Эмульсии в современном мире
Основные характеристики и классификация эмульсий, методы их получения. Агрегативная устойчивость как способность сохранять во времени неизменными размеры капель дисперсной фазы. Способы разрушения и практическое применение эмульсий в промышленности.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 04.11.2013 |
Размер файла | 64,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Эмульсии в современном мире
Введение
Эмульсией называется микрогетерогенная система, состоящая из взаимнонерастворимых жидкостей, распределенных одна в другой в виде капелек.
Жидкость, взвешенная в виде капелек, называется дисперсной фазой. Жидкость, в которой распределена дисперсная фаза, называется дисперсионной средой. Условно эмульсии обозначают в виде дроби
,
где в числителе указано агрегатное состояние фазы (жидкость 1), а в знаменателе агрегатное состояние среды (жидкость 2).
1. Классификация эмульсий
Эмульсии обычно классифицируют по двум признакам:
1) по концентрации дисперсной фазы (Cd): разбавленные ( об); концентрированные ( об); высококонцентрированные (желатинированные) (Cd > 74% об).
2) по полярности дисперсной фазы и дисперсионной среды: эмульсии I рода (прямые) - М/В; эмульсии II рода (обратные) - В/М.
Любую полярную жидкость принято обозначать буквой "В" - "вода", а неполярную буквой "М" - "масло".
В эмульсиях I рода капельки неполярной жидкости (масла) распределены в полярной (воде). В эмульсиях I рода дисперсионная среда неполярна.
2. Методы получения эмульсий
Система из двух несмешивающихся жидкостей 6v находиться в термодинамически устойчивом состоянии ее она будет состоять из двух сплошных слоев: верхнего (более легкая жидкость) и нижнего (более тяжелая жидкости). Как только мы начнем один из сплошных слоев дробить в капельки, чтобы получить эмульсию, будет возрастать меж фазная поверхность, а следовательно, свободная поверхностная энергия и система станет термодинамически неустойчивой. Чем больше энергии будет затрачено на образование эмульсии, тем более неустойчивой она будет. Чтобы придать эмульсии относительную устойчивость, используют специальные вещества - стабилизаторы, называемые эмульгаторами. Практически все эмульсии (за исключением некоторых, образующихся самопроизвольно) получают только в присутствии эмульгаторов.
Природа и механизм действия эмульгаторов будут рассмотрены в специальном разделе, а пока отметим, что эмульсии - это, как минимум, трехкомпонентные системы, состоящие из полярной жидкости, неполярной жидкости и эмульгатора. При этом одна из жидкостей находится в виде капель. Капли требуемых размеров могут быть получены двумя различными путями: конденсационным методом, выращивая их из малых центров каплеобразования, и диспергационным, дробя крупные капли.
Наиболее распространенными как в лабораторной, так и в производственной практике являются диспергационные методы.
КОНДЕНСАЦИОННЫЕ МЕТОДЫ
Конденсация из паров. Пар одной жидкости (дисперсная фаза) инжектируется под поверхность другой жидкости (дисперсионная среда). В таких условиях пар становится пересыщенным и конденсируется в виде капель размером порядка 1 мкм. Эти капли стабилизируются в жидкости, содержащей соответствующий эмульгатор.
На размер образующихся капель существенным образом влияют давление инжектируемого пара, диаметр впускного сопла, эмульгатор. Этим методом легко получают капли с размерами до 20 мкм.
Эмульсии можно также получить, используя монодисперсный аэрозоль, полученный конденсационным методом. Для этого в слегка пересыщенный пар вводят мелкие (с размерами см) частицы и позволяют центрам каплеобразования расти в течение некоторого времени. В результате образуется практически монодисперсный туман, при пропускании которого в дисперсионную среду получают монодиспереную эмульсию.
Замена растворителя. Вещество, которое в будущей эмульсии должно находиться в виде капель, растворяют в "хорошем" растворителе с образованием истинного раствора. Если затем в полученный раствор ввести другой растворитель, который существенно "портит" первый, то растворенное вещество будет объединяться в капли, образуя эмульсию. Например, для бензола этанол является "хорошим" растворителем, в котором бензол находится в виде молекул. При добавлении к этому раствору воды происходит образование капелек бензола в водно-спиртовой дисперсионной среде - возникает эмульсия I рода. Этот процесс легко наблюдается визуально - система из прозрачной становится мутной, так как капельки бензола, в отличие от молекул бензола, рассеивают и отражают свет.
