Экстракция как метод разделения и концентрирования

Процесс экстракции; характеристика метода в современном химико-токсикологическом анализе; количественные характеристики. Расчет объема органического растворителя для экстракции кислот, оснований, амфотерных соединений. Экстракция в пищевой промышленности.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 10.05.2013
Размер файла 822,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

1. Понятие экстракции

2. Метод экстракции в современном химико-токсикологическом анализе

а) Процесс экстракции (выщелачивания)

б) Жидкостная экстракция

3. Основные количественные характеристики процессов экстракции

4. Расчет объема органического растворителя, необходимого для однократной экстракции

5. Расчет объема органического растворителя для многократной экстракции

6. Экстракция органических кислот

7. Экстракция оснований

8. Экстракция амфотерных соединений

9. Влияние различных факторов на экстракцию

10. Требования, предъявляемые к органическим растворителям для экстракции

11. Экстракция в пищевой промышленности

1. Понятие экстракции

Экстракция (от лат. extraho -- извлекаю) -- метод извлечения вещества из раствора или сухой смеси с помощью подходящего растворителя (экстрагента). Для извлечения из раствора применяются растворители, не смешивающиеся с этим раствором, но в которых вещество растворяется лучше, чем в первом растворителе.

Экстракция может быть разовой (однократной или многократной) или непрерывной (перколяция).

Простейший способ экстракции из раствора -- однократная или многократная промывка экстрагентом в делительной воронке. Делительная воронка представляет собой сосуд с пробкой и краном для слива нижнего слоя жидкости. Для непрерывной экстракции используются специальные аппараты -- экстракторы, или перколяторы.

Экстрактор Сокслета

1. Якорь магнитной мешалки

2. Колба для кипячения экстрагента

3. Трубка для паров растворителя

4. Патрон из пористого материала

5. Сухая смесь

6. Сифон

7. Слив сифона

8. Шлифовой переходник

9. Обратный холодильник

10, 11. Патрубки для холодной воды

Для извлечения индивидуального вещества или определённой смеси (экстракта) из сухих продуктов в лабораториях широко применяется непрерывная экстракция по Сокслету.

В лабораторной практике химического синтеза экстракция может применяться для выделения чистого вещества из реакционной смеси или для непрерывного удаления одного из продуктов реакции из реакционной смеси в ходе синтеза.

Экстракция применяется в химической, нефтеперерабатывающей, пищевой, металлургической, фармацевтической и других отраслях, в аналитической химии и химическом синтезе.

2. Метод экстракции в современном химико-токсикологическом анализе

В современном химико-токсикологическом анализе метод экстракции широко используется для изолирования токсических веществ из объектов биологического происхождения, для очистки вытяжек из биологического материала от примесей, для выделения токсических веществ из предварительно очищенных вытяжек. Этот метод применяется для обнаружения токсических веществ при помощи некоторых качественных реакций, для количественного определения этих веществ экстракционно-фотометрическими методами, для концентрирования исследуемых веществ, находящихся в сильно разбавленных растворах, и для ряда других целей.

Экстракция -- процесс извлечения растворителями соответствующих веществ из различных объектов. Объекты, из которых извлекают соответствующие соединения, могут быть твердыми веществами и жидкостями. Поэтому процессы извлечения подразделяют на экстракцию в системе твердое тело -- жидкость и на экстракцию в системе жидкость -- жидкость (жидкостную экстракцию).

Для экстракции веществ в системе твердое тело -- жидкость в качестве экстрагентов применяют органические растворители. Извлечение соответствующих веществ из твердых тел водой называется выщелачиванием.

В химико-токсикологическом анализе метод экстракции в системе твердое тело -- жидкость и метод выщелачивания применяются для изолирования исследуемых веществ (целевых компонентов) из органов трупов, растений, почвы и других объектов.

а) Процесс экстракции (выщелачивания) целевых компонентов из биологического материала является многостадийным. Основными стадиями этого процесса являются: проникновение экстрагента в клетки и ткани трупного материала и в другие объекты, в которых находится исследуемое вещество, растворение целевого компонента в экстрагенте или взаимодействие целевого компонента с экстрагентом в клетках и тканях биологического материала, перенос растворенного целевого компонента через оболочки клеток в межклеточное пространство и смешивание извлеченных из клеток веществ с основной массой экстрагента.

Степень изолирования исследуемых веществ из биологического материала зависит от растворимости извлекаемых веществ в экстрагенте, структуры (пористости) биологического материала, проникающей способности экстрагентов в клетки и ткани биологического материала, степени его измельчения, интенсивности перемешивания смеси измельченного биологического материала и экстрагента, кратности настаивания биологического материала с экстрагеитом, температуры, рН среды и ряда других факторов. Влияние отдельных перечисленных выше факторов на изолирование токсических веществ из биологического материала приводится ниже (см. гл. V, §2--4).

б) Жидкостная экстракция -- процесс распределения растворенного вещества между двумя несмешивающимися жидкими фазами, одной из которых в большинстве случаев является вода, а второй -- несмешивающийся с водой органический растворитель.

Извлечение вещества из фазы органического растворителя в водную фазу называется реэкстсакцией.

Некоторыми преимуществами метода экстракции объясняется широкое применение его не только в токсикологической химии, но и в химической технологии, фармации, биохимии и т.д. При использовании методов экстракции отсутствует химическое превращение разделяемых веществ и не образуются побочные продукты. Вещества, выделенные с помощью метода экстракции, как правило, не содержат примесей, связанных с процессами адсорбции и окклюзии. Этот метод оправдывает себя при разделении термолабильных веществ. Использование метода экстракции для концентрирования позволяет переводить вещества из сильно разбавленных растворов в небольшой объем органического растворителя.

Переход экстрагируемого вещества из одного растворителя в другой происходит в результате разности концентраций и неодинаковой растворимости этого вещества в обоих растворителях. Этот процесс происходит до тех пор, пока не наступит равновесие концентраций извлекаемого вещества в одном и другом растворителях.

Исследования показали, что экстрагируемость химических соединений зависит от растворимости их в воде и в несмешивающихся с водой органических растворителях, применяемых для экстракции. Подтверждением этого является то, что коэффициент распределения некоторых веществ приблизительно равен отношению их растворимостей в органическом растворителе и в воде.

