Tm (II) свидетельствует об относительности критерия особой устойчивости электронных конфигураций 4f0, 4f7 и 4f14. Как и для d-элементов, стабильность состояния окисления наряду с этим фактором характеризуется термодинамическими параметрами реального соединения.

Ограниченная возможность возбуждения 4f-электронов определяет сходство химических свойств лантаноидов в одинаковых степенях окисления. Основные изменения в свойствах лантаноидов являются следствием f-сжатия, то есть уменьшения эффективных радиусов атомов и ионов с увеличением порядкового номера.

В свободном состоянии лантаноиды - весьма активные металлы. В ряду напряжений они находятся значительно левее водорода (электродные потенциалы лантаноидов составляют около -2,4 В). Поэтому все лантаноиды взаимодействуют с водой с выделением водорода:

Соединения лантаноидов со степенью окисления IV проявляют окислительные свойства (Ce, Tb):

а соединения со степенью окисления II (Eu, Sm, Yb) - восстановительные, причем окисляются даже водой:

Лантаноиды очень реакционноспособны и легко взаимодействуют со многими элементами периодической системы: в кислороде сгорают при 200-400 °С с образованием Э2O3, а в атмосфере азота при 750-1000 °С образуют нитриды. Церий в порошкообразном состоянии легко воспламеняется на воздухе, поэтому его используют при изготовлении кремней для зажигалок. Лантаноиды взаимодействуют с галогенами, серой, углеродом, кремнием и фосфором. Химическая активность элементов в ряду Ce-Lu несколько уменьшается из-за уменьшения их радиусов. С водородом лантаноиды образуют солеобразные гидриды ЭH2 и ЭH3, которые по свойствам более близки к гидридам щелочно-земельных металлов, чем к гидридам d-элементов. С кислородом все лантаноиды образуют оксиды типа Э2O3, являющиеся химически и термически устойчивыми; так, La2O3 плавится при температуре 2000 °С, а CeO2 - около 2500 °С. Самарий, европий и иттербий, кроме оксидов Э2O3, образуют также монооксиды EuO, SmO, YbO. Церий легко образует оксид CeO2. Оксиды лантаноидов в воде нерастворимы, но энергично ее присоединяют с образованием гидроксидов:

Гидроксиды лантаноидов по силе уступают лишь гидроксидам щелочно-земельных металлов. Лантаноидное сжатие приводит к уменьшению ионности связи Э-ОН и уменьшению основности в ряду Ce(OH)3 - Lu(OH)3.

Лантаноиды используют в металлургии для легирования сталей, что повышает прочность, жаростойкость и коррозийную устойчивость последних. Такие стали применяют для изготовления деталей сверхзвуковых самолетов и оболочек искусственных спутников Земли.

Добавление оксида лантана в стекла повышает их показатель преломления (так называемая лантаноидная оптика). Радиационно-оптическую устойчивость стекол повышает CeO2. Стекла с неодимом используются в оптических квантовых генераторах. Оксиды гадолиния, самария и европия входят в состав защитных керамических покрытий от тепловых нейтронов в ядерных реакторах. Соединения лантаноидов используются в качестве катализаторов.

2. Европий

2.1 История открытия

Элемент был выделен в 1886 году из смеси редкоземельных элементов французским химиком Э.А. Демарсе. Его существование было подтверждено спектральным анализом лишь через 15 лет.

После подтверждения существования нового элемента Демарсе дал ему название европий -- в честь Европы.

2.2 Получение

Металлический европий получают восстановлением Eu2O3 в вакууме лантаном или углеродом, а также электролизом расплава EuCl3.

2.3 Свойства европия

Физические свойства

В чистом виде -- мягкий серебристо-белый металл, легко поддаётся механической обработке в инертной атмосфере. Приобретает сверхпроводящие свойства при температуре 1,8 К и давлении 80 ГПа.

Химические свойства

На воздухе быстро окисляется, поэтому его хранят в банках или ампулах под слоем жидкого парафина. Очень активный и может вытеснять из растворов солей почти все металлы.

