Азотсодержащие органические соединения

Нитросоединения как органические вещества, в молекулах которых содержится нитрогруппа – NO2 при атоме углерода, исследование их главных физических и химических свойств, получение и применение. Понятие и свойства аминокислот, их качественные реакции.

Рубрика Химия
Вид лекция
Язык русский
Дата добавления 08.10.2013
Размер файла 196,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Азотсодержащие органические соединения

1. Нитросоединения

Нитросоединениями называются органические вещества, в молекулах которых содержится нитрогруппа - NO2 при атоме углерода

Их можно рассматривать как производные углеводородов, получающиеся путем замещения атома водорода на нитрогруппу. По числу нитрогрупп различают моно-, ди- и полинитросоединения.

Названия нитросоединемий производят от названий исходных углеводородов с добавлением приставки нитро -:

Общая формула этих соединений R-NO2.

Введение в органическое вещество нитрогруппы называется нитрованием. Его можно проводить разными способами. Нитрование ароматических соединений легко осуществимо при действии смесью концентрированных азотной и серной кислот (первая - нитрующий агент, вторая - водоотнимающий):

Тринитротолуол хорошо известен как взрывчатое вещество. Взрывается только от детонации. Горит коптящим пламенем без взрыва.

Нитрование предельных углеводородов проводится при действии на углеводороды разбавленной азотной кислотой при нагревании и повышенном давлении (реакция М.И. Коновалова):

Нитросоединения часто также получают взаимодействием алкил-галогенидов с нитритом серебра:

При восстановлении нитросоединений образуются амины.

2. Азотсодержащие гетероциклические соединения

Гетероциклические соединения - это органические соединения, содержащие в своих молекулах кольца (циклы), в образовании которых кроме атома углерода принимают участие и атомы других элементов

Атомы других элементов, входящие в состав гетероцикла, называются гетероатомами. Наиболее часто встречаются в составе гетероциклов гетероатомы азота, кислорода, серы, хотя могут существовать гетероциклические соединения с самыми различными элементами, имеющими валентность не менее двух.

Гетероциклические соединения могут иметь в цикле 3, 4, 5, 6 и более атомов. Однако наибольшее значение имеют пяти- и шестичленные гетероциклы. Эти циклы, как и в ряду карбоциклических соединений, образуются наиболее легко и отличаются наибольшей прочностью. В гетероцикле может содержаться один, два и более гетероатомов.

Во многих гетероциклических соединениях электронное строение связей в кольце такое же, как и в ароматических соединениях. Поэтому типичные гетероциклические соединения условно обозначают не только формулами, содержащими чередующиеся двойные и одинарные связи, но и формулами, в которых сопряжение ? - электронов обозначается кружком, вписанным в формулу.

Для гетероциклов обычно пользуются эмпирическими названиями.

Шестичленные гетероциклы

Большое значение имеют гетероциклы, конденсированные с бензольным кольцом или с другим гетероциклом, например пурин:

Шестичленные гетероциклы. Пиридин C5H5N - простейший шестичленный ароматический гетероцикл с одним атомом азота. Его можно рассматривать как аналог бензола, в котором одна группа СН заменена на атом азота:

Пиридин представляет собой бесцветную жидкость, немного легче воды, с характерным неприятным запахом; с водой смешивается в любых отношениях. Пиридин и его гомологи выделяют из каменноугольной смолы. В лабораторных условиях пиридин можно синтезировать из синильной кислоты и ацетилена:

Химические свойства пиридина определяются наличием ароматической системы, содержащей шесть ? - электронов, и атома азота с неподеленной электронной парой.

При взаимодействии пиридина с сильными кислотами образуются соли пиридиния:

2. Ароматические свойства. Подобно бензолу, пиридин вступает в реакции электрофильного замещения, однако, его активность в этих реакциях ниже, чем бензола, из-за большой электроотрицательности атома азота. Пиридин нитруется при 300°С с низким выходом:

Атом азота в реакциях электрофильного замещения ведет себя как заместитель 2-го рода, поэтому электрофильное замещение происходит вмета-положение.