Органические растворители, которые применяются для экстракции органических соединений, оказались непригодными для экстракции большого числа неорганических соединений. Поэтому сделаны попытки найти подходящие экстрагенты для извлечения неорганических соединений из водных растворов. Проведенные исследования показали, что для экстракции неорганических соединений в качестве экстрагентов с успехом могут быть использованы некоторые карбоновые и сульфоновые кислоты, отдельные фосфорорганические соединения, высокомолекулярные амины, соли четвертичных аммониевых оснований и др. Эти вещества при экстракции взаимодействуют с неорганическими соединениями и их ионами. Кроме перечисленных соединений в качестве экстрагентов для ионов металлов предложены так называемые хелатирующие агенты (вещества, растворы которых с ионами металлов образуют хелаты). К числу хелатирующих агентов относятся; купферон, 8-оксихинолин, дитизон, дитиокарбоматы и др.

В связи с применением перечисленных выше веществ для экстракции неорганических соединений и их ионов изменилось представление об экстрагентах. В настоящее время под экстрагентом понимают органический растворитель (содержащий или не содержащий другие компоненты), который извлекает вещество из водной фазы. Составная часть экстрагента, химически взаимодействующая с извлекаемым веществом, называется реагентом.

В зависимости от состава и свойств экстрагентов экстракционные системы подразделяются на две группы. К первой группе относятся экстракционные системы с так называемым «физическим» распределением компонентов. В этих системах отсутствует химическое взаимодействие между экстрагентом (органическим растворителем) и экстрагируемыми веществами. Различная растворимость некоторых веществ, а следовательно, и неодинаковая экстрагируемость их объясняются физическими свойствами этих веществ и экстрагентов (дипольный момент, диэлектрическая проницаемость и др.).

Свойства некоторых органических растворителей, применяемых в качестве экстрагентов, приведены в табл. 1.

Ко второй группе относятся экстракционные системы, в которых экстракция осуществляется за счет химического взаимодействия извлекаемых веществ с экстрагентами. Эффективность разделения веществ в таких системах зависит от прочности образующихся соединений или комплексов. Эти экстракционные системы используются для извлечения неорганических веществ.

Экстракция с помощью экстрагентов, взаимодействующих с экстрагируемыми веществами, является более сложным процессом, чем экстракция, основанная на физическом распределении. При использовании экстрагентов, взаимодействующих с экстрагируемыми веществами, процессы экстракции могут осложняться побочными реакциями. В ряде случаев одновременно может происходить экстракция нескольких различных соединений.

3. Основные количественные характеристики процессов экстракции

Несмотря на то, что экстракция как метод разделения длительное время применяется в аналитической химии и химической технологии, теоретические основы этого метода долгое время оставались неизученными. В частности, долгое время оставались неизученными основные количественные характеристики экстракционных процессов, что было определенным препятствием для широкого внедрения экстракции в практику. Для расчета количества вещества, которое экстрагируется органическими растворителями, необходимо знать константу и коэффициент распределения, степень экстракции и т. д.

М. Бертло и Ю. Юнгфлейш были первыми исследователями, которые в 1872 г. на основании экспериментальных данных показали, что отношение равновесных концентраций вещества, распределяющегося между двумя жидкими фазами, является постоянным. Это отношение термодинамическим путем было выведено В. Нернстом, который в 1891 г. сформулировал закон распределения.

Согласно закону распределения, вещество, растворенное в двух несмешивающихся или ограниченно смешивающихся жидкостях, распределяется между ними в постоянном отношении. Это отношение для идеальных систем зависит только от температуры, природы вещества и не зависит от концентрации.

Из этого закона следует, что при одновременном растворении нескольких веществ каждое из них распределяется между обеими жидкими фазами таким образом, как будто в системе нет никаких других веществ, подлежащих распределению. Закон распределения справедлив лишь в том случае, если распределяемое вещество в обеих фазах находится в одной и той же форме.

Константа распределения вещества

Постоянная величина, выражающая отношение концентраций распределяемого вещества, находящегося в обеих фазах (после наступления равновесия) в одной и той же форме, называется константой распределения:

где Ро -- константа распределения: [А]о --концентрация вещества в фазе органического растворителя, моль/л; [А]В -- концентрация вещества в водной фазе, моль/л.

Величина константы распределения зависит от природы распределяемого вещества, состава и свойств применяемого экстрагента, температуры, при которой производится экстракция. Эта константа не зависит от равновесных концентраций экстрагируемого вещества и объемов водной и неводной фаз. Числовое значение константы распределения можно вычислить и по другой формуле (9), исходя из величины степени экстракции соответствующего вещества и объемов жидких фаз.

Коэффициент распределения

При расчетах константы распределения вещества по формуле (1) необходимо быть уверенным в том, что распределяемое вещество в обеих фазах находится в одинаковой форме (в одинаковом молекулярном состоянии). Однако во многих экстракционных системах не соблюдается указанное выше условие. В одной из жидких фаз могут происходить диссоциация, ассоциация, сольватация, гидролиз распределяемого вещества, образование комплексов и т.д. Для расчетов экстракционных равновесий в таких системах не принимают во внимание форму существования вещества в каждой фазе, а учитывают только отношение суммарных (аналитических) концентраций распределяемого вещества в обеих фазах.

На основании определения суммарных концентраций можно рассчитать не константу, а коэффициент распределения данного вещества в применяемой системе растворителей (вода -- органический растворитель). Коэффициент распределения -- это отношение суммарной аналитической концентрации вещества в фазе органического растворителя к суммарной аналитической концентрации этого вещества в водной фазе (без учета того, в какой форме находится вещество в каждой фазе):

где D -- коэффициент распределения; С о -- суммарная аналитическая концентрация вещества в фазе органического растворителя, моль/л; С В -- суммарная аналитическая концентрация вещества в водной фазе, моль/л.

Степень экстракции

Степень экстракции (процент экстракции) -- это отношение количества экстрагированного вещества к общему (начальному) количеству этого вещества в водном растворе:

где R -- степень экстракции вещества, %;

А -- количество вещества, которое экстрагировалось органическим растворителем;

N -- общее (начальное) количество вещества в водном растворе.

Количество вещества А, которое экстрагируется органическим растворителем, можно определить экспериментальным путем, применив соответствующий метод количественного определения. Зная начальное количество вещества и количество этого вещества, перешедшего в органический растворитель, рассчитывают степень экстракции.

Степень экстракции вещества можно определить не только экспериментальным путем, но и путем соответствующих расчетов, зная константу или коэффициент распределения вещества, а также отношение объемов водной фазы и фазы органического растворителя. Степень экстракции с указанными величинами связана следующим соотношением:

где R --степень экстракции; Ро -- константа распределения; VB -- объем водной фазы, мл; Vo -- объем фазы органического растворителя, мл.

