Фенол. Современное состояние и перспективы его производства
Характеристика и классификация фенолов, их изомерия и номенклатура, строение молекулы, основные физические и химические свойства: гидроксильной группы, бензольного кольца. Способы и масштабы получения фенола, его токсичность и области применения.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 30.06.2013 |
Размер файла | 521,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Реферат
Фенол. Современное состояние и перспективы его производства
1. Характеристика фенолов
Фенолы - ароматические соединения, содержащие в молекуле одну или несколько гидроксильных групп, связанных с атомами углерода ядра.
Различают одно-, двух-, трехатомные фенолы в зависимости от количества ОН-групп в молекуле:
В соответствии с количеством конденсированных ароматических циклов в молекуле различают сами фенолы (одно ароматическое ядро - производные бензола), нафтолы (2 конденсированных ядра - производные нафталина), антранолы (3 конденсированных ядра - производные антрацена) и фенантролы:
2. Изомерия и номенклатура фенолов
Возможны 2 типа изомерии:
· изомерия положения заместителей в бензольном кольце
· изомерия боковой цепи (строения алкильного радикала и числа радикалов)
Для фенолов широко используют тривиальные названия, сложившиеся исторически. В названиях замещенных моноядерных фенолов используются также приставки орто-, мета- и пара, употребляемые в номенклатуре ароматических соединений. Для более сложных соединений нумеруют атомы, входящие в состав ароматических циклов и с помощью цифровых индексов указывают положение заместителей.
3. Строение молекулы
Фенильная группа C6H5 - и гидроксил - ОН взаимно влияют друг на друга.
· неподеленная электронная пара атома кислорода притягивается 6-ти электронным облаком бензольного кольца, из - за чего связь О-Н еще сильнее поляризуется. Фенол - более сильная кислота, чем вода и спирты.
· электронная плотность повышается в положении 2, 4, 6. Это делает более реакционноспособными связи С-Н в положениях 2, 4, 6. и - связи бензольного кольца.
Большинство одноатомных фенолов при нормальных условиях представляют собой бесцветные кристаллические вещества с невысокой температурой плавления и характерным запахом. Фенолы малорастворимы в воде, хорошо растворяются в органических растворителях, токсичны, при хранении на воздухе постепенно темнеют в результате окисления.
Фенол C6H5OH (карболовая кислота) - бесцветное кристаллическое вещество на воздухе окисляется и становится розовым, при обычной температуре ограниченно растворим в воде, выше 66°C смешивается с водой в любых соотношениях. Фенол - токсичное вещество, вызывает ожоги кожи, является антисептиком.
4. Химические свойства фенола
Свойства гидроксильной группы
Кислотные свойства - выражены ярче, чем у предельных спиртов (окраску индикаторов не меняют):
· С активными металлами-
2C6H5-OH + 2Na > 2C6H5-ONa + H2
· Со щелочами -
C6H5-OH + NaOH (водн. р-р) - C6H5-ONa + H2O
Феноляты - соли слабой карболовой кислоты, разлагаются угольной кислотой -
C6H5-ONa + H2O + СO2 > C6H5-OH + NaHCO3
По кислотным свойствам фенол превосходит этанол в 106 раз. При этом во столько же раз уступает уксусной кислоте. В отличие от карбоновых кислот, фенол не может вытеснить угольную кислоту из её солей
C6H5-OH + NaHCO3 = реакция не идёт - прекрасно растворяясь в водных растворах щелочей, он фактически не растворяется в водном растворе гидрокарбоната натрия.
Кислотные свойства фенола усиливаются под влиянием связанных с бензольным кольцом электроноакцепторных групп (NO2-, Br-)
C6H5-OH< п-нитрофенол < 2,4,6 - тринитрофенол
2,4,6 - тринитрофенол или пикриновая кислота сильнее угольной.
Свойства бензольного кольца
1) Взаимное влияние атомов в молекуле фенола проявляется не только в особенностях поведения гидроксигруппы (см. выше), но и в большей реакционной способности бензольного ядра. Гидроксильная группа повышает электронную плотность в бензольном кольце, особенно, в орто- ипара-положениях (+М-эффект ОН-группы):
Поэтому фенол значительно активнее бензола вступает в реакции электрофильного замещения в ароматическом кольце.
· Нитрование. Под действием 20% азотной кислоты HNO3 фенол легко превращается в смесь орто- и пара-нитрофенолов:
При использовании концентрированной HNO3 образуется 2,4,6 - тринитрофенол (пикриновая кислота):
· Галогенирование. Фенол легко при комнатной температуре взаимодействует с бромной водой с образованием белого осадка 2,4,6 - трибромфенола (качественная реакция на фенол):
· Конденсация с альдегидами. Например:
Фенолформальдегидные смолы
2). Гидрирование фенола
C6H5-OH + 3H2 Ni, 170єC > C6H11 - OH циклогексиловый спирт (циклогексанол)
5. Токсические свойства
Фенол ядовит. Вызывает нарушение функций нервной системы. Пыль, пары и раствор фенола раздражают слизистые оболочки глаз, дыхательных путей, кожу. Попадая в организм, Фенол очень быстро всасывается даже через неповрежденные участки кожи и уже через несколько минут начинает воздействовать на ткани головного мозга. Сначала возникает кратковременное возбуждение, а потом и паралич дыхательного центра. Даже при воздействии минимальных доз фенола наблюдается чихание, кашель, головная боль, головокружение, бледность, тошнота, упадок сил. Тяжелые случаи отравления характеризуются бессознательным состоянием, синюхой, затруднением дыхания, нечувствительностью роговицы, скорым, едва ощутимым пульсом, холодным потом, нередко судорогами. Зачастую фенол является причиной онкозаболеваний.
