Металлургия никеля

Никель как единственный "молодой" металл, получивший широкое применение только в конце XIX века, назначение. Анализ технологической схемы переработки сульфидных медно-никелевых руд пирометаллургическим способом. Медь как спутник никеля в сульфидных рудах.

Рубрика Химия
Вид дипломная работа
Язык русский
Дата добавления 10.03.2013
Размер файла 2,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Относительно небольшой объем отходящих газов, низкая их температура и более рациональный метод нагрева шихты и расплавов обусловливают высокий коэффициент использования теплоты в руднотермических печах (до 85 %).

Малый объем отходящих газов и небольшое количество мелочи в шихте определяют сравнительно небольшой пылевынос при электроплавке - всего 0,4... 0,5 % от массы твердой шихты.

Для плавки сульфидных медно-никелевых руд и концентратов применяют прямоугольные руднотермические печи с тремя или преимущественно шестью электродами. Трехэлектродные печи работают только на комбинате "Североникель". Они имеют площадь пода 58 м2 (11,2 х 5,2 м), удельную мощность- ~520кВ-А/м2.

Площадь пода шестиэлектродных печей при длине 20,5 ... 27,5 м и ширине 5,5... 6,7 м составляет 113... 184 м2. Удельная мощность таких печей колеблется от 98 до 324 кВ * А/м2.

Современные мощные печи оборудованы самообжигающимися электродами, представляющими собой железный кожух диаметром 1200 мм, заполненный электродной (углеродистой) брикетированной массой. По мере сгорания и опускания электрода кожух наращивают, а электродная масса, нагреваясь, спекается и превращается в достаточно плотный монолит.

Шихту в печь загружают через боковые и центральные загрузочные отверстия в своде, чаще всего "на электроды", где температура выше, а циркуляция шлака наиболее интенсивна.

Штейн выпускают через шпуровые отверстия, расположенные на одной из торцовых стен печи. В связи с отсутствием в рудно-термических печах отстойной зоны и наличием на поверхности шлаковой ванны слоя плавающей шихты выпуск шлака также осуществляют через шпуры, расположенные на противоположной стороне печи на расстоянии 1350 ... 1750 мм от подины (550 ... 900 мм от зеркала расплавленной ванны).

Работа руднотермических печей при плавке медноникелевого сырья характеризуется следующими технико-экономическими показателями:

Производительность по шихте, т/сут 600... 900

Удельный проплав, т/(м2 * сут) 8... 10

Извлечение в штейн, %:

никеля 94... 97

меди 94... 96

кобальта 75... 80

Расход электроэнергии на 1 т шихты, кВт * ч 570... 820

Конвертирование медно-никелевых штейнов

Для конвертирования медно-никелевых штейнов используют горизонтальные конвертеры вместимостью 75.. 100 т.

В связи с тем что никель, получаемый из сульфидных руд, обязательно подвергается электролитическому рафинированию, при котором можно наиболее рационально извлечь кобальт, при конвертировании медно-никелевых штейнов стремятся кобальт полнее оставить в файнштейне.

Присутствующие в медно-никелевых штейнах основные металлы по убыли сродства к кислороду располагаются в ряд Fe Со > Ni > Си. Следовательно, для того чтобы кобальт сохранить в файнштейне, процесс конвертирования нужно вести с неполным окислением железа. В противном случае кобальт преимущественно будет переходить в конвертерный шлак.

Продувку медно-никелевых штейнов в конвертерах обычно заканчивают получением файнштейна, содержащего, %: Ni 35 ... 42; Си 25... 30; Со 0,7... 1,3; Fe 3 ... 4; S 23 ... 24.

При этом получают конвертерные шлаки с суммарным содержанием никеля, меди и кобальта 2... 2,5 %. С целью обеднения конвертерные шлаки подвергают дополнительной переработке в электрических печах в присутствии восстановителя и бедной извлекающей фазы (рудного штейна). Продуктами обеднительной плавки являются штейн, направляемый на конвертирование, и отвальный шлак.