В формуле (4) отношение объема водной фазы к объему фазы органического растворителя заменяют величиной г:

Объем органического растворителя, необходимого для экстракции, рассчитывают по формуле

После соответствующего преобразования формулы (4) степень экстракции рассчитывают по уравнению

Из формулы (7) можно рассчитать величину r:

Если известна степень экстракции R и отношение объемов фаз r , то константу распределения Р0 можно рассчитать при помощи следующего уравнения:

На основании числовых значений константы распределения и степени экстракции можно рассчитать ряд других количественных характеристик процессов экстракции.

Ниже мы приведем несколько примеров расчетов ряда количественных характеристик экстракционных процессов неэлектролитов, к числу которых относятся многие органические соединения, имеющие значение в фармации и токсикологии.

4. Расчет объема органического растворителя, необходимого для однократной экстракции. Примеры этих расчетов приведены ниже

Пример 1. Вычислить объем органического растворителя, который необходимо взять для однократной экстракции 99% вещества из 100 мл раствора, если константа распределения Р0 этого вещества между органическим растворителем и водной фазой равна 20.

Для решения этой задачи пользуются формулой (7):

Значение r рассчитывают по формуле (8), а значение Vo -- по формуле (6):

Таким образом, для однократной экстракции 99% вещества (Р о =20) из 100 мл водного раствора требуется 500 мл органического растворителя.

Пример 2. Какой объем органического растворителя необходимо взять для однократной экстракции 99 % вещества из 100 мл водного раствора, если С = 10?

Эту задачу решают аналогично предыдущей:

Расчеты показывают, что для однократной экстракции 99% вещества (Ро = 10) из 100 мл водного раствора требуется 1000 мл органического растворителя.

На основании произведенных выше расчетов (см. примеры 1 и 2) можно сделать такие выводы: чем больше константа распределения Ро вещества, тем меньший объем органического растворителя требуется для однократной экстракции его из водных растворов; степень экстракции R вещества тем больше, чем меньше величина r, т. е. чем больший объем органического растворителя применяется для однократной экстракции.

5. Расчет объема органического растворителя для многократной экстракции

Из приведенных выше расчетов (см. примеры 1 и 2) следует, что для однократной экстракции вещества из водных растворов необходимо брать органические растворители, объемы которых значительно больше объемов водных растворов.

Учитывая это, для извлечения веществ из водных растворов производят многократную экстракцию их малыми объемами органических растворителей вместо однократной экстракции большим объемом того же растворителя. Преимущество многократной экстракции веществ малыми объемами растворителей перед однократной экстракцией большими объемами этих растворителей показано на приведенных ниже примерах.

Пример 3. Какой общий объем органического растворителя необходимо использовать для многократной экстракции, чтобы из 100 мл водного раствора извлечь 99% вещества, если Ро = 20, а на каждую экстракцию берут по 25 мл органического растворителя?

Для решения этой задачи пользуются формулой (7).

Вначале определяют степень экстракции вещества, %:

Расчеты показывают, что степень экстракции вещества при указанных выше условиях составляет 83%. Следовательно, и при каждой последующей экстракции тоже будет экстрагироваться 83 % от оставшегося в водном растворе вещества.

При второй экстракции из водного раствора будет извлекаться Ч 2 вещества:

При третьей экстракции из водного раствора будет извлекаться Х 3 вещества:

Эти расчеты показывают, что при трех последовательных экстракциях из водного раствора извлекается около 99,5% вещества и при этом расходуется только 75 мл органического растворителя, в то время как для однократной экстракции 99% того же вещества (см. пример 1) необходимо затратить 500 мл органического растворителя.

Приведенные выше расчеты показывают, что для извлечения вещества из водных растворов необходимо производить многократную экстракцию небольшими объемами органических растворителей вместо однократной экстракции большим объемом этих растворителей.

Количество экстракций, необходимых для извлечения заданного количества вещества из раствора. Для расчета полноты экстракции вещества определяют, сколько раз необходимо экстрагировать его из водного раствора, чтобы добиться извлечения заданного количества этого вещества.

С этой целью пользуются следующей формулой:

где т -- количество экстракций, необходимых для извлечения заданного количества вещества; С В -- начальная концентрация вещества в водном растворе, моль/л; [Ат] В -- концентрация оставшегося в водной фазе вещества после т экстракций, моль/л.

Пример 4. Рассчитать число экстракций, необходимых для извлечения 99% вещества органическим растворителем (порциями по 10 мл) из 100 мл 1 М водного раствора, если Ро =20.

Для решения этой задачи вначале необходимо определить [Am] в и r:

Подставим значения соответствующих величин в формулу (10).

Экстракции (округленно 4 экстракции).

Приведенный пример показывает зависимость числа экстракций от объемов органического растворителя и водной фазы, степени экстракции и константы распределения вещества.

Механизм процесса экстракции

Согласно теории растворов, растворение вещества в воде или в органических растворителях сопровождается образованием малопрочных соединений молекул этого вещества с молекулами растворителя. Если растворителем является вода, то в растворе образуются гидраты, а если растворителем является органический растворитель, то в растворах образуются сольваты молекул растворенного вещества. Гидраты и сольваты молекул являются малопрочными.

При взбалтывании водного раствора вещества с органическим растворителем, который не смешивается с водой, гидратная оболочка молекул растворенного вещества разрушается. Молекулы воды в гидратной оболочке замещаются молекулами органического растворителя, в результате чего образуются сольваты молекул растворенного вещества, которые легко переходят в органический растворитель.

Хорошо экстрагируются молекулы тех веществ, сольваты которых в фазе органического растворителя являются более прочными, чем гидраты этих молекул в воде.

Более сложными являются процессы экстракции электролитов, которые в водных растворах частично или полностью распадаются на ионы. Ионы, несущие определенный заряд, хорошо гидратируются диполями воды. Связь ионов с диполями воды относительно прочная. Поэтому ионы, имеющие прочные гидратные оболочки, остаются в водной фазе и не экстрагируются органическими растворителями. Ими могут экстрагироваться только недиссоциированные молекулы соответствующего вещества. Это необходимо учитывать при экстракции органических веществ, являющихся слабыми электролитами. Степень экстракции этих веществ зависит от рН среды. С изменением рН раствора изменяется степень диссоциации молекул, а следовательно, изменяется и относительное количество недиссоциированных молекул вещества. С увеличением количества недиссоциированных молекул увеличивается степень экстракции слабых электролитов и наоборот.

6. Экстракция органических кислот

Недиссоциированные молекулы органических кислот в водных растворах являются электронейтральными и слабо гидратируются молекулами воды. При контакте водных растворов с органическими растворителями электронейтральные молекулы кислоты легко сольватируются, и поэтому переходят в слой органического растворителя.