В отличие от бензола пиридин способен вступать в реакции нуклеофильного замещения, поскольку атом азота оттягивает на себя электронную плотность из ароматической системы и орто-пара-положения по отношению к атому азота обеднены электронами. Так, пиридин может реагировать с амидом натрия, образуя смесь орто- и пара-аминопиридинов (реакция Чичибабина):

При гидрировании пиридина ароматическая система разрушается и образуется пиперидин, который представляет собой циклический вторичный амин и является гораздо более сильным основанием, чем пиридин:

Пиримидин C4H4N2 - шестичленный гетероцикл с двумя атомами азота. Его можно рассматривать как аналог бензола, в котором две группы СН заменены на атомы азота:

Благодаря наличию в кольце двух электроотрицательных атомов азота пиримидин еще менее активен в реакциях электрофильного замещения, чем пиридин. Его основные свойства также выражены слабее, чем у пиридина.

Основное значение пиримидина состоит в том, что он является родоначальником класса пиримидиновых оснований.

Пиримидиновые основания - производные пиримидина, остатки которых входят в состав нуклеиновых кислот: урацил, тимин, цитозин.

Каждое из этих оснований может существовать в двух формах. В свободном состоянии основания существуют в ароматической форме, а в состав нуклеиновых кислот они входят в NH-форме.

Соединения с пятичленным циклом. Пиррол C4H4NH - пятичленныи гетероцикл с одним атомом азота.

Ароматическая система содержит шесть ? - электронов (по одному от четырех атомов углерода и пара электронов атома азота). В отличие от пиридина электронная пара атома азота в пирроле входит в состав ароматической системы, поэтому пиррол практически лишен основных свойств.

Пиррол - бесцветная жидкость с запахом, напоминающим запах хлороформа. Пиррол слабо растворим в воде (< 6%), но растворим в органических растворителях. На воздухе быстро окисляется и темнеет.

Пиррол получают конденсацией ацетилена с аммиаком:

или аммонолизом пятичленных циклов с другими гетероатомами (реакция Юрьева):

Пиррол проявляет свойства очень слабой кислоты. Он реагирует с калием, образуя пиррол-калий:

Пиррол, как ароматическое соединение, склонен к реакциям электрофильного замещения, которые протекают преимущественно у ? - атома углерода (соседнего с атомом азота).

При гидрировании пиррола образуется пирролидин - циклический вторичный амин, проявляющий основные свойства:

3. Амины

Амины - органические соединения, которые можно рассматривать как производные аммиака, в котором атомы водорода (один или несколько) замещены на углеводородные радикалы

В зависимости от природы радикала амины могут быть алифатическими (предельными и непредельными), алициклическими, ароматическими, гетероциклическими. Они подразделяются на первичные, вторичные, третичные в зависимости от того, сколько атомов водорода замещено на радикал.

Четвертичные аммониевые соли типа [R4N]+Cl? - это органические аналоги неорганических аммониевых солей.

Названия первичных аминов обычно производят от названий соответствующих углеводородов, добавляя к ним приставку амино- или окончание - амин. Названия вторичных и третичных аминов чаще всего образуют по принципам рациональной номенклатуры, перечисляя имеющиеся в соединении радикалы:

первичные R-NH2: СН3-NH2 - метиламин; С6Н5-NH2 - фениламин;

вторичные R-NH-R': (CH2) NH - диметиламин; С6Н5-NH-СН3 - метилфениламин;

третичные R-N(R') - R»: (СН3)3Н - триметиламин; (C6H5)3N - трифениламин.

