Адсорбция как необходимая стадия каталитических процессов

Осуществление химического взаимодействия реактантов с катализатором. Различие между физической и химической адсорбцией. Роль хемосорбции в гетерогенном катализе. Стационарный состав поверхности катализатора, определяющий его каталитическую активность.

Рубрика Химия
Вид доклад
Язык русский
Дата добавления 25.08.2013
Размер файла 8,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Адсорбция как необходимая стадия каталитических процессов

В гетерогенном катализе на твердом катализаторе промежуточное химическое взаимодействие реактантов с катализатором осуществляется лишь на его доступной для молекул реагирующих веществ так называемой реакционной поверхности посредством адсорбции. Удельная реакционная поверхность гетерогенного катализатора определяется его пористой структурой, то есть количеством, размером и характером распределения пор.

Однако не всякая поверхность твердого тела обладает каталитической активностью. На поверхности одних веществ может происходить лишь физическая адсорбция, а других - хемосорбция с более прочной химической связью. Так, на поверхности активированного угля водород и азот могут адсорбироваться лишь физически, а кислород и при высоких температурах водяной пар подвергаются химической адсорбции и при их десорбции выделяются не 02и Н20, а продукты их хемосорбции в виде СО, СО2 и Н2. Это свидетельствует о том, что тип и прочность промежуточной (то есть поверхностной) химической связи обусловливается химическим строением твердого тела, а также сродством последнего по отношению к молекулам реактантов. химический катализатор адсорбция

Адсорбция как физическая, так и химическая обусловливается избыточной свободной энергией поверхности. Если галетные связи между атомами и ионами, расположенными внутри объема твердого тела, взаимно скомпенсированы (насыщены), то таковой компенсированное межмолекулярных сил на его поверхности (как и на поверхности жидкости) не происходит. Кроме того, поверхность твердого тела не является идеально гладкой, а имеет многочисленные ультрамикроскопические выступы и углубления различных форм в зависимости от геометрии кристаллической решетки. Сама кристаллическая решетка также не всегда идеальна и однородна, и на ней имеются различного рода дефекты и примеси. Естественно, степень компенсированных валентных сил на различных участках неоднородной поверхности твердого тела различна и, следовательно, неоднородна адсорбционная активность этой поверхности. Наиболее активные участки (центры) поверхности будут более энергично адсорбировать (хемосорбировать) молекулы реактантов. Отсюда следует вывод о том, что адсорбция (хемосорбция) неоднородна.

Физическая и химическая адсорбции различаются между собой по следующим признакам:

Теплоты физической адсорбции всегда малы и близки к теплотам конденсации (10 - 50 кДж/моль). Теплоты же хемосорбции близки к теплотам химических реакций (80 - 400 кДж/моль и более).

Физическая адсорбция осуществляется обычно при низких температурах, близких к температуре конденсации адсорбата. Химическая адсорбция может иметь место, как при низких, так и гораздо более высоких температурах.

Физическая адсорбция протекает практически без энергии активации. Хемосорбция, подобно химической реакции, осуществляется со значительной энергией активации, и с повышением температуры ее скорость возрастает в соответствии с величиной энергии активации по закону Аррениуса.

Физическая адсорбция не обладает значительной специфичностью. Благодаря этой особенности она используется для измерения удельной поверхности твердых катализаторов и твердых тел. В противоположность этому хемосорбция, вследствие своей химической природы, очень специфична.

Физическая адсорбция всегда обратима, благодаря чему в системе может установиться равновесие адсорбция > десорбция. Хемосорбция может быть и необратимой.

Физическая адсорбция может привести к образованию полимолекулярного слоя адсорбата. При хемосорбции, за некоторым исключением, всегда образуется монослой сорбированных молекул.

Физическая адсорбция всегда экзотермична, в то время как хемосорбция может быть и эндотермической.

Под действием яда хемосорбция (и каталитическая реакция) может подавляться полностью, в то время как адсорбция может протекать с заметной скоростью.

Для гетерогенного катализа, протекающего на поверхности твердых катализаторов, имеют значение все формы адсорбции, однако решающая роль в гетерогенном катализе принадлежит хемосорбции: все гетерогенные каталитические процессы начинаются с хемосорбции и заканчиваются практически хемодесорбцией.