Ионы, образующиеся в водных растворах при диссоциации слабых кислот, имеют соответствующие заряды, и поэтому легко гидратируются диполями воды. Связь молекул воды с ионами кислоты относительно прочная. Поэтому такие ионы слабо сольватируются молекулами органических растворителей и не экстрагируются органическими растворителями из водных растворов.

Изменение концентрации водородных ионов в водной фазе приводит к относительному увеличению или уменьшению количества недиссоциированных молекул, а следовательно, и к изменению экстрагируемости кислоты.

С повышением рН (т. е. с уменьшением концентрации водородных ионов в водном растворе) увеличивается диссоциация кислоты в растворе, что приводит к уменьшению ее недиссоциированных молекул. В результате этого понижается экстрагируе-мость слабой кислоты органическими растворителями из таких растворов.

При повышении концентрации водородных ионов (т. е. с понижением рН) в водном растворе увеличивается число молекул недиссоциированной кислоты, а следовательно, возрастает ее экстрагируемость органическими растворителями. При значительном повышении концентрации водородных ионов в водном растворе слабую кислоту практически полностью можно перевести в недиссоциированное состояние и этим повысить ее экстрагируемость.

7. Экстракция оснований

Многие органические основания, к числу которых относятся алкалоиды и их многочисленные синтетические аналоги, являются фармацевтическими препаратами. Эти основания в нейтральной среде находятся в недиссоциированном состоянии. При действии кислот на органические основания образуются их соли, которые в водных растворах диссоциируют на ионы.

Недиссоциированные молекулы органических оснований слабо гидратируются молекулами воды, но хорошо сольватируются молекулами органических растворителей. Поэтому недиссоциированные молекулы органических оснований хорошо экстрагируются из водных растворов органическими растворителями.

Ионы, образующиеся при диссоциации солей органических оснований, хорошо гидратируются молекулами воды и слабо сольватируются молекулами органических растворителей. Поэтому соли органических оснований (за небольшим исключением) не экстрагируются органическими растворителями.

Органические основания являются слабыми электролитами. Степень диссоциации их зависит от рН среды. От прибавления кислот к органическим основаниям они переходят в соли. При этом увеличивается количество ионов и уменьшается количество недиссоциированных молекул, а следовательно, уменьшается степень экстракции этих веществ органическими растворителями. От прибавления щелочей к солям органических оснований уменьшается количество ионов и увеличивается количество недиссоциированных молекул этих оснований. В результате этого в щелочной среде увеличивается степень экстракции органических оснований.

8. Экстракция амфотерных соединений

К числу амфотерных соединений, имеющих токсикологическое значение, относятся вещества, в молекулах которых содержится аминный азот и фенольные группы (морфин, сальсолин и др.), а также соединения, содержащие аминный азот и карбоксильную группу (аминокислоты и др.). Эти соединения в зависимости от рН среды диссоциируют как основания (в кислой среде) и как кислоты (в щелочной среде). Экстракция амфотерных соединений зависит от рН среды, так как при изменении рН изменяется количество ионов и недиссоциированных молекул амфотерных соединений. Амфотерные соединения, находящиеся в молекулярном состоянии, экстрагируются органическими растворителями. Ионы амфотерных соединений хорошо гидратируются молекулами воды и почти не экстрагируются органическими растворителями.

Наибольшие количества амфотерных соединений экстрагируются при рН, соответствующем изоэлектрической точке этих веществ. Это объясняется тем, что в изоэлектрической точке молекулы амфотерных соединений не имеют электрического заряда.

9. Влияние различных факторов на экстракцию

На экстракцию веществ органическими растворителями оказывают влияние различные факторы (природа экстрагируемого вещества, природа экстрагента, температура, рН среды, присутствие электролитов в водных растворах, скорость взбалтывания и др.).

Влияние температуры на экстракцию. Изменение температуры влияет на константу распределения экстрагируемого вещества. Это объясняется тем, что при изменении температуры изменяется растворимость экстрагируемых веществ в каждой фазе, а также изменяется взаимная растворимость органической и водной фаз. Причем с изменением температуры растворимость вещества в каждой фазе изменяется неодинаково. Это является одной из причин изменения константы распределения вещества при изменении температуры.

При изменении температуры может изменяться диссоциация и ассоциация вещества в соответствующей фазе. Поэтому при изменении температуры изменяется гидратация (сольватация) и экстрагируемость химических соединений.

Влияние рН среды на экстракцию

Экстрагируемость органических веществ зависит от ряда факторов, в том числе и от рН среды. Количество экстрагированного вещества зависит от диссоциации его в водной фазе. Это связано с тем, что недиссоциированные молекулы вещества и его ионы неодинаково экстрагируются органическими растворителями из водных растворов. При экстракции недиссоциированные молекулы переходят в органическую фазу, а ионы, которые хорошо гидратированы молекулами воды, остаются в водной фазе. Поэтому сильные электролиты, хорошо диссоциирующие в воде на ионы, не экстрагируются органическими растворителями.

Влияние электролитов на экстракцию

Прибавление хорошо растворимых солей к водному раствору другого вещества может понижать или повышать его растворимость в воде. Понижение растворимости веществ в водных растворах под влиянием электролитов называется высаливанием, а повышение растворимости -- всаливанием.

Высаливание является фактором, понижающим растворимость веществ в воде и повышающим их экстрагируемость органическими растворителями из водных растворов.

Высаливающее действие электролитов зависит от природы и свойств высаливаемого вещества, от природы и свойств высаливателя, концентрации и радиуса ионов высаливателя и т. д. Ионы высаливателя с малым радиусом имеют большую плотность заряда, чем ионы с большим радиусом. Поэтому ионы с малым радиусом гидратируются лучше, чем ионы с большим радиусом. В связи с этим высаливающее действие ионов с малым радиусом большее, чем высаливающее действие крупных ионов. Однако это правило имеет и ряд исключений.

Установлено, что высаливающим действием обладают и некоторые хорошо растворимые в воде неэлектролиты. Так, например, этиловый спирт хорошо высаливает уксусную кислоту из ее водных растворов при экстракции этой кислоты этилацетатом и т. д.

Вещества, проявляющие свойства всаливателей, применяются для повышения растворимости слаборастворимых веществ в воде. Известно несколько теорий, объясняющих процесс всаливания. Согласно одной из них, всаливание объясняется химическим взаимодействием всаливателей и всаливающихся веществ в экстракционных системах. В результате этого могут образовываться соединения или комплексы, хорошо растворимые в воде, которые не экстрагируются органическими растворителями.