Получение. 1. Нагревание алкилгалогенидов с аммиаком под давлением приводит к последовательному алкилированию аммиака, при этом образуется смесь солей первичных, вторичных и третичных аминов, которые дегидрогалогенируются при действии оснований:

2. Ароматические амины получают восстановлением нитросоединений:

Для восстановления можно использовать цинк или железо в кислой среде или алюминий в щелочной среде.

Физические свойства. Простейшие алифатические амины при нормальных условиях представляют собой газы или жидкости с низкой температурой кипения, обладающие резким запахом. Все амины являются полярными соединениями, что приводит к образованию водородных связей в жидких аминах, и следовательно, температуры их кипения превышают температуры кипения соответствующих алканов. Первые представители ряда аминов растворяются в воде, по мере роста углеродного скелета их растворимость в воде уменьшается. Амины растворимы также в органических растворителях.

Химические свойства. 1. Основные свойства. Будучи производными аммиака, все амины обладают основными свойствами, причем алифатические амины являются более сильными основаниями, чем аммиак, а ароматические - более слабыми. Это объясняется тем, что радикалы СН3-, С2Н5- и др. проявляют положительный индуктивный (+I) эффект и увеличивают электронную плотность на атоме азота:

что приводит к усилению основных свойств. Напротив, фенильный радикал C6H5 - проявляет отрицательный мезомерный (-М) эффект и уменьшает электронную плотность на атоме азота:

Щелочная реакция растворов аминов объясняется образованием гидроксильных ионов при взаимодействии аминов с водой:

Амины в чистом виде или в растворах взаимодействуют с кислотами, образуя соли:

Обычно соли аминов - твердые вещества без запаха, хорошо растворимые в воде. В то время как амины хорошо растворимы в органических растворителях, соли аминов в них не растворяются.

3. Реакции с азотистой кислотой. а) Первичные алифатические амины при действии азотистой кислоты превращаются в спирты:

Важнейшие представители аминов. Простейшие алифатические амины - метиламин, диметиламин, диэтиламин - находят применение при синтезе лекарственных веществ и других продуктов органического синтеза. Гексаметилендиамин NH2 - (СН2)2-NH6 является одним из исходных веществ для получения важного полимерного материала нейлона.

Анилин C6H5NH2 - важнейший из ароматических аминов. Он представляет собой бесцветную маслянистую жидкость, мало растворимую в воде. Для качественного обнаружения анилина используют его реакцию с бромной водой, в результате которой выпадает белый осадок 2,4,6 - триброманилина:

Анилин применяется для получения красителей, лекарственных препаратов, пластмасс и т.д.

4. Аминокислоты

Аминокислоты - это органические бифункциональные соединения, в состав которых входят карбоксильная группа - СООН и аминогруппа - NH2. В зависимости от взаимного расположения обеих функциональных групп различают a---,--b---,--g - аминокислоты и т.д.:

Греческая буква при атоме углерода обозначает его удаленность от карбоксильной группы. Обычно рассматривают только ? - аминокислоты, поскольку другие аминокислоты в природе не встречаются.

В состав белков входят 20 основных аминокислот (см. табл.).

Получение. 1. Гидролиз белковых веществ обычно дает сложные смеси аминокислот. Однако разработан ряд методов, позволяющих из сложных смесей получать отдельные чистые аминокислоты.

2. Замещение галогена на аминогруппу в соответствующих галогенокислотах. Этот способ получения аминокислот полностью аналогичен получению аминов из гало-генопроизводных алканов и аммиака:

Физические свойства. Аминокислоты представляют собой твердые кристаллические вещества, хорошо растворимые в воде и мало растворимые в органических растворителях. Многие аминокислоты имеют сладкий вкус. Они плавятся при высоких температурах и обычно при этом разлагаются. В парообразное состояние переходить не могут.