6. Способы получения фенола
Метод синтеза, по которому в наши дни получают большую часть производимого в мире фенола - кумольный процесс - открыт группой советских химиков во главе с профессором П.Г. Сергеевым в 1942 году. Метод основан на окислении ароматического углеводорода кумола (изопропилбензол) кислородом воздуха с последующим разложением получающейся гидроперекиси, разбавленной серной кислотой. В 1949 году в г. Дзержинске Горьковской области был введен в действие первый в мире кумольный завод. До этого гидроперекиси считались малостабильными промежуточными продуктами окисления углеводородов. Даже в лабораторной практике их почти не использовали. На Западе кумольный метод был разработан в конце 40-х годов и отчасти известен как процесс Хока, по имени немецкого ученого, позднее независимо открывшего кумольный путь синтеза фенола. В промышленном масштабе этот метод стал впервые использоваться в США в начале 50-х годов. С этого времени на многие десятилетия кумольный процесс становится образцом химических технологий во всем мире.
Блок схема получения фенола кумольным способом
Процесс получения фенола из бензола и пропилена состоит из нескольких стадий.
Рис. 1. Блок - схема получения фенола из ацетона и пропилена.
На первой стадии путем алкилирования бензола пропиленом получают кумол (изопропилбензол):
Хотя для синтеза фенола можно использовать этил-, бутил-, изопропил- и изобутилпроизводные, промышленное значение имеют пока только изопропилпроизводные.
На второй стадии полученный кумол окисляют кислородом или воздухом в достаточно стабильный гидропероксид кумила:
Далее гидропероксид кумила концентрируют, поскольку при окислении протекают процессы его распада, которые не позволяют доводить концентрацию в оксидате до значительных величин. И наконец, проводят каталитическое кислотное разложение нидропероксида кумила на фенол и ацетон:
После этого реакционную массу разделяют для получения индивидуальных ацетона, фенола и выделения побочных продуктов.
Стадии процесса кумольного метода
Наиболее прогрессивным способом получения фенола является кумольный метод. Оригинальный метод синтеза фенолов кислотным разложением гидропероксидов, получаемых окислением жирноароматических углеводородов, был открыт при исследовании получения ацетофенона из гидропероксида изопропилбензола (гидропероксид кумола) П.Г. Сергеевым, Б.Д. Кружаловым и Р.Ю. Удрисов и М.С. Немцовым в 1942 г. Кумольный способ производства фенола занимает в настоящее время ведущее место.
Процесс, основанный на реализации следующих стадий:
· Алкилирование бензола пропиленом;
· Окисление изопропилбензола;
· Концентрирование гидропероксидов;
· Кислотное разложение гидропероксида.
Если рассмотреть общую реакцию получения фенола кумольным методом
можно видеть, что в правой части суммарного уравнения фигурируют только фенол и ацетон, которые являются ценными товарными продуктами. С другой стороны, в этом процессе требуется дешевое и доступное сырье (изопропилбензол и воздух). Это и делает кумольный способ получения наиболее экономичным среди всех известных способов получения фенола.
Рассмотрим более подробно каждую стадию процесса.
Алкилирование бензола пропиленом
Алкилароматические углеводороды могут быть получены алкилированием бензола различными алкилирующими агентами: олефинами, спиртами, алкилгалогенидами. Однако спирты и алкилгалогениды как алкилирующие агенты довольно дороги и при осуществлении крупнотоннажного производства не перспективны. Поэтому в настоящее время практическое значение имеет только алкилирование олефинами.
Катализаторами процесса алкилирования служат протонные и апротонные кислоты: серная и фосфорная кислоты; фосфорная кислота, нанесенная на носитель; хлорид алюминия и фторид бора; фтороводородная кислота; цеолиты. Применение твердых катализаторов значительно упрощает подготовку сырья и особенно переработку реакционной массы: отпадает необходимость в нейтрализации и промывке. В то же время применение хлорида алюминия - наиболее распространенного в настоящее время катализатора - хотя и связано с рядом технологических трудностей (сушка сырья, образование НСl и хлоридов при промывке и нейтрализации алкилата), но позволяет обеспечить высокую селективность алкилирования за счет обратимой реакции диспропорционирования полиалкилбензолов в присутствии бензола:
Вследствие этого при использовании хлорида алюминия не только уменьшается выход полиалкилпроизводных, но и оказывается возможным перевод в моноалкилбензолы сравнительно небольшого количества образующихся ди- и полиалкилбензолов.
В Советском Союзе наибольшее распространение получило алкилирование в присутствии AlCl3, в США - использование в качестве катализатора фосфорной кислоты на кизельгуре.
Алкилирование - сильно экзотермический процесс и при температурах до 473-573 К равновесие практически полностью сдвигается в сторону образования продуктов реакции.