химический токсикологический пищевой экстракция

10. Требования, предъявляемые к органическим растворителям для экстракции

К органическим растворителям, применяемым для экстракции, предъявляется ряд требований.

1. Органический растворитель должен хорошо извлекать исследуемое вещество из водной фазы.

2. Желательно, чтобы применяемый растворитель был избирательным или селективным. Он должен извлекать из растворов только одно вещество или группу родственных соединений.

3. Растворитель должен иметь незначительную растворимость в воде, а вода не должна заметно растворяться в этом растворителе.

При использовании для экстракции органических растворителей, растворяющихся в воде или растворяющих воду, конечные объемы фаз после взбалтывания не будут равны начальным объемам этих фаз. Это может быть источником ошибок при расчетах константы и коэффициента распределения, а также при вычислении степени экстракции. Чтобы исключить возможные ошибки при расчетах, органический растворитель насыщают водой, а воду -- органическим растворителем. Только после этого производят экстракцию.

4. Органический растворитель по возможности не должен быть низкокипящим. Температура кипения растворителя должна быть выше 50°С. Низкокипящие органические растворители даже при комнатной температуре быстро улетучиваются. Поэтому при экстракции их объемы уменьшаются, а концентрация экстрагированных веществ в этих растворителях увеличивается. Это может быть одним из источников ошибок при расчетах константы или коэффициента распределения экстрагируемого вещества. Однако низкая температура кипения органических растворителей является положительным фактором с точки зрения регенерации их после экстракции.

5. Плотность органических растворителей по возможности должна отличаться от плотности воды и водных растворов. При большой разности плотностей указанных жидкостей разделение фаз происходит быстро.

6. Растворители не должны быть огнеопасными или ядовитыми. Есть и некоторые другие требования, предъявляемые к растворителям.

11. Экстракция в пищевой промышленности

Экстракция (от позднелат. extractio -- извлечение), экстрагирование, процесс разделения смеси жидких или твёрдых веществ с помощью избирательных (селективных) растворителей (экстрагентов).

Процесс экстрации включает 3 последовательные стадии: смешение исходной смеси веществ с экстрагентом; механическое разделение (расслаивание) двух образующихся фаз; удаление экстрагента из обеих фаз и его регенерацию с целью повторного использования. После механического разделения получают раствор извлекаемого вещества в экстрагенте (экстракт) и остаток исходного раствора (рафинат) или твёрдого вещества. Выделение экстрагированного вещества из экстракта и одновременно регенерация экстрагента производится дистилляцией, выпариванием, кристаллизацией, высаливанием и т. п.

Достоинствами экстрации являются низкие рабочие температуры, рентабельность извлечения веществ из разбавленных растворов, возможность разделения смесей, состоящих из близкокипящих компонентов, и азеотропных смесей, возможность сочетания с другими технологическими процессами (ректификацией, кристаллизацией), простота аппаратуры и доступность её автоматизации. Недостатком Э. в ряде случаев является трудность полного удаления экстрагента из экстрагируемых веществ.

Экстракция производится в специальных аппаратах - экстракторах.

Экстрация применяется в некоторых отраслях пищевой промышленности, таких как: сахарная (экстракция сахара из свёклы и тростника), маслобойная (экстракция масла из соевых бобов и масличных семян) и т.д.

Рассмотрим на примере процесс производства растительного масла

Растительные масла получают извлечением из растений масличного сырья. К факторам, формирующим качество растительных масел, относят сырье и технологию производства.

Сырье

Согласно классификации В.Г. Щербакова, масличные растения делят на несколько групп в зависимости от использования. Чисто масличные -- эти растения выращиваются с целью получения масла, а другие продукты при этом являются вторичными. Это подсолнечник, сафлор, кунжут, тунг. Прядильно-масличные -- это растения, выращиваемые не только для извлечения масла, но и для получения волокна. Это хлопчатник, лен, конопля. Так, до 1860 г. хлопчатник возделывали главным образом для получения волокна, но вот уже более 140 лет семена хлопчатника используют для производства масла.

Эфирно-масличные растения -- в их семенах наряду с жирными содержатся эфирные масла. Представителем этой группы растений является кориандр. Путем извлечения из него эфирного масла получают техническое жирное масло.

Условно выделяют еще две подгруппы растений, пищевая ценность которых обусловлена нелипидной частью. Это белково-масличные культуры -- соя и арахис и пряно-масличные растения, представителем которых является горчица.

Наряду с семенами масличных растений для извлечения масла используют маслосодержащие части семян немасличных растений -- зародыши пшеницы, кукурузы, риса, плодовые косточки и др.

Согласно классификации проф. В.В. Белобородова, технологические процессы современного производства растительных масел делятся на: механические -- очистка семян, обрушивание семян, отделение от ядер плодовых и семенных оболочек, измельчение ядра и жмыха; диффузионные и диффузионно-тепловые -- кондиционирование семян по влажности, жарение мятки, экстракция масла, отгонка растворителя из мисцеллы и шрота; гидромеханические -- прессование мезги, отстаивание и фильтрация масла; химические и биохимические процессы -- гидролиз и окисление липидов, денатурация белков, образование липидно-белковых комплексов.

По технологическому признаку технологические процессы делятся на шесть групп: подготовка к хранению и хранение масличных семян; подготовка семян к извлечению масла; собственно извлечение масла; рафинация полученного масла; розлив; упаковка и маркировка.

Подготовка к хранению и хранение масличных семян

Она включает следующие технологические процессы: очистку семян от примесей, кондиционирование семян по влажности, хранение семян. Очистка семян от примесей. Семенная масса, поступающая на хранение и переработку, представляет собой неоднородную смесь из семян и органических (стебли растений; листья, оболочки семян), минеральных (земля, камни, песок), масличных (частично поврежденные или проросшие семена основной масличной культуры) примесей.

Очистку семян от примесей производят на очистительных машинах -- сепараторах, аспираторах, камнеотборниках, используя следующие методы:

разделение семенной массы по размерам путем просеивания через сита с отверстиями разных размеров и формы. При просеивании получают две фракции: проход (часть, проходящая через отверстия) и сход (часть, оставшаяся на сите); разделение семенной массы по аэродинамическим свойствам путем продувки слоя семян воздухом;

разделение металлопримесей и семян по ферромагнитным свойствам.

Кондиционирование семян по влажности.

Длительному хранению подлежат семена, влажность которых на 2--3% ниже критической. Кроме того, кондиционирование по влажности улучшает технологические свойства семян. Для уменьшения влажности семян применяют метод сушки в промышленных сушилках шахтного, барабанного типов и сушилки с кипящим слоем, а также метод активного вентилирования в специальных хранилищах, оборудованных устройствами для подвода и распределения воздуха по семенной массе.