В соединениях, как и большинство РЗЭ, проявляет преимущественно валентность +3, при определённых условиях (например, электрохимическим восстановлением, восстановлением амальгамой цинка и др.) можно получить степень окисления +2.

В своих реакциях с водой европий химически ведет себя как кальций. При уровнях рН ниже 6 европий способен мигрировать в воде в ионном виде. При более высоких уровнях рН европий образует плохо растворимые и, соответственно, менее подвижные гидроксиды. При контакте с кислородом воздуха происходит дальнейшее окисление до Eu2O3.

2.4 Применение

Ядерная энергетика. Европий используется в качестве поглотителя нейтронов (в основном окись европия, гексаборид и борат европия) в атомных реакторах, но окись постепенно «выгорает», и по срокам эксплуатации уступает карбиду бора в 1,5 раза (хотя имеет преимущество в почти полном отсутствии газовыделения и распухания в мощном потоке нейтронов, например реактор БН-600). Сечение захвата тепловых нейтронов европием (природной смесью изотопов) составляет около 4500 барн, самым активным в отношении захвата нейтронов является европий-151 (9200 барн).

Атомно-водородная энергетика. Оксид европия применяется при термохимическом разложении воды в атомно-водородной энергетике (европий-стронций-йодидный цикл).

Лазерные материалы. Ионы европия служат для генерации лазерного излучения в видимой области спектра с длиной волны 0,61 мк (оранжевые лучи), поэтому оксид европия используется для создания твердотельных, и менее распространённых жидкостных лазеров.

Электроника. Европий является легирующей примесью в моносульфиде самария (термоэлектрогенераторы), а так же как легирующий компонент для синтеза алмазоподобного (сверхтвердого) нитрида углерода. Силицид европия в виде тонких пленок находит применение в интегральной микроэлектронике.

Моноокись европия, а так же сплав моноокиси европия и моноокиси самария применяются в виде тонких пленок в качестве магнитных полупроводниковых материалов для стремительно развивающейся функциональной электроники, и в частности МДП -- электроники.

Люминофоры. Вольфрамат европия практически очень важный используемый микроэлектроникой люминофор. Легированный европием борат стронция используется как люминофор в лампах чёрного света.

Европий в медицине. Катионы европия давно и успешно используются в медицине в качестве флуоресцентных зондов. Радиоактивные изотопы европия применяются при лечении некоторых форм рака.

Другие сферы применения европия

· Светочувствительные соединения европия с бромом, хлором и йодом интенсивно изучаются.

· Европий-154 обладает большой мощностью тепловыделения при радиоактивном распаде и предложен в качестве топлива в радиоизотопных источниках энергии.

2.5 Электронная конфигурация европия

Согласно правилу Хунда (принципу максимальной мультиплетности), абсолютное значение суммарного спинового числа электронов данного энергетического подуровня должно быть максимальным.

.

Рис. 1. Максимальная емкость энергетических подуровней

Каждый энергетический подуровень имеет ограничения по количеству электронов, которые его заполняют.

Представить электронное строение многоэлектронного атома - это значит, в условной форме дать распределение электронов этого атома по энергетическим уровням и подуровням, т.е. составить так называемую электронную формулу атома. Электронная формула - это своего рода шифр, основу которого составляют квантовые числа. Электронная формула атома строится из блоков вида:

n?x,

где n - главное квантовое число (номер энергетического уровня, его значение указывается цифрой 1,2,3, 4,5,...),

? - орбитальное квантовое число (его значение обозначается соответствующей латинской буквой s, p, d, f),

x - число электронов, находящихся в данном квантовом состоянии.

Электронная формула атома составляется для его основного состояния, т.е. для состояния, которому отвечает минимальная энергия. При составлении электронных формул следует производить заполнение энергетических подуровней в порядке роста их энергии, низшие по энергии подуровни всегда заполняются первыми (принцип наименьшей энергии).