Алкилирование ароматических углеводородов является последовательно - параллельным процессом и может протекать вплоть до образования гексазамещенных бензолов.
Окисление изопропилбензола.
Окисление алкилароматических углеводородов кислородом воздуха протекает по радикально-цепному механизму. По возрастанию скорости окисления углеводороды можно расположить в ряд:
первичный атом углерода < вторичный < третичный.
Скорость окисления по третичному атому углерода в алкилароматических углеводородах в 4 раза выше, чем по СН3-группе. В том же порядке увеличивается и стабильность соответствующих гидропероксидов.
Механизм образования гидропероксидов описывается следующим образом:
Накопление гидропероксида при окислении алкилароматических углеводородов сопровождается образованием побочных продуктов - диметилфенилкарбинола и ацетофенона.
Диметилфенилкарбинол образуется при термическом разложении кумилгидропероксида по реакции:
Диметилфенилкарбинол, в свою очередь, может подвергаться дегидратации с образованием альфа-метилстирола:
который тоже может подвергаться димеризации:
Ацетофенон может образоваться как при распаде гидропероксида:
как и при окислении параллельно с накоплением гидропероксида:
Накопление побочных продуктов, и в особенности ацетофенона, становится заметным при значительных концентрациях гидропероксида в оксидате. Побочные продукты ускоряют распад гидропероксида, и на определенной ступени скорость его распада превышает скорость образования. Поэтому окисление проводят до относительно небольшой степени конверсии изопропилбензола: допустимая концентрация гидропероксида в оксидате не превышает 20-30%. Таким образом, при низких концентрациях гидропероксида возрастает селективность его образования. Например, при получении фенола уменьшение содержания гидропероксида в оксидате с 29 до 25% сокращает количество побочных продуктов в 2,2 раза. Концентрацию гидропероксида целесообразно поддерживать не выше 18%.
Окисление можно проводить кислородом воздуха или чистым кислородом и при атмосферном, и при повышенном давлении, однако использование кислорода или повышенного давления воздуха приводит к образованию смолистых веществ.
Поэтому, как правило, окислителем служит воздух, к чистоте которого предъявляют достаточно жесткие требования, так как даже незначительные примеси в воздухе (например, оксида серы) могут ингибировать окисление.
Окисление можно проводить как при барботаже воздуха через безводный изопропилбензол, так и через эмульсию изопропилбензола в водно-щелочной среде. В обоих вариантах оформления процесса необходимо приблизить условия окисления к кинетической области путем обеспечения интенсивного барботажа окисляющего агента и тонкого диспергирования окисляемого вещества. Окисление в водно-щелочной эмульсии протекает с несколько большей скоростью, но связано со значительным увеличением объема аппаратов, поскольку объем водной фазы в 3-4 раза превышает объем окисляемого углеводорода. В качестве эмульгаторов обычно применяют стеарат натрия, а в качестве щелочного компонента - карбонат натрия. В России используют оба варианта.
При гомогенном окислении изопропилбензола процесс проводят в несколько стадий, уменьшая температуру по мере накопления гидропероксида в оксидате. Воздух подают на все ступени окисления. В качестве катализаторов используют соли и оксиды металлов, например резинат или нафтенат марганца, соли других металлов переменной валентности. Катализаторы увеличивают скорость окисления на 15-20% и позволяют понизить температуру окисления до 343-353 К. В то же время, катализаторы активируют и нежелательные процессы. Для того чтобы уменьшить этот эффект, используют малые концентрации катализаторов (тысячные доли процента), подбирают оптимальные сочетания концентрации катализатора и температуры.
Относительная сложность управления окислением в присутствии катализаторов привела к тому, что многие промышленные схемы основываются на окислении в присутствии инициатора и добавки щелочи, но без катализатора. В качестве таких добавок применяют нестабильные органические соединения, служащие источником образования свободных радикалов (преимущественно сами гидропероксиды). В качестве щелочных добавок используют карбонат и бикарбонат натрия, едкий натр и др. Их роль заключается в нейтрализации кислых продуктов, тормозящих окисление, и в инициировании распада гидропероксида на радикалы, участвующие в процессе окисления. Повышение температуры окисления выше 363 К нецелесообразно из-за увеличения концентрации гидропероксида. По этой же причине нежелательно возрастание рН выше 10, так как при рН 6-10 количество гидропероксида в сыром гидропероксиде составляет ~ 12%, а при рН 11-12 достигает 20-25%.
Концентрирование гидропероксидов.
Разложение гидропероксида в принципе можно проводить без концентрирования - в этом случае фенолы можно выделить ректификацией или экстракцией щелочью непосредственно из реакционной массы. Однако разложение гидропероксида в присутствии большого избытка непрореагировавшего углеводорода неизбежно приведет к образованию продуктов взаимодействия с углеводородом и, в конечном счете, к большим потерям гидропероксида и увеличению выхода побочных продуктов.
Концентрирование гидропероксида осуществляют либо удалением непрореагировавшего углеводорода дистилляцией в вакууме, либо путем химических превращений гидропероксида. Дистилляция в вакууме - наиболее простой способ концентрирования, который находит наиболее широкое применение в производстве фенола. Обычно используются двух- или трехступенчатые схемы дистилляции. В первом случае отгон углеводорода производится в системе последовательно расположенных колонн, причем последняя из них работает при остаточном давлении ~49 Па. При дистилляции главная задача - поддерживать в системе температуру не выше 373 К, чтобы уменьшить разложение гидропероксида.