В отличие от других масличных культур семена хлопчатника перед обработкой подвергают увлажнению до 11%.

Хранение семян преследует цели сохранения их от порчи для получения при переработке продуктов высокого качества с минимальными потерями; улучшения качества семян для их более эффективной переработки.

Подготовка семян к извлечению масла

Эта подготовка предусматривает очистку семян от примесей, калибрование семян по размерам, кондиционирование семян по влажности, аналогичные соответствующим операциям перед закладкой семян на хранение; обрушивание семян; разделение рушанки на фракции; измельчение ядра.

Обрушивание семян и отделение ядра от оболочки. Масличные семена по характеру оболочек делят на две группы -- кожурные (подсолнечник, хлопчатник) и бескожурные (лен, рапс, сурепка, кунжут). Кожурные семена перерабатывают после отделения оболочки, бескожурные -- без ее отделения.

Обрушивание -- разрушение оболочек масличных семян путем механического воздействия осуществляется в семенорушках бичевого типа МРН, обрушивающими элементами которой являются колосники с волнистой поверхностью -- деки. Более современная модель -- центробежная обрушивающая машина РЗ-МОС. Разрушают оболочки семян хлопчатника на дисковых (АС-900) и ножевых шелушителях. Семена сои перед отделением оболочки подвергают дроблению на вальцовых станках.

В результате обрушивания семян получают рушанку, представляющую собой смесь нескольких фракций: целых семян -- целяка, частично необрушенных семян -- недоруша, целого ядра, половинок ядра, разрушенного ядра -- сечки, масличной пыли и лузги (оболочки подсолнечника, у хлопчатника -- шелуха). Установлены нормы содержания целяка, недоруша, сечки и масличной пыли.

Разделение рушанки на фракции. Для разделения рушанки используют аспирационные семеновейки Р1-МСТ, электросепараторы СМР-11, для разделения рушанки хлопчатника -- пурифайеры, для разделения дробленки сои -- сепараторы Граностар воздушно-ситового типа. Рушанку разделяют на ядро и лузгу (шелуху).

Отделение оболочек от ядр имеет большое значение. При этом повышается качество масла, так как в него не переходят липиды оболочек, содержащие большое количество сопутствующих веществ; повышается производительность оборудования; уменьшаются потери масла с лузгой за счет замасливания.

Измельчение ядра. Целью этой операции является разрушение клеточной структуры ядра для максимального извлечения масла при дальнейших технологических операциях. Для измельчения ядра и семян используют однопарные, двупарные и пятивалковые станки с рифлеными и гладкими поверхностями. В результате получают сыпучую массу мятку. При лепестковом помоле на двупарной плющильной вальцовке и двупарном плющильно-вальцовом станке ФВ-600 получают лепесток -- пластинки сплющенного жмыха толщиной менее 1 мм

Собственно извлечение масла

Извлечение масла производят двумя способами: прессованием и экстракцией. На основе этих двух способов разработаны следующие технологические схемы производства растительных масел: однократное прессование; двукратное прессование -- извлечение масла путем предварительного отжима -- форпрессования с последующим окончательным отжимом -- экспеллированием; холодное прессование -- извлечение масла из сырья без предварительной влаготепловой обработки; форпрессование -- экстракция -- предварительное обезжиривание масла путем форпрессования с последующим его извлечением путем экстракции бензином; прямая экстракция -- экстракция растворителем без предварительного обезжиривания.

Влаготепловая обработка мятки -- жарение. Для эффективного извлечения масла из мятки проводят влаготепловую обработку при непрерывном и тщательном перемешивании. В производственных условиях процесс влаготепловой обработки состоит из двух этапов:

1-й этап -- увлажнение мятки и подогрев в аппаратах для предварительной влаготепловой обработки мятки -- инактиваторах или про-парочно-увлажнительных шнеках. Мятку нагревают до температуры 80--85 "С с одновременным увлажнением водой или острым паром. При этом происходят избирательное смачивание и уменьшение энергии связи масла с нелипидной частью семян на поверхности мятки. Влажность семян подсолнечника после увлажнения составляет 8--9%.

2-й этап -- высушивание и нагрев увлажненной мятки в жаровнях различных конструкций. При этом изменяются физические свойства масла -- уменьшаются вязкость, плотность и поверхностное натяжение.

Материал, получаемый в результате жарения, называется мезгой.

Предварительный отжим масла -- форпрессование. Прессованием называется отжим масла из сыпучей пористой массы -- мезги. В результате прессования извлекается 60--85% масла, т.е. осуществляется предварительное извлечение масла -- форпрессование. Для прессования применяют прессы различных конструкций. В зависимости от давления на прессуемый материал и масличности выходящего жмыха шнековые прессы делят на прессы предварительного съема масла -- форпрессы и прессы окончательного съема масла -- экспеллеры.

Шнековый пресс представляет собой ступенчатый цилиндр, внутри которого находится шнековый вал. Стенки цилиндра состоят из стальных пластин, между которыми имеются узкие щели для выхода отжатого материала. В результате форпрессования мезги получают форпрессовое масло (называемое часто прессовое) и форпрессовый жмых. Содержание масла в жмыхе составляет 14--20%. Его направляют на дополнительное извлечение масла. Мезгу направляют на окончательное прессование или для получения лепестка. В промышленности используют форпрессы МП-68, ЕТП-20, ФР, Г-24.

Окончательный отжим масла -- экспеллирование осуществляется в более жестких условиях, в результате чего содержание масла в жмыхе снижается до 4--7%.

Извлечение масла методом экстракции органическими растворителями эффективнее прессового метода, так как содержание масла в проэкстрагированном материале -- шроте -- менее 1%.

В нашей стране в качестве растворителей для извлечения масла из растительного сырья применяют экстракционный бензин марки А и нефрас с температурой кипения 63--75°С.

Экстракция -- это диффузионный процесс, движущей силой которого является разность концентраций мцсцеллы -- растворов масла в растворителе внутри и снаружи частиц экстрагируемого материала. Растворитель, проникая через мембраны клеток экстрагируемой частицы, диффундирует в масло, а масло из клеток -- в растворитель. Под влиянием разности концентраций масло перемещается из частицы во внешнюю среду до момента выравнивания концентраций масла в частице и в растворителе вне ее. В, этот момент экстракция прекращается.

Экстракцию масла из масличного сырья проводят двумя способами: погружением и ступенчатым орошением.