ДИСПЕРГАЦИОННЫЕ МЕТОДЫ
Эти методы основаны на дроблении грубодисперсной системы, которая представляет собой два несмешивающихся жидких слоя. В зависимости от вида работы, которая совершается над грубодисперсной системой, диспергационные методы можно подразделить на три группы.
Механическое диспергирование. Механическая работа, затрачиваемая для диспергирования, сводится к встряхиванию, смешению, гомогенизации, выдавливанию сплошных жидкостей, одна из которых содержит эмульгатор.
1. Метод прерывистого встряхивания (d капель - 50-100 мкм)
Образование эмульсии легко продемонстрировать, если пробирку, в которую налиты две жидкости, энергично встряхивать.
Бригс (1920) установил, что прерывистое встряхивание с постоянными интервалами между толчками гораздо более эффективно, чем непрерывное. Например, для приготовления эмульсии 60% бензола в 1%-м растворе олеата натрия необходимо непрерывное встряхивание в течение 7 мин (за это время механическое устройство совершает 3000 толчков). Такая же эмульсия может быть приготовлена путем пяти встряхиваний вручную в течение 2 мин, если интервалы между двумя толчками составляют 20-30 с. При каждом толчке сплошная поверхность между двумя жидкостями становится волнистой и деформируется. Эта волнистость вначале приобретает вид пальцевидных отростков, которые затем разрушаются на мелкие капли. Этот процесс совершается в течение примерно 5 с. Если увеличивать интервалы между встряхиваниями, можно ускорить этот процесс. При ручном встряхивании капли будут иметь шаровую форму и размер 50-100 мкм.
2. Применение смесителей
Промышленность выпускает смесители разнообразных конструкций: с мешалками пропеллерного и турбинного типов, коллоидные мельницы, гомогенизаторы.
Гомогенизаторы - это устройства, в которых диспергирование жидкости достигается пропусканием ее через малые отверстия под высоким давлением. Эти устройства широко применяются для гомогенизации молока, в ходе которой средний диаметр капель молока понижается до 0,2 мкм, и такое молоко не отстаивается.
Эмульгирование ультразвуком. Образование эмульсий при интенсивном ультразвуковом воздействии впервые наблюдали Вуд и Лукис (1927), которые работали с кварцевым генератором большой мощности и частотой 200 кГц. По мере развития ультразвуковой техники появился целый поток исследований в этой области.
Ультразвуковая область частот лежит выше предела слышимости человека (более 15 кГц) и распространяется вплоть до Гц. Для эмульгирования должен применяться ультразвук большой мощности, наиболее эффективной является область частот 20-50 кГц.
Следует отметить, что эмульгирование ультразвуком весьма перспективно, хотя пока не находит широкого применения в промышленности.
Эмульгирование электрическими методами. Метод электрического "дробления" известен давно, хотя стал привлекать внимание к себе лишь в последние годы.
В 1958 г. Наваб и Мазон получили практически монодисперсную эмульсию в результате электрического диспергирования.
Идея их метода состояла в следующем. Жидкость, которая должна быть диспергирована, помещалась в сосуд, заканчивающийся капиллярной воронкой. Последняя соединялась с положительным полюсом источника высокого напряжения. Сосуд был вставлен в большую круглодонную колбу, на дно которой был уложен заземленный металлический электрод. В колбу была налита жидкость, которая служила бы в эмульсии дисперсионной средой. Образующиеся при истечении из капилляра мелкие капли, попадая в жидкость, образовали эмульсии. Изменяя величину приложенного напряжения и регулируя зазор между капилляром и жидкостью, получали эмульсии с определенными размерами частиц, обычно в интервале 1-10 мкм.
Для улучшения свойств эмульсий жидкость в колбе можно перемешивать и вводить эмульгатор. Таким путем получали устойчивые эмульсии типов М/В и В/M с концентрацией до 30%.
Электрические методы диспергирования в настоящее время находятся в стадии развития и совершенствования. Они имеют ряд очевидных преимуществ, из которых главное - высокая монодисперсность получаемых эмульсий. Эти методы позволяют получать эмульсии обоих типов с меньшей концентрацией эмульгатора, чем с помощью других методов. Однако электрические методы имеют и недостатки. Так, если жидкости обладают заметной вязкостью, то эмульгирование затруднено или вообще невозможно.
САМОПРОИЗВОЛЬНОЕ ЭМУЛЬГИРОВАНИЕ
Самопроизвольным называется эмульгирование, которое происходит без затрат энергии извне. Оно обнаруживается, например, в двухкомпонентной (без эмульгатора) гетерогенной системе при температуре, близкой к критической температуре взаиморастворения этих жидкостей.