Химические свойства. Аминокислоты - это органические амфотерные соединения. Они содержат в составе молекулы две функциональные группы противоположного характера: аминогруппу с основными свойствами и карбоксильную группу с кислотными свойствами. Аминокислоты реагируют как с кислотами, так и с основаниями:

Кислотно-основные превращения аминокислот в различных средах можно изобразить следующей схемой:

Водные растворы аминокислот имеют нейтральную, щелочную или кислую среду в зависимости от количества функциональных групп. Так, глутаминовая кислота образует кислый раствор (две группы - СООН, одна - NH2), лизин - щелочной (одна группа - СООН, две - NH2).Важнейшее свойство аминокислот - их способность к конденсации с образованием пептидов.

Пептиды. Пептиды. - это продукты конденсации двух или более молекул аминокислот. Две молекулы аминокислоты могут реагировать друг с другом с отщеплением молекулы воды и образованием продукта, в котором фрагменты связаны пептидной связью - СО-NH -.

нитросоединение химический аминокислота углерод

Основное свойство пептидов - способность к гидролизу. При гидролизе происходит полное или частичное расщепление пептидной цепи и образуются более короткие пептиды с меньшей молекулярной массой или а-аминокислоты, составляющие цепь. Анализ продуктов полного гидролиза позволяет установить аминокислотный состав пептида. Полный гидролиз происходит при длительном нагревании пептида с концентрированной соляной кислотой.

Ферментативный гидролиз важен тем, что протекает селективно, т.е. позволяет расщеплять строго определенные участки пептидной цепи.

Качественные реакции на аминокислоты. 1) Все аминокислоты окисляются нингидрином с образованием продуктов, окрашенных в сине-фиолетовый цвет. Эта реакция может быть использована для количественного определения аминокислот спектрофотометрическим методом. 2) При нагревании ароматических аминокислот с концентрированной азотной кислотой происходит нитрование бензольного кольца и образуются соединения, окрашенные в желтый цвет. Эта реакция называется ксантопротеиновой (от греч. ксантос - желтый).

Размещено на Allbest.ru

...

Подобные документы

  • Нитросоединения - органические соединения, в молекуле которых содержится группа NO2, их строение и получение методом нитрования алканов (замещение водорода) и нуклеофильным замещением галогена. Cвойства алифатических нитросоединений и нитроаренов.

    контрольная работа [23,2 K], добавлен 05.08.2013

  • Белки – высокомолекулярные азотсодержащие органические вещества, молекулы которых построены из остатков аминокислот. Наследственная информация сосредоточена в молекуле ДНК. С помощью белков реализуется генетическая информация. Классификация аминокислот.

    реферат [21,6 K], добавлен 17.01.2009

  • Органические соединения І группы. Натрииорганические соединения - органические соединения, содержащие связь C-Na. Органические производные кальция, стронция, бария и магния. Борорганические соединения. Соединения алюминия. Кремнийорганические соединения.

    реферат [122,8 K], добавлен 10.04.2008

  • Свойства, применение, синтезы акридона. Реакции замыкания цикла. Типы реакций. Замещение при насыщенном атоме углерода. Внутримолекулярное нуклеофильное присоединение к карбонильной группе и к другим двойным связям. Электролитические реакции. Акридин.

    курсовая работа [1,3 M], добавлен 09.11.2008

  • Аминокислоты – азотсодержащие органические соединения. Способы их получения. Физические и химические свойства. Изомерия и номенклатура. Аминокислоты необходимы для синтеза белков в живых организмах. Применение в медицине и для синтеза некоторых волокон.

    презентация [38,3 K], добавлен 21.04.2011

  • Гликозиды — органические соединения, история их изучения и свойства. Ботаническая, фармакологическая и химическая классификация. Образование гликозидов в растениях, их роль и методы выделения. Качественные реакции и количественное определение гликозидов.

    презентация [1,6 M], добавлен 02.12.2015

  • Аминокислоты (аминокарбоновые кислоты) - органические соединения, в молекуле которых содержатся карбоксильные, а также аминные группы. Открытие аминокислот в составе белков. Оптическая изомерия. D-аминокислоты в живых организмах. Карбоксильная группа.