Энергия подуровней растет в соответствии с ростом суммарного значения квантовых чисел n + ?, а в случае их равенства первым заполняется подуровень с меньшим значением n. Порядок заполнения легко вывести из диаграммы, представленной на рис. 2.

Рис. 2. Диаграмма энергетических подуровней

В этой диаграмме в столбик выписаны энергетические подуровни каждого из семи уровней. При движении справа налево по диагонали данной диаграммы получается порядок, в котором следует заполнять энергетические подуровни электронами при составлении электронных формул атомов.

Согласно правилу Хунда (принципу максимальной мультиплетности), абсолютное значение суммарного спинового числа электронов данного энергетического подуровня должно быть максимальным.

Другими словами, в основном состоянии атома (такое состояние отвечает его минимальной энергии) максимальное число квантовых ячеек должно быть занято электронами, поэтому при построении схемы распределения электронов по квантовым ячейкам следует сначала помещать по одному электрону в каждую из них (спины всех электронов данного подуровня должны быть параллельными), и только после того, как одиночные электроны заполнят все ячейки, в них помещается второй электрон с антипараллельным спином.

Порядковый номер европия -63, число электронов - 63. Электронная конфигурация европия выглядит следующим образом:

1s2 2s2 2p6 3s2 3p6 4s2 4p6 5s2 4d10 5p6 5d10 4f7 6s2

Электронно-графическая формула атома европия выглядит следующим образом:

Степень окисления +2, т.к. на последнем уровне количество электронов - 2. Европий может проявлять степень окисления +3.

Заключение

Представить электронное строение многоэлектронного атома - это значит, в условной форме дать распределение электронов этого атома по энергетическим уровням и подуровням, т.е. составить так называемую электронную формулу атома. Электронная формула - это своего рода шифр, основу которого составляют квантовые числа.

Список литературы

1. Глинка Н.Л., Общая химия - Л., Химия, 1983 г.

2. Коровин Н.В., Курс общей химии - М., Высшая школа, 1981 г.

3. Лучинский Г.П., Курс химии - М., Высшая школа, 1985 г.

4. Фролов В.В. Химия - М., Высшая школа, 1979 г.

5. Харин А.Н., Катаев Н.А. и др., Курс химии - М., Высшая школа, 1983 г.

Размещено на Allbest.ru

...

Подобные документы

  • История открытия железа. Положение химического элемента в периодической системе и строение атома. Нахождение железа в природе, его соединения, физические и химические свойства. Способы получения и применение железа, его воздействие на организм человека.

    презентация [8,5 M], добавлен 04.01.2015

  • Свойства молибдена и его соединений. История открытия элемента. Электронная структура атома, его расположение в периодической системе химических элементов Д.И. Менделеева. Химические и физические свойства молибдена, его оксидов и гидроксидов.

    курсовая работа [2,3 M], добавлен 24.06.2008

  • Семейство лантана и лантаноидов, особенности их физических и химических свойств. История открытия, способы получения, применение лантана и его соединений. Строение электронных оболочек атомов лантана и лантаноидов. Аномальные валентности лантаноидов.

    реферат [71,7 K], добавлен 18.01.2010

  • История открытия фосфора. Природные соединения, распространение фосфора в природе и его получение. Химические свойства, электронная конфигурация и переход атома фосфора в возбужденное состояние. Взаимодействие с кислородом, галогенами, серой и металлами.

    презентация [408,5 K], добавлен 23.03.2012

  • Протоны и нейтроны как составляющие атомного ядра. Атомный номер элемента. Изотопы, ядерная и квантово-механическая модели атома. Волновые свойства электрона. Одноэлектронные и многоэлектронные атомы, квантовые числа. Электронная конфигурация атома.

    реферат [1,3 M], добавлен 26.07.2009

  • История открытия водорода. Общая характеристика вещества. Расположение элемента в периодической системе, строение его атома, химические и физические свойства, нахождение в природе. Практическое применение газа для полезного и вредного использования.