Физическая адсорбция, хотя и не играет решающей роли в гетерогенном катализе, тем не менее, она полезна как средство для исследования пористой структуры твердых тел. Она удобна для определения удельной поверхности, формы и размеров пор, наличия закрытых пор и других деталей геометрического строения пористых катализаторов и носителей, особенно в сочетании с электронной микроскопией и ртутной порометрией.

В соответствии с современными физико-химическими представлениями о сущности катализа катализатор и реагирующие вещества следует рассматривать как единую каталитическую реакционную систему, в которой химические превращения испытывают не только реактанты под действием катализатора, но и катализатор при взаимодействии с реагентами. В результате такого взаимного воздействия в реакционной системе устанавливается стационарный состав поверхности катализатора, определяющий его каталитическую активность. Отсюда следует, что катализатор - не просто место осуществления реакции, а непосредственный участник химического взаимодействия, и его каталитическая активность обусловливается химической природой катализатора и его химическим сродством к реактантам.

Исходя из основного постулата о химической природе взаимодействия в каталитической реакционной системе, можно сформулировать некоторые важные для предвидения каталитического действия термодинамические и кинетические принципы.

Катализатор должен химически взаимодействовать хотя бы с одним из компонентов реагирующих веществ (с образованием координационных, ионных или ковалентных связей).

Изменение свободной энергии процессов взаимодействия в каталитической реакционной системе должно быть менее отрицательным, чем изменение свободной энергии катализируемой реакции, то есть соединения реагирующих веществ с катализатором должны быть термодинамически менее прочными, чем продукты реакции (если это требование не соблюдается, катализатор быстро выходит из строя, образуя нерегенерируемое прочное химическое соединение).

Многостадийный каталитический процесс термодинамически будет наиболее выгодным (вероятным), если изменения свободной энергии на каждой из стадий примерно одинаковы и равны половине изменения теплового эффекта суммарного процесса.

4. В кинетическом отношении каталитическая реакция будет идти с большем скоростью, если в результате промежуточного химического взаимодействия катализатор будет снижать энергию активации химической реакции (или одновременно повышать предэкспонент Аррениуса). Это правило согласуется с принципом компенсации энергии разрывающихся связей в катализе. Оно согласуется также с принципом энергетического соответствия мультиплетной теории А.А. Баландина.

5. Установлена определенная закономерность между специфичностью каталитического действия и типом кристаллической структуры твердых тел. Каталитической активностью ионного и электронного типов обладают твердые тела соответственно с ионной и металлической кристаллической структурой, а также кристаллы промежуточного (ионно-металлического) типа. Молекулярные и ковалентные кристаллы в отношении катализа практически инертны.

Размещено на Allbest.ru

...

Подобные документы

  • Активность реагентов и константы равновесия комплексов, входящих в материальный баланс по катализатору при исследованиях кинетики реакций. Поверхности и кинетика Лэнгмюра-Хиншельвуда при адсорбции смеси молекул. Статистическое планирование эксперимента.

    реферат [65,5 K], добавлен 28.01.2009

  • Определение катализа и его роль в промышленности. Селективность и общие представления о понятии "механизм химической реакции". Классификация каталитических систем по фазам и типам реакций. Адсорбция и основные требования к промышленным катализаторам.

    реферат [1,2 M], добавлен 26.01.2009

  • Скорость химического превращения на поверхности в стационарном режиме. Режим диффузионный и кинетический. Адсорбция на поверхности. Поверхностный гетерогенно-каталитический процесс. Предельные режимы цепной разветвлённой реакции. Разветвление и обрыв.

    реферат [169,5 K], добавлен 30.01.2009

  • Стадии взаимодействия газообразных реагентов на поверхности твердого катализатора. Соотношение скоростей химической реакции и диффузии на примере необратимой реакции. Расчет адиабатических реакторов для реакций, протекающих в кинетической области.

    презентация [428,6 K], добавлен 17.03.2014

  • Классификация газообразных топлив. Очистка газа от примесей. Осушка газа короткоцикловой безнагревной адсорбцией. Разделение газа на фракции на установке ГФУ. Получение и применение продуктов газофракционирования. Состав сухого газообразного топлива.

    курсовая работа [240,8 K], добавлен 05.05.2015

  • Исследование характера дезактивации скелетного никелевого катализатора катионными каталитическими ядами (нитратом ртути(II) и нитратом свинца(II)) и установление возможной обратимости данного процесса в растворах гидроксида натрия различной концентрации.