Разделение меди и никеля

Медно-никелевый файнштейн представляет собой в основном сплав сульфидов Ni3S2 и Cu2S, содержащий кобальт, платиноиды и небольшое количество железа. Если такой файнштейн по аналогии с никелевым файнштейном сразу подвергнуть окислительному обжигу с последующей восстановительной плавкой огарка на металл, то это приведет к получению очень сложного по составу металлического сплава, разделение которого на самостоятельные металлы технически невозможно. Поэтому медно-нике-левые файнштейны вначале направляют на разделение меди и никеля.

Разделение меди и никеля можно осуществить несколькими методами. Наибольшее распространение получил флотационный метод, при котором никель концентрируют в богатом никелевом концентрате, а медь - в медном.

Перед флотационным разделением файнштейн необходимо медленно охладить в течение 40... 80 ч с тем, чтобы обеспечить получение достаточно крупных кристаллов и хорошее механическое вскрытие кристаллических фаз при последующем его дроблении и измельчении.

Медленно охлажденный файнштейн состоит из обособленных кристаллов трех видов: сульфидов меди и никеля и металлического сплава. Последний представляет собой твердый раствор никеля и меди переменного состава. В нем концентрируется до 80 % платиновых металлов, содержащихся в файнштейне. Металлический сплав можно перед флотацией выделить магнитной сепарацией и направить на самостоятельную переработку. На отечественных предприятиях магнитную фракцию не выделяют и она полностью переходит в никелевый концентрат.

Флотацию ведут в сильнощелочной среде. Пенный продукт - богатый медный концентрат - после перечисток направляют в медное производство, где его расплавляют в отражательных или электрических печах, а расплав конвертируют до получения черновой меди. В медном концентрате содержится 68... 73 % Си и до 5 % Ni.

Вторым продуктом флотационного разделения является богатый никелевый концентрат ("хвосты" флотации), который содержит, %: Ni 68... 72; Си 3 ... 4; Со до 1; Fe2...3; S 22 ... 23,5, а также большую часть платиновых металлов.

Другим применяемым в современной практике способом разделения меди и никеля является карбонильный процесс. Его используют для переработки медно-никелевых файнштейнов, восстановленного оксида никеля и рафинирования чернового никеля.

Карбонильное разделение меди и никеля основано на способности никеля образовывать при взаимодействии с СО карбонил - соединение металла с СО. Вместе с никелем образуют кар-бонилы железо и кобальт; медь карбонилов не образует.Карбонил никеля Ni(C0)4 плавится при температуре - 25 °С и кипит при 43 "С. Температура кипения карбонила железа 105 °С. Карбонил кобальта плавится при 51 0С с разложением. При нагревании до температуры > 180 °С пары карбонила никеля разлагаются. Тогда сущность карбонильного процесса можно описать уравнением:

При атмосферном давлении образование карбонилов идет очень медленно. Равновесие этой реакции можно сдвинуть вправо, т.е. ускорить процесс, проводя его под давлением 17 ... 23 МПа и при температуре 190 ... 220 °С.

По этому способу в стальной реактор ("бомбу") загружают перерабатываемый материал, включая дробленый передутый (ме-таллизованный) файнштейн с пониженным содержанием серы. Карбонил никеля, загрязненный карбонилом железа, возгоняется, а вся медь, платиноиды и кобальт остаются в остатке.

Технический карбонил никеля для очистки от железа подвергают фракционной перегонке (ректификации). Очищенный карбонил направляют в башню разложения, обогреваемую до 200... 220 °С. Продуктом разложения могут быть карбонильный порошок или дробь диаметром до 10... 15 мм. Карбонильный никель содержит менее 0,001 % Си, 0,005% Fe, 0,002% S и до 0,03 % С.