При этой температуре поверхностное натяжение становится крайне малым, менее - в этих условиях самопроизвольно образуется эмульсия. Она является термодинамически устойчивой, так как избыток свободной поверхностной энергии, возникающей при образовании капель, компенсируется энтропийным фактором - стремлением вещества к равномерному распределению в объеме системы. Каждая фаза этой эмульсии является насыщенным раствором одной жидкости в другой.
В этой возможности самопроизвольного образования термодинамически устойчивых равновесных систем при условии очень низких значений поверхностного натяжения заключается одна из характерных особенностей эмульсий, отсутствующая у всех других дисперсных систем.
По Ребиндеру, критическое значение , необходимое для образования любой самопроизвольной эмульсии, включая критические эмульсии, определяется выражением:
где k - постоянная Больцмана.
При см и Т = 298 К величина должна быть меньше 0,1 .
Жидкий жир при поглощении организмом эмульгируется в кишечнике солями желчных кислот до состояния высокодисперсной жировой эмульсии и затем всасывается через стенки кишечника. Интересно, что система таурохолат (желчная соль) - моноглицеридолеиновая кислота при 6,0 < рН < 8,5 действительно обладает очень низким поверхностным натяжением (ниже 1), при котором может происходить самопроизвольное эмульгирование.
Эмульсии, которые образуются самопроизвольно и, следовательно, являются термодинамически устойчивыми, иногда называют лиофильными эмульсиями.
Следует отметить, что после открытия Гэдом в 1878 г. самопроизвольного эмульгирования, были найдены многочисленные системы жидкостей, которым свойственно это явление. Однако его механизм до сих пор остается дискуссионным.
3. Основные характеристики эмульсий
Для оценки свойств эмульсий существует несколько характеристик, основными из которых являются:
* дисперсность эмульсии;
* устойчивость во времени;
* концентрация дисперсной фазы.
ДИСПЕРСНОСТЬ ЭМУЛЬСИИ
Определяется размерами частиц дисперсной фазы. Если эмульсия полидисперсна, то для ее характеристики необходимо указать распределение частиц по размерам, чаще всего в виде гистограммы.
УСТОЙЧИВОСТЬ ВО ВРЕМЕНИ
Обычно устойчивость характеризуется одной из двух величин - скоростью расслоения эмульсии и временем жизни отдельных капель в контакте с другими.
Скорость расслоения эмульсии определяют, измеряя высоту (объем) отслоившейся фазы через определенные промежутки времени после получения эмульсии.
Время жизни отдельных капель определяют путем микроскопических наблюдений за каплей, помещенной на межфазную границу. Например, капля масла подводится к границе раздела со стороны воды и измеряется время, через которое она сольется с фазой масла.
Чаще используется первая характеристика эмульсии.
КОНЦЕНТРАЦИЯ ДИСПЕРСНОЙ ФАЗЫ
Свойства разбавленных эмульсий (Сd < 0,1% об). Такие эмульсии, как правило, тонкодисперсны и близки по свойствам к лиофобным золям. В таких эмульсиях из-за малых размеров капель наблюдаются броуновское движение, диффузия, рассеяние света и т.д., они являются седиментационно устойчивыми. Их агрегативная устойчивость так же, как в лиофобных золях, определяется наличием диффузных электрических слоев. Коагуляция под действием электролитов подчиняется правилу Шульце- Гарди. К разбавленным эмульсиям приложима теория устойчивости лиофобных золей. Широко известный пример разбавленной эмульсии - конденсат отработанного пара в паровой машине, в ней диспергированы мельчайшие капельки машинного масла. Другой пример - сырая нефть, в которой капельки воды образуют эмульсию II рода.
Свойства выcококонцентрированных эмульсий. Для таких систем вопросы, связанные с движением частиц (диффузия, седиментация), отпадают, и эмульсии по своим свойствам сходны со структурированными коллоидными системами - гелями. Когда концентрация капель приближается к 100%, дисперсионная среда принимает вид очень тонких прослоек жидкости - эмульсионных пленок. Такие эмульсии по своей структуре аналогичны пенам (см. главу 17), их свойства определяются, в первую очередь, свойствами эмульсионных пленок, стабилизированных эмульгаторами.
Свойства концентрированных эмульсий. В таких эмульсиях капли достаточно крупные и видны в оптический микроскоп. Концентрированные эмульсии седиментационно неустойчивы. Вследствие высокой концентрации капли находятся в постоянном контакте и легко наступает коалесценция. Устойчивость таких эмульсий полностью зависит от эмульгатора.