    магистерская работа [778,4 K], добавлен 16.05.2015

  • Предмет термохимии, изучение тепловых эффектов химических реакций. Типы процессов химической кинетики и катализа. Энтальпия (тепловой эффект) реакции. Скорость реакции, закон действующих масс. Константа химического равновесия, влияние катализатора.

    презентация [2,2 M], добавлен 19.10.2014

  • Скорость химической реакции. Классификация каталитических процессов. Гомогенный катализ. Кислотный катализ в растворе. Энергетические профили некаталитического и каталитического маршрутов химической реакции. Активированный комплекс типа Аррениуса.

    реферат [151,6 K], добавлен 30.01.2009

  • Изучение теории и составляющих факторов реакции адсорбции полимеров. Гелеобразование геллана. Методика определения количества адсорбированных полимеров на поверхности кернов. Влияние предварительной активации поверхности на кинетику адсорбции полимера.

    курсовая работа [6,6 M], добавлен 04.01.2011

  • Закономерности формирования свойств полиферритов тяжелых щелочных металлов. Влияние модифицирующих добавок на формирование фазового состава и каталитических свойств ферритов. Влияние промышленной эксплуатации на активность железооксидного катализатора.

    контрольная работа [113,0 K], добавлен 28.08.2012

  • Влияние температуры на скорость химических процессов. Второй закон термодинамики, самопроизвольные процессы, свободная и связанная энергия. Зависимость скорости химической реакции от концентрации веществ. Пищевые пены: понятия, виды, состав и строение.

    контрольная работа [298,6 K], добавлен 16.05.2011

  • Значение воды для химической промышленности. Подготовка воды для производственных процессов. Каталитические процессы, их классификация. Влияние катализатора на скорость химико-технологических процессов. Материальный баланс печи для сжигания серы.

    контрольная работа [1,1 M], добавлен 18.01.2014

  • Применение уравнения Фрейндлиха и Ленгмюра для описания адсорбции поверхностно-активных веществ на твердом адсорбенте. Определение предельной адсорбции уксусной кислоты из водного раствора на активированном угле; расчет удельной поверхности адсорбента.

    лабораторная работа [230,8 K], добавлен 16.06.2013

  • Техника безопасности при проведении опытов. Знакомство с лабораторным оборудованием. Ведение рабочего журнала. Рисование йодом. Самодельные индикаторы. Окисление-восстановление. Адсорбция. Оборудование химической лаборатории из подручных средств.

    методичка [1,5 M], добавлен 16.01.2009

  • Характеристика химического равновесия. Зависимость скорости химической реакции от концентрации реагирующих веществ, температуры, величины поверхности реагирующих веществ. Влияние концентрации реагирующих веществ и температуры на состояние равновесия.

    лабораторная работа [282,5 K], добавлен 08.10.2013

  • Классификация процесса адсорбции: основные определения и понятия. Общая характеристика ряда промышленных адсорбентов и их свойства. Теории адсорбции. Оборудование, реализующее этот процесс. Особенности протекания различных видов химической адсорбции.

    курсовая работа [1,4 M], добавлен 15.11.2011

  • Гидролитическая поликонденсация органоалкоксисиланов. Стерические, индукционные эффекты. Гидролиз в присутствии кислоты и щелочи, как катализатора. Механизм реакций конденсации. Влияние катализатора и растворителя. Получение диметилтетраэтоксидисилоксана.

    дипломная работа [3,2 M], добавлен 17.06.2014

  • Изучение электрохимических процессов с помощью техники обновления поверхности металла в растворе. Условия, от которых зависят значения тока растворения золота в присутствии сульфидсодержащей добавки. Адсорбция сульфид-ионов на поверхности золота.

    реферат [29,3 K], добавлен 30.09.2009

  • Основные представления о катализе и свойствах катализаторов. Сырье и продукты каталитического крекинга. Технологический режим и материальный баланс процесса. Установка каталитического крекинга с шариковым катализатором. Контроль и регулирование процесса.

    курсовая работа [292,4 K], добавлен 26.11.2011

  • Видные деятели химии о катализе. Немного о промышленном катализе. Роль катализа в экологии. Энергетический барьер. Прохождение через энергетический барьер. Гомогенный катализ. Гетерогенный катализ. Катализ в биохимии.

    курсовая работа [35,3 K], добавлен 26.01.2005

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.