Получение чернового никеля из богатых никелевых концентратов

Флотационные никелевые концентраты процесса разделения меди и никеля вначале подвергают одностадийному окислительному обжигу в печах КС при 1100... 1200"С. Полученный при обжиге оксид никеля содержит до 0,5 % S. Глубокой десульфуризации оксида никеля в данном случае проводить нет необходимости, так как черновой никель обязательно подвергают электролитическому рафинированию, при котором сера, практически полностью связанная с медью (Cu2S), перейдет в шлам. После выпуска огарка из печи КС ее предварительно восстанавливают в трубчатом отапливаемом реакторе, что существенно экономит электроэнергию при последующей плавке на черновой никель.

Восстановительную плавку оксида никеля проводят в дуговых электрических печах по технологии, близкой к переработке никелевого файнштейна на огневой никель. Различие заключается лишь в том, что плавку ведут без наведения шлака, а готовый никель разливают на карусельной разливочной машине в аноды с заливкой в них ушков из никеля. Полученный из сульфидных руд черновой никель перед его карбонильным рафинированием гранулируют.

Электролитическое рафинирование никеля

Анодный никель - сложный по составу сплав, содержащий по крайней мере двенадцать металлических элементов, включая железо, и химические соединения металлов с селеном, теллуром, кислородом и серой.

Цель рафинирования чернового никеля сводится к получению чистого катодного никеля не ниже марок Н-0 и Н-1 и попутному извлечению присутствующих в анодном металле ценных спутников - кобальта, платиноидов, золота, серебра, меди, селена и теллура. Марки электролитного никеля Н-0 и Н-1, согласно ГОСТ 849-70, должны содержать суммарно никеля и кобальта соответственно не менее 99,99 и 99,93 %. В составе марки Н-0 регламентируется содержание 17 примесных элементов, включая кобальт.

Рафинирование никеля почти повсеместно проводят методом электролиза. Кроме электролитического, возможно карбонильное рафинирование, описанное ранее. Электролизу обычно подвергают аноды следующего состава, %: Ni 89 ... 92; Си 4 ... 5; Fe 1,5... 3,5;

Со2...2,5; дo 2S.

Электролитическое рафинирование никеля - сложный электрохимический процесс. Никель является электроотрицательным металлом, и поэтому такие примеси, как кобальт, железо, цинк, медь, а также катионы водорода могут совместно с ним или раньше разряжаться на катоде. Для предотвращения возможного загрязнения катодного никеля примесями и снижения выхода по току из-за разряда ионов водорода необходимо выполнение следующих условий:

1) тщательная очистка электролита от примесей;

применение оптимальных состава электролита и электрического режима электролиза;

разделение анодного и катодного пространств слабо фильтрующей, химически и механически стойкой диафрагмой;

обеспечение оптимальной циркуляции электролита.

Для электролиза никелевых анодов применяют сульфатхлоридные электролиты, содержащие небольшое количество свободных катионов водорода. Основными компонентами электролита являются сульфаты никеля и натрия и хлорид никеля. Для автоматического регулирования рН электролита в пределах 2,5... 5 вводят борную кислоту, которая, в зависимости от изменений кислотности электролита и выполняя роль буферной добавки, будет диссоциировать по-разному:

Применяемые в настоящее время никелевые электролиты содержат, г/л: Ni2+ 70 ... ПО; Na+ 20 ... 25; СГ 40 ... 80; SO2," ПО... 160; Н3В03 4... 6. Электролиз никелевых анодов ведут в электролизных ваннах ящичного типа. Аноды и катодные основы, полученные электролитическим наращиванием никеля на титановых матрицах, завешивают в ванны поочередно.

Анодный процесс сводится к электрохимическому растворению никеля, кобальта, железа и меди; благородные металлы и нерастворимые в электролите химические соединения осыпаются в шлам. Единственно допустимым процессом на катодах в условиях электролитического рафинирования никеля является разряд (восстановление) катионов никеля по реакции Ni2+ + 2е > Ni. Все остальные катодные реакции либо ведут к загрязнению катодного никеля, либо снижают выход по току.