4. Агрегативная устойчивость эмульсий
Агрегативная устойчивость эмульсий - это способность сохранять во времени неизменными размеры капель дисперсной фазы, т.е. противостоять коалесценции. Существует несколько факторов агрегативной устойчивости.
ЭЛЕКТРОСТАТИЧЕСКИЙ ФАКТОР УСТОЙЧИВОСТИ
Вокруг капелек эмульсии образуются ДЭС и вследствие этого возникает энергетический барьер, препятствующий сближению частиц до расстояний, на которых силы молекулярного притяжения преобладают над силами электростатического отталкивания. Этот фактор устойчивости является весьма существенным для эмульсий, стабилизированных коллоидными ПАВ и полиэлектролитами.
АДСОРБЦИОННО-СОЛЬВАТНЫЙ ФАКТОР УСТОЙЧИВОСТИ
Эмульгаторы, адсорбируясь на поверхности капли, уменьшают поверхностное натяжение на границе "капля-среда" и делают систему более устойчивой. Но если в качестве эмульгаторов используются коллоидные ПАВ и ВМС, то создается адсорбционно-сольватная оболочка, являющаяся структурированной.
СТРУКТУРНО-МЕХАНИЧЕСКИЙ ФАКТОР УСТОЙЧИВОСТИ
На поверхности капель образуется слой молекул эмульгатора, обладающий повышенной вязкостью и упругостью и препятствующий слиянию капель. Этот фактор играет главную роль, если эмульгатором являются ВМС и неионогенные ПАВ.
5. Типы эмульгаторов неорганические электролиты
Неорганические электролиты являются наименее эффективными эмульгаторами. Так, при добавлении тиоцианата калия KNCS к смеси "вода-масло" в небольшой концентрации можно получить временную разбавленную эмульсию I рода. Ее относительная устойчивость может быть объяснена возникновением ДЭС на водной стороне межфазной поверхности, который образуется вследствие избирательной адсорбции SCN~. Эти ионы создают малый отрицательный потенциал на межфазной поверхности и плотность поверхностного заряда мала. Поэтому силы отталкивания между ДЭС капель также невелики. Этот тип стабилизации слишком слаб для получения эмульсии нужной концентрации и с достаточным временем жизни.
КОЛЛОИДНЫЕ ПОВЕРХНОСТНО-АКТИВНЫЕ ВЕЩЕСТВА
Вспомним, что коллоидные поверхностно-активные вещества - дифильные молекулы, содержащие в своем углеводородном радикале не менее 8-10 атомов углерода. Соотношение между гидрофильными свойствами полярной группы и липофильными ("липос" - жир) свойствами неполярной группы (углеводородного радикала) определяется гидрофильно-липофильным балансом - числом ГЛБ. Стабилизация эмульсий ионогенными коллоидными ПАВ связана с адсорбцией и определенной ориентацией молекул ПАВ на поверхности капель. В соответствии с правилом уравнивания полярностей Ребиндера полярные группы ПАВ обращены к полярной фазе, а неполярные радикалы - к неполярной фазе. Чтобы ПАВ могло защитить каплю от слияния с другой, оно должно создавать защитную оболочку снаружи капли. Поэтому оно должно лучше (но не полностью!) растворяться в жидкости, которая является дисперсионной средой, чем в жидкости, из которой состоит капля. Растворимость ПАВ характеризуется числом ГЛБ. Чем оно больше, тем сильнее баланс сдвинут в сторону гидрофильных свойств, тем лучше данное вещество растворяется в воде.
ПАВ с числом ГЛБ от 8 до 13, лучше растворимы в воде, чем в масле, они образуют эмульсии I рода. ПАВ с числом ГЛБ от 3 до 6, образуют эмульсии II рода.
Наиболее эффективными эмульгаторами для получения эмульсий I рода являются натриевые соли жирных кислот (мыла) с числом углеродных атомов 8-10 и выше, а также алкилсульфаты, алкилсульфонаты и др. В ряду жирных кислот лучшими эмульгаторами являются лауриновая () и миристидиновая () кислоты, дающие, согласно правилу Траубе, наибольшее понижение поверхностного натяжения по сравнению с предшествующими членами гомологического ряда.
Ионогенные ПАВ образуют двойной электрический слой. Существенно, что для предотвращения прямого контакта и коалесценции капель нет необходимости в образовании сплошного защитного слоя, достаточно, если этот слой занимает 40-60% поверхности капли.
Углеводородные радикалы ПАВ в эмульсиях I рода уходят в глубь капель, причем для хорошей вертикальной ориентации они должны состоять не менее, чем из 8-10 атомов углерода.