При работе с гидропероксидом как в лаборатории, так и на производстве следует учитывать высокую взрывоопасность пероксидных соединений, которая возникает в связи с возможностью автоускоряющегося разложения в результате нагрева, механических воздействий, детонации. Ряд пероксидов образуют взрывоопасные смеси. Например, пероксид бензола может взорваться при перекристаллизации из хлороформа. Известны примеры аварий, вызванные образованием пероксидных соединений в простых эфирах. Низшие представители гомологических рядов органических пероксидных соединений каждого типа наиболее взрывоопасны.
Кислотное разложение гидропероксида на фенол и ацетон.
Разложение гидропероксида изопропилбензола катализируется протонными кислотами. Реакция протекает по ионному механизму:
Образующийся катион перегруппировывается с миграцией енольной группы к кислородному атому и последующими превращениями, в результате которых получается фенол и ацетон:
Побочные продукты окисления, содержащиеся в качестве примесей в гидропероксиде, также способны вступать в различные реакции под действием кислотных катализаторов. Так, диметилфенилкарбинол дегидратируется с образованием альфа - метилстирола, а так же выступает в качестве алкилирующего агента по отношению к фенолу. Кроме того, альфа - метилстирол димезируется:
Получают также небольшое количество смол более сложного строения. При повышении концентрации кислоты и температуры становится возможным кислотно - каталитические превращения ацетофенола и ацетона, например, по типу альдольной конденсации с последующим отщеплением воды:
Скорость основной реакции описывается уравнением:
Для разложения гипероксидов применяют сильные кислоты. Слабые кислоты вызывают разложение гидропероксида только при длительном пребывании при 373 - 393 К и значительном расходе кислоты. В промышленности чаще применяют серную кислоту, но могут и быть использованны также фенолдисульфокислота, алкилфеносульфокислота и др.
Реакция протекает очень быстро. В присутствии 0,05 - 0,1% (масс.) H2SO4 при 50 - 60 оС достигается практически полное превращение за 2 - 3 мин. Так же могут быть использованны фенолдисульфоксикислота, а
Ввиду высокой скорости процесса при его промышленной реализации необходимо, чтобы ее значение не достигало предела, при котором невозможно снять тепловыделения, чтобы сделать процессы съема тепла контролируемыми, реакцию ведут в разбавителях, в качестве которых выступают продукты реакции и ацетон.
Рис. 2. Реакционные узлы для кислотного разложения гидропероксидов: а - проточно - циркуляционная установка; б - с отводом тепла за счет испарения ацетона
Одним из методов проведения реакции состарить применение проточно - циркуляционной установки (рис. 2а), когда выделяющееся тепло снимают в трубчатом реакторе за счет охлаждения его водой. Реакционную смесь по выходе из реактора частично отводят на дальнейшую переработку, но основное количество направляют на рециркуляцию: добавляют кислоту-катализатор и в насосе смешивают с исходным гидропероксидом. При такой системе время контакта лимитируется теплоотводом и является завышенным. Кроме того, рециркуляция смеси ведет к повышенному выходу побочных веществ. Так, на 1 т фенола получается 100-150 кг отходов, в том числе 15-20 кг a-метилстирола, 40-50 кг димера и смол, 5-10 кг ацетофенона, 30 кг кумилфенола и т.д. Хотя окиси мезитила образуется немного, но она существенно затрудняет очистку фенола.
Другой способ кислотного разложения гидропероксидов (рис. 2б) состоит в проведении реакции в растворе ацетона и отводе тепла за счет его испарения. Ацетон конденсируют в обратном холодильнике и возвращают в реактор, который можно секционировать поперечными перегородками. Это наряду с уменьшением концентрации фенола в растворе и времени контакта снижает выход побочных веществ.
При рассмотрении возможных вариантов технологической схемы разложения следует учитывать высокую экзотермичность этого процесса (Н=309,6 кДж/моль гидропероксида).
Как правило, разложение гидропероксидов проводят в среде ацетона, при этом за счет его испарения отводится тепло реакции. Кислота в этом случае подается в виде раствора в ацетоне. Количество кислоты составляет 0,05-0,1% от реакционной массы, т. разл. ~ 348 К.
Общим недостатком всех технологических вариантов кислотного разложения гидропероксидов является необходимость нейтрализации реакционной массы и выведения из нее солей, чтобы исключить коррозию и выпадение осадков в ректификационной аппаратуре. При нейтрализации и промывке образуются сточные воды, содержащие фенол и соли.
Эти обстоятельства делают перспективным каталитическое разложение гидропероксида на твердых кислотах органического и неорганического происхождения. В качестве твердых катализаторов могут использоваться сильные катиониты (смолы типа КУ-2), которые разлагают гидропероксиды при 323-333 К. Однако их недостатком является быстрое уменьшение каталитической активности при относительно длительной эксплуатации в результате окислительной деструкции.
Значительно более перспективно применение в качестве катализаторов твердых неорганических кислот. Они обладают высокой устойчивостью к действию окислителей. В качестве катализаторов могут быть использованы кислые природные глины (каолин, бентонит, мориллонит и др.), алюмосиликаты, кремнецирконевые катализаторы, цирконийфосфат.