Получение чистых катодных осадков на практике достигается отделением катодного пространства от общего объема загрязненного электролита с помощью катодных диафрагм и особой системой циркуляции электролита. Загрязненный электролит - анолит -непрерывно выводят из ванн на обязательную очистку от железа, кобальта и меди и периодическую очистку от ряда других примесей. После очистки чистый электролит с помощью распределительной гребенки с ниппелями, размещенной вдоль одного из бортов ванн, подается в каждую катодную диафрагму.

Подачу католита регулируют таким образом, чтобы его уровень в катодной диафрагме превышал уровень электролита в ванне на 30... 40 мм. В результате этого обогащенный никелем католит под действием гидростатического давления проходит через поры диафрагмы и, как бы отталкивая анолит от диафрагмы, не дает примесям проникать в катодную ячейку..

На аноде электрический ток расходуется на растворение не только никеля, но и других металлов. Такое же количество электричества (электронов) должно быть израсходовано . и на катоде, но только на один процесс - разряд катионов никеля. В итоге получается, что количество осажденного на катоде никеля всегда превышает его поступление с анода. Возникает дефицит никеля в катодном пространстве, который усиливается его потерями во время очистки анолита. Для устранения возникшего дефицита выводимый на очистку анолит обогащают никелем за счет растворения в нем никельсодержащих материалов.

Электролитическое рафинирование никеля проводят в ваннах, объединенных по две в блоки и разделенных продольной стенкой (рис. 12). В ваннах устанавливают от 32 до 44 диафрагм, в которые помещают столько же катодных основ. Анодов в ваннах никелевого электролиза на один больше, чем катодов.

Катодная диафрагма представляет собой раму из армированного титановыми скобами профилированного полипропилена. Рама обтянута плотной тканью. Для диафрагм используют специальные сорта брезента, хлориновую ткань и другие синтетические материалы, обладающие низкими фильтруемостью и электрическим сопротивлением.

Для подачи католита в ванны служат гребенки из фаолита или винипласта с калиброванными ниппелями, снабженными резиновыми трубочками. По этим трубочкам в каждую диафрагму подают католит. Скорость подачи католита регулируют по его уровню в диафрагменной ячейке.

Процесс электролитического рафинирования никеля характеризуется следующими режимными параметрами и технологическими показателями:

Плотность тока (катодная), А/м2 180... 350

Выход по току (катодный), % 94 97

Напряжение на ванне, В 2,6 3,0

Температура католита, "С 55 ... 75

рН католита 2,1... 4,8

Скорость циркуляции католита на ячейку, л/ч 20 ... 30

Расход электроэнергии на 1 т никеля, кВт * ч 2400 ... 3300

Выход анодного скрала, % 16... 18

Очистка анолита включает три основные операции - очистку от железа, меди и кобальта. При очистке никелевых растворов стремятся не загрязнять их посторонними реагентами. По этой причине в качестве реагентов обычно используют никельсодер-жащие материалы. Это позволяет одновременно частично обогатить католит никелем.

Железо в анолите содержится в основном в форме FeS04. Для очистки его необходимо перевести в трехвалентное состояние с последующим гидролитическим осаждением (Fe2O3 * Н20). Окислителем служит кислород воздуха. Очистку от железа проводят в чанах с воздушным перемешиванием (пачуках). Для нейтрализации образующейся при гидролизе серной кислоты в электролит вводят карбонат никеля.

2FeSO4 + 1/2О2 + 5Н2О = 2Fe (ОН)3 + 2H2SO4; (17)

2H2SO4 + 2NiCO3 = 2NiSO4 + 2H2O + 2CO2. (18)

Первичные железистые кеки содержат 8... 12 % Ni. После отделения кеков от раствора на свечевых или дисковых фильтрах их дважды подвергают кислотной репульпации с целью извлечения части никеля и далее плавят вместе с рудным сырьем в руднотермических печах.