Вертикальная ориентация неионогенных ПАВ на поверхности раздела приводит к образованию слоя полярных групп, являющихся центрами гидратации - создается защитный гидратный слой.
Стабилизация обратных эмульсий (В/M) с помощью ПАВ не ограничивается факторами, обусловливающими уменьшение поверхностного натяжения. ПАВ, особенно с длинными радикалами, на поверхности капелек воды могут образовывать пленки значительной вязкости (реализуется структурно-механический фактор устойчивости), а также обеспечивать энтропийное отталкивание благодаря участию радикалов в тепловом движении.
В кулинарии обычно используют в качестве эмульгаторов естественные природные продукты, содержащие ПАВ: молотый перец, горчицу, желтки яиц и др. В пищевой промышленности чаще для этих целей используются синтетические ПАВ: олеаты, пропиловый спирт, моноглицериды жирных кислот, сахароглицериды.
ВЫСОКОМОЛЕКУЛЯРНЫЕ ВЕЩЕСТВА
Еще большая стабильность эмульсий может быть достигнута при использовании ВМС: протеинов, каучука, смолы, резины, крахмала и других полисахаридов (например, декстрина, метилцеллюлозы), а также синтетических полимеров (например, поливинилового спирта). В отличие от мыл, длинные цепные молекулы этих веществ с равномерным распределением полярных групп располагаются горизонтально в плоскости раздела "капля-среда", где они могут легко переплетаться между собой с образованием двухмерных структур. Адсорбция высокомолекулярных соединений обычно является медленной и практически необратимой. Некоторые протеины, адсорбируясь, становятся нерастворимыми в воде. Если такие слои сжимать, происходит их разрушение с образованием микроскопических осадков, которые остаются на межфазной поверхности в виде прочной эластичной оболочки. Понятно, что капля, находясь в такой "капсуле", неограниченно устойчива против коалесценции, однако количественные закономерности этого явления неизвестны. Можно считать эффективным высокомолекулярный эмульгатор, образующий эластичный гель: он разбухает в непрерывной фазе, а попыткам к сжатию этого геля препятствуют большие осмотические силы (давление набухания).
Таким образом, при использовании в качестве эмульгаторов ВМС в первую очередь реализуется структурно-механический фактор устойчивости - на поверхности капли создается структурированная прочная пленка. В случае высококонцентрированных эмульсий, в которых капли имеют форму многогранников, а среда находится в виде тонких прослоек между ними, эти прослойки одновременно являются структурированными защитными оболочками, они придают всей системе ярко выраженные твердообразные свойства.
Многие ВМС содержат ионогенные группы и в растворах распадаются с образованием полиионов. Группу -СООН, например, содержат альгинаты, растворимый крахмал, группу - агар. Полиэлектролиты могут одновременно содержать как кислотную, так и основную группы. Их яркими представителями являются белки, содержащие группы -СООН и . В этих случаях к отмеченному выше структурно-механическому фактору устойчивости добавляется электростатический фактор.
В пищевой промышленности получили большое распространение белки молочной сыворотки, соевый белковый изолят, казеинат натрия, белки плазмы крови, бычий сывороточный альбумин, отходы переработки пищевого сырья (кровь со скотобоен, подсырная сыворотка, картофельный крахмал), из которых получают белки, используемые в качестве эмульгаторов.
В кулинарной практике часто используется желатин - полидисперсный белок, представляющий собой смесь полимергомологов различной молекулярной массы от 12 000 до 70 000 а. е. м.
ТОНКОИЗМЕЛЬЧЕННЫЕ НЕРАСТВОРИМЫЕ ПОРОШКИ
Этот тип стабилизаторов характерен только для эмульсий. Давно известно, что некоторые высокодисперсные порошки эффективно стабилизируют эмульсии против коалесценции. Химическая природа этих частиц менее важна, чем их поверхностные свойства. Основные требования к порошкам:
* размер частиц должен быть очень маленьким по сравнению с размером капель;
* частицы должны иметь определенный угол смачивания в системе "масло - вода - твердое вещество".
Действие порошка преимущественно заключается в предотвращении утончения жидкой прослойки между каплями. Гладкие сферические частицы порошка непригодны; хорошие результаты получаются с пластинчатыми по форме частиц порошками, такими как бентонитовая глина.