7. Область применения и потребления фенола
Первоначально фенол использовался для производства различного рода красителей, благодаря своему свойству изменять цвет в процессе окисления с бледно розового до бурого оттенка. Это химическое вещество вошло в состав многих видов синтетических красок. Кроме этого, свойство фенола уничтожать бактерии и микроорганизмы, было взять на вооружение в кожевенном производстве при дублении шкур животных. Позже фенол успешно использовался в медицине как одно из средств обеззараживания и дезинфекции хирургических инструментов и помещений, а в качестве 1.4%-го водного раствора - как болеутоляющее и антисептик для внутреннего и наружного применения. Кроме этого, фенол салициловой кислоты является основой аспирина, а ее производная - парааминосалициловая кислота - используется для лечения больных туберкулезом. Фенол также входит в состав сильнодействующего слабительного препарата - пургена.
В настоящее время основное предназначение фенола - химическая промышленность, где это вещество применяется для изготовления пластмассы, фенолформальдегидных смол, таких искусственных волокон, как капрон и нейлон, а так же различных антиоксидантов. Кроме этого, фенол применяется для производства пластификаторов, присадок для масел, является одним из компонентов, входящих в состав препаратов по защите растений. Фенол также активно используется в генной инженерии и молекулярной биологии, в качестве средства для отчистки и выделения молекул ДНК.
Несмотря на активное развитие производства фенола в азиатских странах, в том числе и в Китае, который на текущий момент потребляет около 10% выпускаемого в мире фенола, именно эта страна останется одним из крупнейших его импортеров, по крайней мере, до 2011 года. К этому моменту, по мнению западных экспертов, Китай будет обеспечивать уже около 16% от общемирового спроса на этот продукт.
Фенол относится к числу многотоннажных продуктов основного органического синтеза. Около 35% мирового потребления фенола приходится на сектор производства бисфенола А. В зависимости от региона его доля может значительно изменяться: например, в США на производство бисфенола А приходится 40%, в Западной Европе - до 46% потребления. Спрос на бисфенол А стимулируется активным ростом сегмента поликарбоната, который обеспечивает около 2/3 потребления бисфенола А. В свою очередь развитие рынка поликарбоната является следствием роста производства оптических носителей, таких, как компакт-диски CD и DVD. При этом, в то время как в ближайшие годы спрос на оптические носители вероятнее всего продолжит расти, в дальнейшем они будут вытеснены MP3 плеерами, USB драйверами и интернетом. Ожидается, что рост мирового потребления поликарбоната снизится с 8-9% до 5% в период 2010-2013 гг.
Другое важное направление использования бисфенола А - эпоксидные смолы которые используются в производстве покрытий, адгезивов, композитных материалов и др. В ближайшие годы спрос в этом сегменте будет расти на 2-3% в год в первую очередь в Азиатском регионе, по большей части в Китае. Данный рост будет обеспечен введением большого количества анонсированных новых мощностей по бисфенолу А, вслед за ростом спроса на этот продукт. Принимая во внимание вышеописанные тенденции можно сказать, что объем потребления фенола в производстве бисфенола А в ближайшие годы будет расти на 4-5% в год.
Следующее по объемам потребления фенола - производство феноло-формальдегидных смол (среднемировая доля около 30%), которые применяются в качестве связующего при производстве древесноволокнистых, древесностружечных плит, клееных деревянных конструкций, а также в теплоизоляции, композиционных материалах, автомобильной и строительной промышленности. В данном сегменте рост рынка будет повторять динамику роста ВВП. При этом потребление фенола для производства фенольных смол будет носить четкую региональную зависимость. В США, Западной Европе и Японии использование фенола в этом секторе будет расти на 1-2% в год в ближайшие 3-4 года. В отличие от этих рынков, в развивающихся странах (Центральная и Восточная Европа, Центральная и Южная Америка) ожидается увеличение спроса на 3,6% в год, а в Юго-Восточной Азии - на 5-6%.
Фенол также используется в производстве капролактама (около 10%), рынок которого напрямую зависит от развития производства нейлона. В последние годы спрос со стороны производителей волокон не развивается, но в то же время наблюдается растущий интерес в сегменте инженерных смол, которые вытесняют металлические элементы в автомобилестроении. Суммарный рост мирового спроса на капролактам в ближайшие годы будет на уровне 2-2,5% в год, наибольшие темпы роста ожидаются в Азии.
Среди других направлений использования фенола - производство алкилфенолов, адипиновой кислоты и различных пластификаторов. Хорошие темпы роста спроса на фенол ожидаются со стороны производителей диметилфенола, но этот рынок достаточно узкий и не повлияет на объемы потребления фенола в целом.
8. Масштабы производства фенола
Фенол является одним из ключевых органических веществ, выпускаемых химической промышленностью. Мировое производство фенола на 2006 год составляет 8,3 млн тонн/год. По объёму производств фенол занимает 33-е место среди всех выпускаемых химической промышленностью веществ и 17-е место среди органических веществ. В 2009 году потребление фенола в РФ составило 178 тыс. тонн, что на 12% меньше, чем в 2008 году. Мировой рынок фенола в настоящее время находится на стадии восстановления. По прогнозам, в среднесрочной перспективе темпы роста потребления фенола в мире составят 5-6% в год. В основном спрос будет расти в странах Азии. Российский рынок также переживает период оживления и рост потребительского спроса.