Рис.12. Ванна для электролитического рафинирования никеля: 1 -- распределительная гребенка подачи электролита; 2,3 -- промежуточная и бортовая шины соответственно; 4 -- катод; 5 -- катодные диафрагмы; 6 -- анод

Первичные железистые кеки содержат 8... 12 % Ni. После отделения кеков от раствора на свечевых или дисковых фильтрах их дважды подвергают кислотной репульпации с целью извлечения части никеля и далее плавят вместе с рудным сырьем в руднотермических печах.

После очистки от железа раствор обезмеживают цементацией меди никелевым порошком. Никелевый порошок должен обладать высокой активностью (не менее 50 %) и развитой поверхностью. Это достигается путем восстановления оксида никеля водородом или водяным газом при 500... 550 °С в муфельных печах. Привоздействии металлического никеля на раствор медь выпадает в осадок по реакции

CuS04 + Ni = Си + NiS04

Очистку от меди необходимо проводить в отсутствие кислорода; в противном случае возможно ее обратное окисление и растворение. На практике обезмеживание ведут в механических мешалках или в специальных аппаратах - цементаторах.

Цементатор (рис. 13) - аппарат с вертикальным рабочим пространством и переменным поперечным сечением. Раствор, предназначенный для очистки, подается в нижнюю часть цементатора, а сливается вверху. Никелевый порошок подается либо на поверхность раствора, либо на вход нагнетательных насосов его подачи в цементатор. В верхней части аппарата скорость вертикального потока снижается из-за резкого расширения корпуса, в результате чего частицы твердых материалов образуют четко выраженный кипящий слой, который удерживается на глубине ~ 2 м от сливного порога.

Выделившуюся из раствора цементную медь периодически выпускают из цементатора и направляют в медное производство.

Очистку от кобальта проводят способом, аналогичным очистке от железа, но используют в качестве окислителя газообразный хлор. Суммарный итог очистки электролита от кобальта можно выразить следующей реакцией:

2CoSO4+Cl2+3H2O+3NiCO3=2Co(OH)3+2NiSO4+NiCl2+3CO2. (20)

Рис.

Для проведения процесса используют герметизированные барботеры-пачуки. Первичные кобальтовые кеки содержат ~ 10 % Со и примерно столько же никеля. После двукратной репульпации кека никель переводят в основном в раствор и получают кобальтовый концентрат, содержащий кобальт и никель в соотношении не ниже (15... 10):1. Этот продукт является сырьем для производства кобальта.

Очищенный от примесей электролит (католит) содержит, %: Fe до 0,0003; Си до 0,008; Со 0,008... 0,012. В случае необходимости католит дополнительно очищают от свинца, цинка, органических и некоторых других примесей.

Гидрометаллургия никеля

Гидрометаллургические методы при получении никеля значительно больше распространены, чем при получении меди. В настоящее время их применяют для переработки окисленных никелевых руд, никелевых сульфидных концентратов, пирротиновых концентратов, сульфидных полупродуктов (штейнов, файнштейнов и др.) с использованием сернокислых, аммиачных и солянокислых растворов.

Выщелачивание проводят как при атмосферном, так и повышенном давлении. Высокое давление в свою очередь позволяет вести процесс и при повышенных температурах. Использование высоких температур и давлений значительно ускоряет химические реакции и повышает полноту их протекания. Такие процессы получили название автоклавных процессов. Их проводят в специальных герметичных аппаратах - автоклавах. Устройство горизонтальных автоклавов, чаще всего применяемых в металлургии никеля, показано на рис. 14.