Экстракция погружением происходит в процессе непрерывного прохождения сырья через непрерывный поток растворителя в условиях противотока, когда растворитель и сырье продвигаются в противоположном направлении относительно друг друга. По способу погружения работают экстракторы НД-1000, НД-1250, «Олье-200». Такой экстрактор состоит из загрузочной колонны, горизонтального цилиндра и экстракционной колонны, внутри которых установлены шнеки.

Сырье в виде лепестка или крупки поступает в загрузочную колонну, подхватывается витками шнека, перемещается в низ загрузочной колонны, проходит горизонтальный цилиндр и попадает в экстракционную колонну, где с помощью шнека поднимается в верхнюю ее часть. Одновременно с сырьем в экстрактор подается бензин температурой 55--60°С. Бензин перемещается навстречу сырью и проходит последовательно экстрактор, горизонтальный цилиндр и загрузочную колонну. Концентрация мисцелы на выходе из экстрактора составляет 15--17%.

Обезжиренный остаток сырья -- шрот выходит из экстрактора с высоким содержанием растворителя и влаги (25--40%), поэтому его направляют в шнековые или чанные (тостеры) испарители, где из него удаляют бензин.

К преимуществам экстракции погружением относятся: высокая скорость экстракции, простота конструкторского решения экстракционных, аппаратов, безопасность их эксплуатации. Недостатками этого способа являются: низкие концентрации конечных мисцелл, высокое содержание примесей в мисцеллах, что осложняет их дальнейшую обработку.

Экстракция способом ступенчатого орошения. При этом способе непрерывно перемещается только растворитель, а сырье остается в покое в одной и той же перемещающейся емкости или движущейся ленте. Этот способ обеспечивает получение мисцеллы повышенной концентрации (25-30%), с меньшим количеством примесей. Недостатки этого способа -- большая продолжительность экстракции, повышенная взрывоопасность производства.

Наша промышленность использует горизонтальные ленточные экстракторы МЭЗ-350, Т1-МЭМ-400, ДС-70, ДС-130, «Луги-100», «Лурги-200», ковшовые экстракторы «Джанациа», корзиночный экстрактор «Окрим». Более современным является карусельный экстрактор «Экстехник» (Германия), работающий по принципу многоступенчатого орошения в режиме затопленного слоя.

При экстракции на ленточном экстракторе МЭЗ сырье из бункера подается на движущуюся сетчатую ленту транспортера, проходит под форсунками и оросителями, орошается последовательно мисцеллой и бензином. Экстрактор имеет 8.ступеней с рециркуляцией мисцеллы и соответственно 8 мисцеллосборников.

После экстракции мисцелла содержит до 1% примесей, и ее направляют на ротационные дисковые или патронные фильтры для очистки. Дистилляция -- это отгонка растворителя из мисцеллы. Наиболее распространены трехступенчатые схемы дистилляции. На первых двух ступенях мисцелла обрабатывается в трубчатых пленочных дистилляторах. На первой происходит упаривание мисцеллы. На второй -- мисцелла обрабатывается острым паром при температуре 180--220°С и давлении 0,3 мПа, что вызывает кипение мисцеллы и образование паров растворителя. Пары растворителя направляются в конденсатор. На третьей ступени высококонцентрированная мисцелла поступает в распылительный вакуумный дистиллятор, где в результате барботации острым паром под давлением 0,3 мПа происходит окончательное удаление следов растворителя. После дистилляции масло направляют на рафинацию.

РАФИНАЦИЯ ЖИРОВ Это процесс очистки жиров и масел от сопутствующих примесей. К примесям относятся следующие группы веществ: сопутствующие триглицеридам вещества, переходящие из доброкачественного сырья в масло в процессе извлечения; вещества, образующиеся в результате химических реакций при извлечении и хранении жира; собственно примеси -- минеральные примеси, частицы мезги или шрота, остатки растворителя или мыла.

Помимо нежелательных примесей из жиров при рафинации удаляются и полезные для организма вещества: жирорастворимые витамины, фосфатиды, незаменимые полиненасыщенные жирные кислоты. Рафинированные жиры легче подвергаются окислительной порче, так как из них удаляются естественные антиокислители -- фосфатиды и токоферолы. Поэтому рафинацию стремятся проводить таким образом, чтобы при максимальном извлечении нежелательных примесей сохранить полезные вещества.

Все методы рафинации делятся на: физические -- отстаивание, центрифугирование, фильтрация, которые используются для удаления механических частиц и коллоидно-растворенных веществ; химические -- сернокислая и щелочная рафинация, гидратация, удаление госсипола, которые применяются для удаления примесей, образующих в маслах истинные или коллоидные растворы с участием удаляемых веществ в химических реакциях; физико-химические -- отбеливание, дезодорация, вымораживание, которые используются для удаления примесей, образующих в маслах истинные растворы без химического изменения самих веществ. Физические методы. Механические примеси (частицы мезги и жмыха) не только ухудшают товарный вид жира, но и обусловливают ферментативные, гидролитические, окислительные процессы. Белковые вещества способствуют протеканию реакции Майара (меланоидинообразования) и образованию липопротеидных комплексов. Механические примеси удаляют сразу же после получения масла.

Отстаивание -- это процесс естественного осаждения частиц, находящихся во взвешенном состоянии в жидкой среде, под действием силы тяжести. При длительном отстаиваний масла происходит выделение из него части коллоидно-растворенных веществ -- фосфолипидов, слизей, белков за счет их коагуляции. Масло после отделения осадка становится прозрачным.

На промышленных предприятиях для отстаивания применяются механизированные двойные гущеловушки с электромеханическими вибраторами.

Центрифугирование -- процесс разделения неоднородных систем под действием центробежных сил. В промышленности применяют корзиночные, тарельчатые, трубчатые центрифуги, например, горизонтальную осадительную центрифугу непрерывного действия НОГШ-325, сепаратор Al-МСП. Для разделения тонких систем используют скоростные центрифуги: разделительные -- для разделения двух несмешивающихся фаз (вода--жир) и осветляющие -- для выделения из жидкостей тонкодисперсных механических примесей.

Для разделения суспензий применяют гидроциклоны, действие которых основано на использовании центробежных сил и сил тяжести.

Фильтрация -- процесс разделения неоднородных систем с помощью пористой перегородки, которая задерживает твердые частицы, а пропускает жидкость и газ. Форпрессовое и экспеллерное масла подвергают фильтрации дважды. Сначала проводят горячую фильтрацию при температуре 50--55°С для удаления механических примесей и отчасти фосфатидов. Затем -- холодную фильтрацию при температуре 20--25°С для коагуляции мелких частиц фосфатидов.