9. Перспективы производства фенола
Несмотря на прекрасно отлаженную технологию и длительный опыт эксплуатации, кумольный метод имеет ряд недостатков. Прежде всего это наличие взрывоопасного промежуточного соединения (гидропероксид кумола), а также многостадийность метода, что требует повышенных капитальных затрат и делает труднодостижимым высокий выход фенола в расчете на исходный бензол. Так, при выходе полезного продукта 95% на каждой из трех стадий итоговый выход составит лишь 86%. Приблизительно такой выход фенола и дает кумольный метод в настоящее время. Но самый важный и принципиально неустранимый недостаток кумольного метода связан с тем, что в качестве побочного продукта образуется ацетон. Это обстоятельство, которое первоначально рассматривалось как сильная сторона метода, становится все более серьезной проблемой, поскольку ацетон не находит эквивалентного рынка сбыта. В 90-х годах эта проблема стала особенно ощутимой после создания новых способов синтеза метилметакрилата путем окисления углеводородов С4, что резко сократило потребность в ацетоне. Об остроте ситуации говорит тот факт, что в Японии разработана технология, предусматривающая рецикл ацетона. С этой целью к традиционной кумольной схеме добавляются еще две стадии, гидрирование ацетона в изопропиловый спирт и дегидратация последнего в пропилен.
Образующийся пропилен снова возвращают на стадию алкилирования бензола. В 1992 году фирма «Mitsui» пустила крупное производство фенола (200 тыс. т/год), основанное на этой пятистадийной кумольной технологии.
Предлагаются также другие сходные модификации кумольного метода, которые позволили бы смягчить проблему ацетона. Однако все они приводят к значительному усложнению технологии и не могут рассматриваться как перспективное решение проблемы. Поэтому исследования, ориентированные на поиск новых путей синтеза фенола, которые основывались бы на прямом окислении бензола, в последнее десятилетие приобрели особенно интенсивный характер.
Работы ведутся главным образом в следующих направлениях: окисление молекулярным кислородом, окисление моноатомными донорами кислорода и сопряженное окисление. Рассмотрим более подробно направления поиска новых путей синтеза фенола.
Окисление молекулярным кислородом. Прямое окисление бензола молекулярным кислородом представляется наиболее привлекательным методом получения фенола. Однако это на первый взгляд самое простое и очевидное решение проблемы оказалось чрезвычайно трудной задачей. Работы по окислению бензола с помощью О2 начались еще до того, как в 1865 г. Кекуле предложил структурную формулу бензольного кольца. С тех пор многочисленные попытки найти эффективный путь для проведения этой реакции не прекращаются. Окисление бензола ведут как в жидкой, так и в газовой фазах, при низком и высоком давлениях, в отсутствие и в присутствии разнообразных катализаторов. Несмотря на отдельные успехи, результаты этих работ пока далеки от практического применения. Начиная с 80-х годов, значительные усилия предпринимаются для проведения этой реакции в жидкой фазе с использованием в качестве катализаторов различных комплексов переходных металлов, среди которых наибольшую активность проявляют соединения Pd и Cu. Однако после нескольких оборотов реакция, как правило, прекращается вследствие деградации катализатора.
Моноатомные доноры кислорода. Более успешные результаты дает применение в качестве окислителей, так называемых моноатомных доноров кислорода в виде различных кислородсодержащих молекул.
Окисление с помощью Н2О2 проводят в присутствии солей и комплексов переходных металлов, в том числе инкапсулированных в матрице цеолита. Исследования в данной области приобрели особенно интенсивный характер после открытия цеолитов состава Ti-Si (TS-1) и их уникальных свойств в реакциях жидкофазного окисления с помощью пероксида водорода. На этой основе фирмой «Enichem» разработан промышленный процесс получения гидрохинона и пирокатехина путем гидроксилирования фенола. Вслед за цеолитами TS-1 были опробованы разнообразные цеолитные системы, содержащие как титан, так и другие переходные металлы. Однако, в отличие от окисления фенола, ароматическое кольцо которого активировано присутствием ОН-группы, окисление бензола протекает менее активно и со значительно меньшей селективностью по пероксиду водорода вследствие его побочного разложения на кислород и воду. Следует отметить, что в любом случае данная реакция едва ли перспективна для практического использования из-за высокой стоимости Н2О2 (по сравнению со стоимостью фенола). Помимо пероксида водорода, в исследовательских целях применяется ряд других, более сложных и дорогостоящих монокислорододонорных окислителей. Более вероятным окислителем для бензола с практической точки зрения представляется азотная кислота, которая впервые была использована для этой цели в 1925 г. В более поздних работах было показано, что эффективными катализаторами этой реакции являются оксидные системы на основе V2O5 и MoO3.