При гидрометаллургической переработке окисленных никелевых руд, содержащих около 1,3 % Ni и 0,8 % Со, по аммиачной схеме (завод "Никаро", Куба) руду вначале подвергают селективному восстановительному обжигу, при котором никель и кобальт восстанавливаются до металлов, а железо - преимущественно до Fe3O4. Охлажденный огарок выщелачивают в турбоаэраторах - герметичных пневмомеханических мешалках - раствором, содержащим 5 ... 7 % аммиака и 4... 6 % оксида углерода (С02). При этом протекают процессы, описываемые в общем виде уравнением

Me + 6NH3 + С02 + 1/20, = Me(NH3)6C03. (21)

Железо в виде гидроксида и большая часть кобальта (до 80... 90 %) остаются в хвостах выщелачивания. Полученные растворы в дальнейшем подвергают термическому разложению острым паром с образованием нерастворимых карбонатов никеля и кобальта. Осадок карбонатов после отделения от растворов сушат и прокаливают в трубчатых печах, что приводит к образованию оксида никеля. Оксид никеля спекают на агломерацион ных машинах. Товарным продуктом этой технологии является спек (синтер), содержащий 88% Ni и 0,7% Со. Извлечение никеля из руды составляет 75 %, кобальта 20 %.

Рис.14. Горизонтальный четырехкамеркый автоклав: 1 - перемешивающее устройство; 2 - перегородка; 3 - регулирующий затвор; 4 - змеевик для охлаждения раствора; 5 - патрубок для выпуска пульпы

На заводе "Моа" (Куба) окисленные никелевые руды подвергают сернокислотному выщелачиванию под давлением 0,4 ... 0,5 МПа в вертикальных автоклавах, что позволяет проводить процесс при температурах до 240... 250 "С. В раствор при выщелачивании в автоклавах переходит по 95 % никеля и кобальта в виде сульфатов NiS04 и CoSO4. После очистки от железа раствор нейтрализуют и обрабатывают сероводородом в специальных автоклавах, в результате чего получают сульфидный концентрат, содержащий 55 ... 60 % Ni и 5... 6 % Со. Этот концентрат является товарной продукцией завода. Конечное извлечение металлов из руды- ? 90 %.

Аммиачное выщелачивание в автоклавах для переработки сульфидных никелевых концентратов (14 % Ni; 3 % Си; 0,2 ... 0,4 % Со; 35 % Fe; 28 % S) использует компания "Шеррит-Гордон" (Канада). Процесс выщелачивания ведут в четырехкамерных автоклавах объемом 120 м3.

Технологическая схема процесса состоит из следующих основных операций:

1) аммиачное выщелачивание концентрата при температуре 77... 82 °С и давлении около 700 кПа, при этом в раствор в фор ме аммиакатов переходят никель, медь и кобальт, а железо, окисляясь, выпадает в осадок в виде гидроксида;

2) кристаллизация сульфида меди при нагреве раствора до 110 "С;

3) последовательное автоклавное восстановление водородом никеля и осаждение кобальта сероводородом;

4) кристаллизация сульфата аммония из отработанного раствора. В целом по такой технологии извлекают, %: Ni 90; Со 45; Си 89; S 75.

В результате автоклавной переработки сульфидных никелевых концентратов по аммиачной схеме получают сульфид меди (70 % Си), никелевый порошок (99,8 . . . 99,9 % Ni), кобальтовый порошок и сульфат аммония.

На отечественных заводах автоклавное выщелачивание используют для переработки пирротиновых концентратов (НГМК), кобальтового штейна (автоклавной массы), получаемого при обеднении конвертерных шлаков на комбинате "Южуралникель", растворения богатых никелевых концентратов с целью обогащения никелевого электролита на комбинате "Североникель".

Переработка пирротиновых концентратов, содержащих, %: Ni 3,5 ... 3,9; Си 3,2 ... 3,6; Со 0,13; Fe 47 ... 54 и S 28 ... 32, осуществляется по технологии автоклавного окислительного выщелачивания (рис. 15).

Окислительное выщелачивание проводят в горизонтальных автоклавах с рабочей емкостью 100 м3 при 108 °С и давлении ~ 1,5 МПа. Цель процесса - разложение пирротина с образованием гидроксида железа (Fe203 * Н20) и элементарной серы; при этом в раствор частично переходят цветные металлы в форме сульфатов. Химизм основного процесса сложен и недостаточно изучен. Продуктом процесса является окисленная пульпа, в твердой фазе которой содержатся неокислившиеся сульфиды, гидроксид железа, элементарная сера и пустая порода, а в водной - растворенные цветные металлы.