В промышленности используют фильтр-прессы, состоящие из 15--50 вертикально расположенных фильтрующих ячеек, находящихся на одной общей горизонтальной станине. В ячейке находится фильтровальная ткань, которая постепенно забивается осадком, называемым фузом. Фуз используют для получения масла экстракционным способом, фосфатидов, а остаток -- в мыловарение.

Химические методы

Гидратация -- процесс обработки масла водой для осаждения гидрофильных примесей (фосфатидов, фосфопротеидов). В результате гидратации фосфатиды набухают, теряют растворимость в масле и выпадают в осадок, который отфильтровывают. Для полного удаления фосфопротеидов применяют слабые растворы электролитов, в частности хлорид натрия.

...

Подобные документы

  • Экстракция кислот реагентами группы диантипирилметана в органические растворители; свойства реагентов; закономерности экстракции минеральных и органических кислот. Исследование совместной экстракции хлороводородной и бензойной кислот диантипирилалканами.

    дипломная работа [619,4 K], добавлен 13.05.2012

  • Промышленное применение и технологические операции жидкостной экстракции. Физические основы процесса экстракции в случае взаимонерастворимости жидкостей. Удельный расход растворителя при противоточной экстракции. Построение диаграммы экстракции.

    презентация [1,4 M], добавлен 29.09.2013

  • Экстракция. Процесс экстракции характеризуют следующими основными величинами. Влияние условий экстракции на ее результат. Распределение лиганда. Распределение комплексов металлов. Синергизм. Конкурирующие реакции.

    реферат [38,1 K], добавлен 04.01.2004

  • Сравнительный анализ способов извлечения фенольных веществ, характеристика метода твердофазной экстракции, параметры хроматографического определения фенолкарбоновых кислот и флавоноидов в растительных объектах. Методы экстракции фенольных соединений.

    дипломная работа [2,0 M], добавлен 24.09.2012

  • Анализ методов разделения веществ как совокупности характерных для них химических и физических процессов и способов их осуществления: экстракция, мембранный, внутрифазный. Соосаждение — метод концентрирования следовых количеств различных элементов.

    курсовая работа [31,8 K], добавлен 16.10.2011

  • Изучение сути экстракции - процесса извлечения одного или нескольких компонентов из растворов или твердых тел с помощью избирательно действующих растворителей. Органические растворители, применяемые при этом. Катионообменная и анионообменная экстракция.

    курсовая работа [1,2 M], добавлен 30.10.2011

  • Общие сведения о процессе экстракционного разделения, область его применения. Основные схемы проведения экстракционных процессов. Равновесие в системе жидкость-жидкость. Основные группы промышленных экстрагентов. Материальный баланс процесса экстракции.

    контрольная работа [165,2 K], добавлен 15.10.2011

  • Основные физические и химические свойства платиновых металлов и их соединений, способы их вскрытия и реагентная способность. Технология проведения аффинажа различных платиновых металлов, важнейшие этапы процесса экстракции и сорбции их комплексов.

    курс лекций [171,2 K], добавлен 02.06.2009

  • Описание технологической схемы очистки фторсодержащих газов экстракции. Материальный баланс процесса абсорбции в полом абсорбере. Тепловой и механический расчет. Выбор конструкционного материала. Диаметр абсорбера и скорость газа. Расчет вентилятора.

    курсовая работа [226,9 K], добавлен 23.04.2015

  • Термический и экстракционный способ получения ортофосфорной кислоты, их сравнительная характеристика, определение преимущества и недостатков, используемое сырье и материалы. Физико-химические условия процесса. Аппаратура сернокислотной экстракции.

    курсовая работа [118,5 K], добавлен 08.08.2011

  • Характеристика антисмысловых олигонуклеотидов: модификации, взаимодействие с РНК-мишенью. Эффективность выделения РНК из клеток методом хлороформ-фенольной экстракции. Определение мРНК гена EGFP с использованием конъюгатов олигонуклеотида с пиреном.

    курсовая работа [1,7 M], добавлен 30.01.2013

  • Знакомство с химическим строением и свойствами алкалоидов маклейи мелкоплодной. Особенности свойств алкалоидов маклейи. Характеристика алкалоидов сангвинарина и хелеритрина. Способы подготовки сырья к экстракции. Описание технологических операций.

    лабораторная работа [18,9 K], добавлен 11.12.2009

  • Понятие редкоземельных элементов. Их физические и химические свойства. Экстракция легких РЗЭ в присутствии азотной кислоты, аммиачной селитры и трибутилфосфата. Определение термодинамических констант и параметров неидеальности экстрагируемых комплексов.

    дипломная работа [2,6 M], добавлен 29.08.2015

  • Сущность и содержание ионно-парной хроматографии, ее использование в жидкостной хроматографии и экстракции для извлечения лекарств и их метаболитов из биологических жидкостей в органическую фазу. Варианты ионно-парной хроматографии, отличительные черты.

    реферат [28,7 K], добавлен 07.01.2010

  • Технологические операции, из которых состоит жидкостная экстракция. Устройство ящичного экстрактора. Движущая сила процесса экстракции в системе "твёрдое тело-жидкость". Теоретические основы экстрагирования из лекарственного растительного сырья.

    курсовая работа [1,9 M], добавлен 20.11.2013

  • Основы процесса химической экстракции, особенности его проведения. Экстракторы периодического и полупериодического, непрерывного действия. Основы выбора и расчета жидкостных экстракторов, сведения о жидкостной экстракции. Выбор и расчет оборудования.

    контрольная работа [1,6 M], добавлен 07.11.2009

  • Распределение ядов в организме. Характеристика токсо-биологической группы "пестициды". Токсическое действие и клиническая картина острых отравлений пиретроидами и нитросоединениями. Иммунохимические методы анализа в химико-токсикологическом анализе.

    контрольная работа [2,7 M], добавлен 01.04.2012

  • Электронная теория кислот и оснований Льюиса. Теория электролитической диссоциации Аррениуса. Протонная теория, или теория кислот и оснований Бренстеда. Основность и амфотерность органических соединений. Классификация реагентов органических реакций.

    презентация [375,0 K], добавлен 10.12.2012

  • Массообменные процессы. Основное уравнение массопередачи. Кинетика диффузионных процессов. Равновесие при абсорбции, дистилляция и ректификация. Простая перегонка. Схема непрерывно действующей ректификационной установки. Экстракция и кристаллизация.

    лекция [612,4 K], добавлен 26.02.2014

  • Изучение свойств неорганических соединений, составление уравнений реакции. Получение и свойства основных и кислотных оксидов. Процесс взаимодействия амфотерных оксидов с кислотами и щелочами. Способы получения и свойства оснований и основных солей.

    лабораторная работа [15,5 K], добавлен 17.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.