Сопряженное окисление. Пероксид водорода может непосредственно образовываться в реакционной системе in situ и тут же расходоваться на окисление субстрата. Этот подход рассматривается как одно из наиболее перспективных направлений не только для окисления ароматических соединений, но и многих других углеводородов, включая парафины. Использование пероксида по мере его образования из Н2 и О2 позволяет значительно увеличить селективность полезного использования H2O2. Работы в этом направлении интенсивно ведутся во многих лабораториях мира с использованием разнообразных катализаторов и приемов. Наиболее эффективные катализаторы включают платину или другой благородный металл, который вместе с оксидом ванадия наносится на силикагель. На таком катализаторе в растворе уксусной кислоты бензол почти со 100%-ной селективностью окисляется в фенол. Однако селективность реакции по водороду все еще остается невысокой и составляет 10-15%.
Недостаток сопряженных реакций состоит в трудности подбора таких условий, которые были бы оптимальными как для образования сопрягающего промежуточного соединения в первичной реакции, так и для его эффективного использования во вторичной реакции. В последние годы широкое развитие получают работы по исследованию реакций сопряженного окисления углеводородов в электрохимических ячейках, представляющих собой реакторы типа топливных элементов. Проведение реакций в таких устройствах открывает дополнительную возможность для управления реакцией посредством регулирования электрического тока, пропускаемого через ячейку.
В качестве примера современной одностадийной технологии получения фенола можно привести газофазную одностадийную технологию путем прямого окисления бензола закисью азота в адиабатическом реакторе с цеолитсодержащим катализатором. Исходная закись азота может быть получена путем окисления аммиака воздухом, либо выделена из побочных продуктов синтеза адипиновой кислоты. Технология обеспечивает производство высокочистого фенола с суммарным содержанием примесей менее 50 ppm. AlphOx процесс отработан на пилотном заводе фирмы Solutia Inc. (США, г. Пенсакола). Рассматривалась возможность реализации данного процесса в производстве капролактама на ЗАО «Куйбышевазот».
Некоторые специалисты считают, что новая технология является реальной альтернативой используемому в промышленности кумольному процессу получения фенола.
В качестве преимуществ данной технологии по сравнению с кумольной схемой называются:
*отсутствие побочного продукта (ацетона);
*снижение капитальных затрат на 30%;
*уменьшение расхода бензола на 15-20%;
*уменьшение смолообразования более чем в 3 раза;
*возможность выделения из смолы ценного продукта - гидрохинона;
*высокая безопасность и экологичность процесса.
Заключение
Несмотря на прекрасно отлаженную технологию и длительный опыт эксплуатации, кумольный метод имеет ряд недостатков. Прежде всего это наличие взрывоопасного промежуточного соединения (гидропероксид кумола), а также многостадийность метода, что требует повышенных капитальных затрат и делает труднодостижимым высокий выход фенола в расчете на исходный бензол.
Предлагаются также другие сходные модификации кумольного метода, которые позволили бы смягчить проблему ацетона. Однако все они приводят к значительному усложнению технологии и не могут рассматриваться как перспективное решение проблемы. Поэтому исследования, ориентированные на поиск новых путей синтеза фенола, которые основывались бы на прямом окислении бензола, в последнее десятилетие приобрели особенно интенсивный характер.
В настоящее время для развития производства фенола необходимы новые технологии и методы получения фенола, которые будут отвечать современным требованиям, экономическая выгода, простота метода, экологическая безопасность и безотходное производство.
Список использованной литературы
1. http://ekobalans.ru/investigations/fenol - (c5h6oh)
2. http://lib.convdocs.org/docs/index-164381.html
3. Харлампович Г.Д., Чуркин Ю.В. Фенолы. - М.: Химия, 1974
4. Е.А. Ананьева, Е.В. Егорова, Л.В. Ларин. «Вестник МИТХТ», 2007, т. 2, №2 Химия и технология органических веществ // Современное состояние и перспективы развития процессов получения фенола. I. Обзор рынка и современное состояние процессов получения фенола.
5. Е.А. Ананьева, Е.В. Егорова, Л.В. Ларин. «Вестник МИТХТ», 2007, т. 2, №2 Теоретические основы химической технологии // II. Способы интенсификации процесса окисления изопропилбензола/
6. http://www.himi.oglib.ru/bgl/8609/376.html
7. Закошанский В.М. Фенол и ацетон: Анализ технологий, кинетики и механизма основных реакций. - СПб.: ХИМИЗДАТ, 2009. - 608 с.
8. Кружалов Б.Д., Голованенко Б.И. Совместное получение фенола и ацетона. - М: Государственное научно-техническое издательство химической литературы, 1963, - 200 с.
9. Юровская М.А., Куркин А.В. Основы курса органической химии. - М.: МГУ им. М.В. Ломоносова, 2008. - 245 с.
10. Гайле А.А., Сомов В.Е., Варшавский О.М. Ароматические углеводороды: Выделение, применение, рынок. - Справочник. - СПб: Химиздат, 2000. - 544 с.
Размещено на Allbest.ru
...Подобные документы
Классификация, физические и химические свойства фенолов. Изучение строения молекулы. Влияние бензольного кольца на гидроксильную группу. Диссоциация и нитрование фенола. Взаимодействие его с натрием, щелочами. Реакции окисления, замещения и гидрирования.
презентация [1,5 M], добавлен 17.02.2016Понятие и номенклатура фенолов, их основные физические и химические свойства, характерные реакции. Способы получения фенолов и сферы их практического применения. Токсические свойства фенола и характер его негативного воздействия на организм человека.