Твердые порошкообразные вещества (гипс, графит и др.) способны скапливаться на границе раздела капель и среды, благодаря избирательной смачиваемости твердых тел. Например, частицы гипса в эмульсии М/В благодаря своей гидрофильности почти полностью входят в воду и лишь частично в каплю масла, вследствие чего они окружают каплю масла сплошным слоем и препятствуют ее слипанию с другими каплями. Однако избирательное смачивание не должно быть полным, так как в этом случае частицы стабилизатора оказались бы целиком в водной фазе и капли масла оказались бы незащищенными. При неполном избирательном смачивании гидрофильных частиц (графит, ZnS, CuS и др.) они могут быть стабилизаторами эмульсий В/M. Таким образом, механизм действия порошков аналогичен механизму действия ПАВ.
6. Определение типа эмульсии
В процессе получения эмульсии, особенно диспергационными методами, неизбежно образуются капли как одной, так и другой жидкости. Однако во времени капли одной жидкости сохраняются и постепенно накапливаются, капли другой практически мгновенно коалесцируют. Если накапливаются капли масла, образуется прямая эмульсия (М/В), если воды - образуется обратная эмульсия (В/M). Тип образующейся эмульсии зависит от целого ряда факторов, но во многом определяется природой эмульгатора. Следуя правилу Банкрофта, можно сказать, что та жидкость, которая лучше растворяет эмульгатор или лучше его смачивает (если это порошок), является дисперсионной средой. Таким образом, зная природу эмульгатора, можно предсказать тип образующейся эмульсии. Однако такая оценка весьма приблизительна, особенно если эмульсия многокомпонентна.
Существует несколько экспериментальных методов определения типа эмульсий.
МЕТОД РАЗБАВЛЕНИЯ
В пробирку с водой вводят каплю эмульсии, которая при осторожном встряхивании равномерно распределяется в объеме воды в том случае, если это эмульсия типа М/В. Если же эмульсия обратная (В/M), то капля не диспергируется. Эта проба дает лучшие результаты в случае разбавленных эмульсий.
МЕТОД СМАЧИВАНИЯ ГИДРОФОБНОЙ ПОВЕРХНОСТИ
При нанесении капли эмульсии на парафиновую пластинку капля растекается, если дисперсионной средой является масло (эмульсия В/М).
ОПРЕДЕЛЕНИЕ НЕПРЕРЫВНОЙ ФАЗЫ
Каплю эмульсии помещают на предметное стекло микроскопа рядом с несколькими кристаллами растворенного в воде красителя. Пластинку наклоняют так, чтобы капля и краситель соприкасались. Если окажется, что непрерывная среда (вода) окрашивается, то это эмульсия типа М/В. В противном случае опыт повторяют с жирорастворимым красителем, доказывая, что эмульсия - типа В/M. Водорастворимыми красителями являются, например, метилоранж и брильянтовый синий, а маслорастворимым - судан III и фуксин. Эту пробу можно провести, если в пробирку налить некоторое количество эмульсии и добавить несколько кристаллов водорастворимого красителя. Равномерное окрашивание жидкости будет свидетельствовать, что это эмульсия типа М/В. Троннер и Бассюс (1960) развили этот метод. На кружки фильтровальной бумаги, смоченные 20%-м раствором хлорида кобальта и затем высушенные, они помещали каплю эмульсии. Эмульсия типа М/В вызывает быстрое появление розового окрашивания, с эмульсией В/M никаких цветовых изменений не наблюдалось. Если имеется смесь эмульсий М/В и В/M - медленно появляется слабо-розовое окрашивание.
ИЗМЕРЕНИЕ ЭЛЕКТРОПРОВОДНОСТИ
В эмульсию помещают два электрода, соединенные с источником переменного тока и неоновой лампой. Если эмульсия типа М/В - неоновая лампа загорается, так как водная непрерывная среда обладает намного большей электропроводностью, чем масляная.
7. Обращение фаз эмульсии
Специфическим свойством большинства эмульсий является обращение фаз - изменение типа эмульсии. На обращение фаз влияют:
* объемная концентрация компонента;
* природа эмульгатора;
* концентрация эмульгатора;
* температура;
* динамика процесса эмульгирования.
Если к эмульсии М/В, стабилизированной мылом, добавлять водный раствор хлорида кальция, то эмульгатор переходит в кальциевую форму, и эмульсия обращается, т.е. масляная фаза становится дисперсионной средой, а водная - дисперсной фазой. Это объясняется тем, что кальциевое мыло значительно лучше растворяется в масле, чем в воде:
В процессе обращения фаз вначале образуются оба типа эмульсии, но затем становится преобладающей одна, более устойчивая система. При этом часто возникают сложные, множественные эмульсии: капелька масла, входящая в эмульсию М/В, может содержать в себе эмульсию В/M и т.д.