Для осаждения растворенных металлов пульпу в реакторах с механическим перемешиванием обрабатывают железорудными металлизованными окатышами. В результате протекания суммарной реакции, описываемой в общем виде реакций MeS04 + Fe + S° > MeS + FeS04, никель, медь и кобальт выпадают в осадок в виде сульфидов.

Серосульфидная флотация имеет своей целью флотационное отделение сульфидов и элементарной серы от оксидов (Fe203 * Н20) и пустой породы, которые направляются в отвал. Флотационный серосульфидный концентрат направляют на разделение серы и сульфидов также методом флотации с получением сульфидного и серного концентратов.

Автоклавный сульфидный концентрат в 3... 4 раза больше обогащен цветными металлами по сравнению с исходным пирротиновым концентратом. Его плавят в составе шихты плавки на медно-никелевый штейн. Такой процесс в промышленном масштабе внедрен на Надеждинском никелевом заводе (НГМК).

Примером солянокислого выщелачивания с использованием экстракции может служить переработка медно-никелевого файн-штейна на промышленной установке в Норвегии.

При выщелачивании соляной кислотой при 70 °С сульфиды никеля, кобальта и железа растворяются, a Cu2S и платиноиды остаются в остатке. Железо в виде HFeCl4 извлекают экстракцией раствором трибутилфосфата в керосине; кобальт экстрагируют раствором триизооктиламина в толуоле. Из очищенного раствора кристаллизуют NiCl2 * 6Н20. Эту соль затем прокаливают, улавливая пары соляной кислоты, а полученный оксид никеля восстанавливают водородом. Металл плавят и гранулируют; чистота его составляет 99,7 %.

Размещено на Allbest.ru

...

Подобные документы

  • История происхождения никеля. Степень распространенности элемента в природе, содержание его в месторождениях руд. Получение, химические и физические свойства металла. Виды никелевых сплавов. Использование соединений и чистого никеля в современной технике.

    реферат [44,0 K], добавлен 24.10.2011

  • Распространение в природе сульфидных руд. Эндогенные, экзогенные и метаморфизованные золотые руды. Распространение пирита и пирротина. Применение, происхождение марказита. Переработка руды никеля. Свойства извлекаемых из сульфидных руд металлов.

    реферат [1,7 M], добавлен 14.04.2014

  • История открытия и технология получения никеля, места его нахождения в природе. Основные физические, химические и механические свойства никеля. Характеристика органических и неорганических соединений никеля, сферы его применения и биологическое действие.

    курсовая работа [1,2 M], добавлен 16.01.2012

  • Изучение и анализ производства никеля сернокислого (сульфат никеля, никелевый купорос), основанного на переработке маточного раствора медного отделения ОАО "Уралэлектромедь". Характеристика основного оборудования производства никеля сернокислого.

    дипломная работа [846,0 K], добавлен 19.06.2011

  • Химические и физические свойства никеля и методы его применения в промышленности и технике. Свойства тетракарбонила никеля, методы синтеза этого вещества в лаборатории. Технологические процессы, которые базируются на использовании карбонила никеля.

    курсовая работа [57,1 K], добавлен 27.11.2010

  • Комплексы никеля - самые распространенные катализаторы олигомеризации олефинов. Линейные производные этилена. Распределение продуктов олигомеризации этилена. Группы никелевых катализаторов. Процесс полимеризации этилена с образованием линейного продукта.

    статья [860,6 K], добавлен 03.03.2010

  • Краткая характеристика суперконденсаторов. Принцип действия ионисторов различного типа, суперконденсаторов на основе гидроксида никеля. Физико-химические свойства гидроокиси никеля, способы синтеза. Получение химическим способом в лабораторных условиях.