курсовая работа [292,0 K], добавлен 16.03.2011Понятие фенолов, их номенклатура и изомерия. Способы получения фенола, его физические и химические свойства. Образование солей (фенолятов), реакции гидрирования, сульфирования и электрофильного замещения. Определение нафтолов, их свойства и получение.
лекция [169,5 K], добавлен 27.11.2010Критерии классификации спиртов. Виды изомерии, характерные для алканолов. Изомерия положения гидроксильной группы в углеродной цепи и углеродного скелета. Физические и химические свойства спиртов, температура их кипения. Строение молекулы этанола.
презентация [6,2 M], добавлен 08.08.2015Строение молекулы, номенклатура, изомерия, физические, химические свойства, методы получения и сферы применения альдегидов или органических соединений, содержащих карбонильную группу, в которой атом углерода связан с радикалом и одним атомом водорода.
презентация [331,9 K], добавлен 23.03.2016Соединения енолов и фенолов. Происхождение слова алкоголь. Классификация спиртов по числу гидроксильных групп, характеру углеводородного радикала. Их изомерия, химические свойства, способы получения. Примеры применения этилового и метилового спиртов.
презентация [803,3 K], добавлен 27.12.2015История получения аммиака. Строение атома азота. Образование и строение молекулы аммиака, ее физико-химические свойства. Способы получения вещества. Образование иона аммония. Токсичность аммиака и его применение в промышленности. Реакция горения.
презентация [3,9 M], добавлен 19.01.2014Характеристика понятия, физико-химических свойств органических веществ - фенолов, молекулы которых содержат радикал фенил, связанный с одной или несколькими гидроксогруппами. Классификация фенолов по атомности. Кольца Рашига. Симптомы отравления фенолом.
презентация [717,1 K], добавлен 11.03.2013Номенклатура, изомерия, классификация и физические свойства диеновых углеводородов и органических галогенидов. Способы получения и химические свойства. Сущность диенового синтеза. Натуральные и синтетические каучуки, их применение в строительстве.
контрольная работа [85,0 K], добавлен 27.02.2009История открытия производных карбоновых кислот, в которых атом водорода карбоксильной группы замещен на углеводородный радикал. Номенклатура и изомерия, классификация и состав сложных эфиров. Их физические и химические свойства, способы получения.
презентация [1,6 M], добавлен 14.09.2014Органические соединения, содержащие атом гидроксила. Способы получения фенолов, их кислотные свойства. Реакции электрофильного замещения в ароматическом кольце, конденсация фенолов с альдегидами и кетонами, алкилирование, ацилирование по Фриделю-Крафтсу.
курсовая работа [200,3 K], добавлен 14.05.2012Определение спиртов, общая формула, классификация, номенклатура, изомерия, физические свойства. Способы получения спиртов, их химические свойства и применение. Получение этилового спирта путем каталитической гидратации этилена и брожения глюкозы.
презентация [5,3 M], добавлен 16.03.2011Способы получения фенола. Открытие цеолитных катализаторов для окисления бензола закисью азота. Природа каталитической активности цеолитов. Новые пути синтеза фенола. Активное состояние железа в цеолитной матрице. Биомиметические свойства кислорода.
реферат [580,8 K], добавлен 24.04.2010Моно-, ди- и оксокарбоновые кислоты, гидроксикислоты: номенклатура, изомерия, систематические и тривиальные названия, способы получения, физические и химические свойства, виды реакций. Функциональные производные, их общая формула, ацилирующая способность.
презентация [1,2 M], добавлен 22.12.2014Что такое алкены, строение молекулы, физические и химические свойства. Выбор главной цепи, нумерация атомов главной цепи, формирование названия. Структурная изометрия. Химические свойства этилена, классификация способов получения, сфера применения.
презентация [279,2 K], добавлен 20.12.2010Ароматические углеводороды: общая характеристика. Номенклатура и изомерия, физические и химические свойства ароматических углеводородов. Механизм реакций электрофильного и нуклеофильного замещения в ароматическом ряду. Применение аренов, их токсичность.
реферат [1,2 M], добавлен 11.12.2011Определение альдегидов (органических соединений). Их строение, структурная формула, номенклатура, изомерия, физические и химические свойства. Качественные реакции (окисление) и формулы получения альдегидов. Применение метаналя, этаналя, ацетона.
презентация [361,6 K], добавлен 17.05.2011Фенол как химическое вещество, его применение и значение. Особенности стадий получения фенола. Краткая характеристика процесса его производства через бензолсульфокислоту, хлорбензол, изопропилбензол, окислительным хлорированием бензола. Виды сырья.
реферат [808,2 K], добавлен 18.02.2011Физические и химические свойства спиртов, их взаимодействие с щелочными металлами. Замещение гидроксильной группы спирта галогеном, дегидратация, образование сложных эфиров. Производство этилового, метилового и других видов спиртов, области их применения.
презентация [1,5 M], добавлен 07.04.2014Аминокислоты – азотсодержащие органические соединения. Способы их получения. Физические и химические свойства. Изомерия и номенклатура. Аминокислоты необходимы для синтеза белков в живых организмах. Применение в медицине и для синтеза некоторых волокон.
презентация [38,3 K], добавлен 21.04.2011