Для обращения фаз известное значение имеет также соотношение объемов фаз.
Обращение фаз эмульсий в определенных условиях может быть вызвано и длительным механическим воздействием. Так, сбивание сливок (М/В) ведет к получению сливочного масла, являющегося обычно эмульсией смешанного типа.
8. Способы разрушения эмульсий
Проблема дезмульгирования не менее важна, чем проблема получения эмульсий. Деэмульгирование лежит в основе многих технологических процессов, например, производства масла и сливок из молока, каучуков из латексов и т.д. На деэмульгировании основано обезвоживание сырой нефти, содержание воды в которой необходимо снизить с 10-60% до 1%, очистка сточных вод и многие другие важные процессы.
Разрушение эмульсий может быть достигнуто двумя путями: седиментацией и коалесценцией.
СЕДИМЕНТАЦИЯ
Седиментация наблюдается, например, при отделении сливок от молока. При этом не происходит полного разрушения эмульсии, а образуются две эмульсии, одна из которых богаче дисперсной фазой. Так, в обычном молоке содержится 8-10% жира, а в сливках - 30-35%. Известно, что капля радиусом r и плотностью будет всплывать в более тяжелой жидкости с плотностью и вязкостью со скоростью , которая определяется уравнением Стокса
Капля будет опускаться на дно под действием силы тяжести. Таким образом, осаждение капель в эмульсии - седиментация - есть следствие образования больших капель и большого различия в плотностях жидкостей. Для типичных эмульсий = 0,01 Па и скорость имеет порядок нескольких сантиметров в сутки. Чтобы ускорить процесс, например, для получения масла, обычно применяют центрифугирование, где центробежное ускорение более чем в 100 раз превышает ускорение свободного падения.
КОАЛЕСЦЕНЦИЯ
Коалесценция - полное разрушение эмульсии, когда выделяются в чистом виде отдельные компоненты. При разрушении эмульсии имеют место две стадии: флокуляция и собственно коалесценция.
На первой стадии капли дисперсной фазы образуют агрегаты, которые легко распадаются при слабом перемешивании. На второй стадии капли в агрегате сливаются в одну большую каплю. Этот процесс необратим в том смысле, что для разрушения больших капель на малые и воссоздания эмульсии требуется очень сильное перемешивание. Разделение фаз при коалесценции видно невооруженным глазом.
ТЕХНИКА РАЗРУШЕНИЯ ЭМУЛЬСИЙ
В промышленных масштабах эмульсии разрушают:
* химическими методами;
* термическими методами;
* осаждением под действием силы тяжести или центробежных сил;
* электрическими методами.
Часто используют несколько методов одновременно.
Химические методы разрушения. Действие этих методов заключается в удалении барьеров, препятствующих коалесценции. Химические вещества - деэмульгаторы нейтрализуют действие защитного слоя, например, сероуглерод и четыреххлористый углерод растворяют защитные пленки. Прямые эмульсии, стабилизированные эмульгаторами, можно разрушить добавлением электролитов с поливалентными ионами. Такие ионы не только сжимают ДЭС, но и переводят эмульгатор в малорастворимую в воде форму.
Эмульгатор можно нейтрализовать другим эмульгатором, способствующим образованию эмульсии обратного типа. Можно добавить вещество более поверхностно-активное, чем эмульгатор, которое само не образует прочных пленок. Например, спирты (пентиловый, амиловый и т.д.) вытесняют эмульгаторы, растворяют их пленки и способствуют коалесценции.
Для каждой эмульсии выбирается "свой" деэмульгатор, который оказывает оптимальное действие.
Термические методы разрушения. Многие эмульсии можно разделить на составляющие их компоненты нагреванием до высокой температуры с последующим отстаиванием. Вероятно, нагревание ускоряет химические реакции, которые могут протекать в эмульсиях, изменяет природу поверхностного слоя, уменьшает вязкость. Таким образом, возникают условия, благоприятные для распада эмульсии.
В процессе замораживания зарождаются кристаллы льда, которые затем растут, захватывая воду. Масляные капли (если эмульсия М/В) сжимаются. Кроме того, любая растворенная соль в отдельных участках эмульсии может кристаллизоваться. При этом разрываются оболочки, которые предотвращают коалесценцию. Противостоят замораживанию только эмульсии, в которых капли окружены жесткой оболочкой, например молочные сливки, но и они являются неустойчивыми при длительном хранении в условиях низкой температуры.