    презентация [208,2 K], добавлен 19.05.2014

  • Общая характеристика титана как химического элемента IV группы периодической системы Д.И. Менделеева. Химические и физические свойства титана. История открытия титана У. Грегором в 1791 году. Основные свойства титана и его применение в промышленности.

    доклад [13,2 K], добавлен 27.04.2011

  • Характеристика азота – элемента 15-й группы второго периода периодической системы химических элементов Д. Менделеева. Особенности получения и применения азота. Физические и химические свойства элемента. Применение азота, его значение в жизни человека.

    презентация [544,3 K], добавлен 26.12.2011

  • История открытия кислорода. Нахождение элемента в таблице Менделеева, его вхождение в состав других веществ и живых организмов, распространенность в природе. Физические и химические свойства кислорода. Способы получения и области применения элемента.

    презентация [683,8 K], добавлен 07.02.2012

  • История открытия скандия Д.И. Менделеевым. Электронное строение химического элемента. Формула состава атома. Электронная формула в виде квантовых ячеек. Нахождение скандия в природе. Технологии извлечения его из минералов. Основные руды-носители.

    реферат [28,5 K], добавлен 24.12.2013

  • Теория многоэлектронного атома. Атом H и водородоподобный ион. Возмущение потенциала и расщепление уровней АО. Правило Маделунга-Клечковского. Порядок учёта кулоновских взаимодействий. Микросостояния и атомные термы в приближении Рассела-Саундерса.

    реферат [42,3 K], добавлен 29.01.2009

  • Общая характеристика и история открытия ртути. Распространенность и формы нахождения элемента побочной подгруппы в природе. Сущность амальгамов как твердых или жидких растворов. Конфигурация внешних электронных оболочек атома. Ядовитость соединений ртути.

    реферат [45,7 K], добавлен 14.04.2015

  • Характеристика химических и физических свойств водорода. Различия в массе атомов у изотопов водорода. Конфигурация единственного электронного слоя нейтрального невозбужденного атома водорода. История открытия, нахождение в природе, методы получения.

    презентация [104,1 K], добавлен 14.01.2011

  • Схематическое представление энергетических решений уравнения Шредингера для атома водорода. Строение многоэлектронных атомов, принцип Паули. Принцип наименьшей энергии, правило Хунда. Характеристика электронных уровней, их связь со свойствами элементов.

    презентация [344,1 K], добавлен 11.08.2013

  • Химические свойства водорода - первого элемента периодической системы Менделеева. Выделение горючего газа при взаимодействии кислот и металлов, наблюдаемое еще в XVI и XVII веках на заре становления химии как науки. Протий и дейтерий, их свойства.

    презентация [8,5 M], добавлен 14.03.2014

  • Строение атома фосфора, его электронная конфигурация, типичные степени окисления. Физические свойства ортофосфорной кислоты и история ее открытия. Соли ортофосфорной кислоты. Применение в стоматологии, авиационной промышленности, а также фармацевтике.

    презентация [1,7 M], добавлен 18.12.2013

  • Общая характеристика марганца, его основные физические и химические свойства, история открытия и современные достижения в исследовании. Распространенность в природе данного химического элемента, направления его применения в промышленности, получение.

    контрольная работа [75,4 K], добавлен 26.06.2013

  • Химический элемент с атомным номером 74 в периодической системе. История и происхождение названия. Главные месторождения вольфрама. Процесс получения вольфрама. Очистка и получение монокристаллической формы. Основные химические свойства вольфрама.

    презентация [1,3 M], добавлен 11.03.2012

  • История открытия и способов приготовления фосфора. Его распространенность в земной коре, сферы применения и значение. Электронная конфигурация атома и аллотропная модификация элемента. Химическая активность и ядовитость белого, желтого и красного фосфора.

    презентация [864,3 K], добавлен 20.10.2013

  • Английский естествоиспытатель, физик и химик Генри Кавендиш - первооткрыватель водорода. Физические и химические свойства элемента, его содержание в природе. Основные методы получения и области применения водорода. Механизм действия водородной бомбы.

    презентация [4,5 M], добавлен 17.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.