    презентация [1,1 M], добавлен 23.05.2012

  • Химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов). Свойства и важнейшие характеристики, получение, применение. Поверхностно-активные вещества: молекулярное строение и получение, свойства и применение.

    реферат [28,7 K], добавлен 05.02.2008

  • Физико-химические свойства аминокислот. Получение аминокислот в ходе гидролиза белков или как результат химических реакций. Ряд веществ, способных выполнять некоторые биологические функции аминокислот. Способность аминокислоты к поликонденсации.

    презентация [454,9 K], добавлен 22.05.2012

  • Понятие, строение молекул, химические свойства галогеналканов. Особенности реакций замещения и присоединения как способов получения галогеналканов, условия протекания этих процессов. Реакции нуклеофильного замещения при насыщенном атоме углерода.

    контрольная работа [288,1 K], добавлен 05.08.2013

  • Алкалоиды как природные азотсодержащие органические соединения основного характера, имеющие сложный состав и обладающие сильным специфическим действием. Начало химии алкалоидов, особенности их номенклатуры и классификация. Структурная формула морфина.

    презентация [1,7 M], добавлен 20.12.2014

  • Химические свойства простых веществ. Общие сведения об углероде и кремнии. Химические соединения углерода, его кислородные и азотсодержащие производные. Карбиды, растворимые и нерастворимые в воде и разбавленных кислотах. Кислородные соединения кремния.

    реферат [801,5 K], добавлен 07.10.2010

  • Углеводы как органические вещества, молекулы которых состоят из атомов углерода, водорода и кислорода, знакомство с классификацией: олигосахариды, полисахариды. Характеристика представителей моносахаридов: глюкоза, фруктовый сахар, дезоксирибоза.

    презентация [1,6 M], добавлен 18.03.2013

  • Понятие алкинов – алифатических непредельных углеводородов ряда ацетилена, в молекулах которых между углеродными атомами одна тройная связь. Простейшие представители, получение алкинов. Физические и химические свойства. Реакции присоединения и замещения.

    презентация [371,4 K], добавлен 12.05.2011

  • Исследование химических соединений золота в природе. Изучение его физических и химических свойств. Использование золота в промышленности, стоматологии и фармакологии. Анализ цианидного способа извлечения золота из руд. Очищение и осаждение из раствора.

    презентация [5,7 M], добавлен 10.03.2015

  • Строение молекул, физические свойства и применение альдегидов. Органические соединения, содержащие карбонильную группу. Формулы изомерных карбонильных соединений. Особенности применения формальдегида в промышленности, сельском хозяйстве, фармакологии.

    презентация [145,0 K], добавлен 22.03.2014

  • Порядок вычисления термодинамических функций. Описание физических, химических свойств вещества H2 и его применение. Вычисление термодинамических функций H0(T) - H0(0), S0(T), Ф0(T), G0(T) - G0(0) для заданного вещества Н2 в интервале температур 100-500К.

    курсовая работа [111,6 K], добавлен 09.09.2008

  • Определение класса аминокислот как гетерофункциональных соединений, которые содержат две функциональные группы (карбоксильную и аминогруппу), связанные с углеводородным радикалом. Классификация, изомерия, свойства, получение и применение аминокислот.

    презентация [204,2 K], добавлен 10.04.2013

  • Характеристика химических процессов, в результате которых в органические соединения вводятся атомы галогена. Значения тепловых эффектов реакций галогенирования. Описание механизма газофазного и ионно-каталитического хлорирования, процессов расщепления.

    презентация [0 b], добавлен 07.08.2015

  • Резонансные структуры производных карбоновых кислот. Галогенангидриды, их главные свойства. Ангидриды и кетены, амиды. Нитрилы как органические соединения с тройной связью. Сложные эфиры, реакции a-углеродного атома. Свойства ацетоуксусного эфира.

    контрольная работа [627,9 K], добавлен 05.08.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.