    дипломная работа [864,4 K], добавлен 13.10.2015

  • Общая сравнительная характеристика металлов. Кобальт и никель: получение, химические свойства. Сравнение оксидов и гидроксидов кобальта и никеля, хлориды, сульфид. Нахождение количества вещества сульфата кобальта, массы раствора по уравнению реакции.

    курсовая работа [27,3 K], добавлен 14.11.2011

  • Переходные металлы - элементы побочных подгрупп периодической системы химических элементов. Элементы VIIB и VIIIB группы: химические и физические свойства. Соединения марганца. Применение перманганата калия. Соединения кобальта и никеля и их свойства.

    презентация [73,6 K], добавлен 02.05.2013

  • Классификация и общая характеристика медно-никелевых сплавов, влияние примесей на их свойства. Коррозионное поведение медно-никелевых сплавов. Термодинамическое моделирование свойств твёрдых металлических растворов. Энергетические параметры теории.

    дипломная работа [1,2 M], добавлен 13.03.2011

  • Влияния ионов титана, алюминия и углерода на микроструктуру, элементно-фазовый состав и физико-механические свойства поверхностного ионно-легированного слоя никеля. Изучение физико-химических процессов формирования ультрадисперсных интерметаллидов.

    дипломная работа [1,9 M], добавлен 03.12.2012

  • Медь металл мягкий и пластичный. По электро- и теплопроводности медь уступает только серебру. Металлическая медь, как и серебро, обладает антибактериальными свойствами. Малахит является соединением меди, состав природного малахита - основной карбонат меди

    курсовая работа [182,8 K], добавлен 24.05.2005

  • Общая характеристика и свойства меди. Рассмотрение основных методов получения меди из руд и минералов. Определение понятия сплавов. Изучение внешних характеристик, а также основных особенностей латуни, бронзы, медно-никелевых сплавов, мельхиора.

    презентация [577,5 K], добавлен 14.04.2015

  • Понятие тяжелых металлов и агроландшафтов. Основные причины появления металлов в больших концентрация в почвах, в результате чего они становятся губительными для окружающей среды. Биогеохимические циклы тяжелых металлов: свинца, кадмия, цинка, никеля.

    реферат [200,4 K], добавлен 15.03.2015

  • Химические свойства. Минералы. Медные сплавы. Марки медных сплавов. Медно-цинковые сплавы. Латуни. Оловянные бронзы. Алюминиевые бронзы. Кремнистые бронзы. Бериллиевые бронзы. Медь в промышленности. Медь в жизни растений и животных.

    реферат [16,6 K], добавлен 22.12.2003

  • Йод: свойства обычные и необычные, биологические функции иода, человек. Медь. Бронза. Металлургия. В живом организме. Медные деньги. Цинк. Цинк и сталь. Сплавы и немного истории. Биологическая роль цинка. Серебро. Зеркальное отражение. Палладий. Никель.

    реферат [599,5 K], добавлен 30.12.2003

  • Флотационные свойства сульфидных и несульфидных минералов. Характеристика основных реагентов-собирателей и флотационных реагентов-модификаторов. Разработка реагентного режима флотации, системы автоматического контроля и дозирования флотационных реагентов.

    курсовая работа [1,1 M], добавлен 30.06.2012

  • арактеристика элемента медь. Жизненно важный металл. Главный элемент электротехники. Один из самых древних и самых популярных. Характеристика прочности, текучести, электросопротивления. Предметы, изготавливаемые из меди и ее сплавов с другими элементами.

    статья [12,2 K], добавлен 12.06.2008

  • Физические и химические методы получения наночастиц. Формирование низкоразмерных систем никеля при конденсации в сверхчистой инертной среде. Расчет изменения пресыщения в процессе наращивания конденсата. Охрана труда при выполнении эксперимента.

    дипломная работа [9,1 M], добавлен 18.01.2013

  • Характеристика цинка и меди как химических элементов и их место в периодической таблице Менделеева. Получение цинка из полиметаллических руд пирометаллургическим и электролитическим методами. Способы применения меди в электротехнике и производстве.

    презентация [487,5 K], добавлен 08.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.