ОСАЖДЕНИЕ ПОД ДЕЙСТВИЕМ СИЛЫ ТЯЖЕСТИ ИЛИ ЦЕНТРОБЕЖНЫХ СИЛ
Грубые эмульсии, например нефтяные, содержат капли больших размеров. Для разделения жидкостей эмульсии выдерживают в отстойнике. Однако при этом мелкие капли остаются во взвешенном состоянии. Обычно время отстаивания составляет около 1 часа.
Более эффективным является использование центрифуг. В них более тяжелая жидкость выталкивается к периферии и отводится, а более легкая жидкость собирается вблизи центра. Продолжительность операции составляет несколько минут.
ЭЛЕКТРИЧЕСКИЕ МЕТОДЫ РАЗРУШЕНИЯ
Эти методы применимы в двух случаях:
* когда капли заряжены;
* когда они электронейтральны, но приобретают дипольный момент, индуцируемый в постоянном или переменном электрическом поле.
В последнем случае происходит коалесценция диполей. Разрушение эмульсий электрическими методами осуществляется в специальных аппаратах.
9. Практическое применение эмульсий
эмульсия промышленность агрегативный
Эмульсии имеют чрезвычайно широкое применение, причем не только созданные руками человека, но и природные, среди которых в первую очередь следует выделить молоко, предназначенное природой для вскармливания потомства и содержащее все необходимое для растущего организма, желток яйца, играющего аналогичную роль, млечный сок растений и т.д. Значение этих природных эмульсий трудно переоценить. Человек научился использовать их непосредственно, перерабатывать, получая из них массу продуктов и изделий. Но, вероятно, более важным является то, что человек, разобравшись в преимуществах эмульгированного состояния, смог искусственно получать эмульсии и использовать их в различных областях. Отметим основные из них.
ПИЩЕВАЯ ПРОМЫШЛЕННОСТЬ
Многие пищевые продукты являются эмульсиями. Это, в первую очередь, связано с тем, что жиры, являясь необходимой составной частью питания, нерастворимы в водной среде, поэтому они усваиваются организмом только в эмульгированном состоянии. Если же жир попадает в организм не в виде эмульсии, например, съели кусок свиного сала, то организм сам, растопив жир, проводит процесс эмульгирования, который происходит вначале в желудке, а затем - в двенадцатиперстной кишке, куда поступает желчь, содержащая холевые кислоты, являющиеся исключительно хорошими эмульгаторами. Понятно, что все это требует от организма дополнительной затраты энергии, избежать которой можно, используя в пищу эмульсии: сливочное масло, майонез, соусы и т.д.
ФАРМАЦЕВТИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ
Многие лекарства готовят в виде эмульсий, причем, как правило, внутрь принимают эмульсии М/В, а наружные средства представляют собой обратные эмульсии (В/М).
ХИМИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ
С эмульсиями имеют дело при проведении различных синтезов, эмульсии образуются также в экстракционных аппаратах, при процессах перемешивания. Эмульсии применяют для получения пористых органических сорбентов, мембран, пленок.
К современным направлениям химической технологии относится эмульсионная полимеризация - полимеризация в каплях дисперсной фазы - основной метод получения каучуков, полистирола, поливинилхлорида, поливинилацетата, полиметилметакрилата и т.д.
Заключение
Эмульсии - это микрогетерогенные системы, состоящие из двух нерастворимых или ограниченно растворимых жидкостей (Ж/Ж).
В зависимости от природы дисперсной фазы и дисперсионной среды эмульсии подразделяются на прямые (М/В) и обратные (В/M). Определить тип эмульсии можно исходя из того, что в первом случае непрерывной средой является вода, а во втором случае - масло, а это резко сказывается на электропроводности, природе растворяемых красителей и других свойствах.
Большинство эмульсий относятся к лиофобным системам и являются термодинамически неустойчивыми. Для их стабилизации используются специальные вещества - эмульгаторы. В качестве эмульгаторов применяют неорганические электролиты, коллоидные ПАВ, ВМС, высокодисперсные порошки.
Устойчивость эмульсий зависит от межфазового поверхностного натяжения. В тех случаях, когда по тем или иным причинам поверхностное натяжение мало, эмульсия образуется самопроизвольно (без эмульгатора) и является термодинамически устойчивой.
От природы эмульгатора зависит не только устойчивость, но и тип образующейся эмульсии. При изменении природы эмульгатора может происходить обращение фаз эмульсии (переход М/В В/M или обратно).
В зависимости от концентрации дисперсной фазы эмульсии делятся на разбавленные, концентрированные и высококонцентрированные.
Разбавленные эмульсии по своим свойствам близки к лиофобным золям:
* вследствие малых размеров частиц они седиментационно устойчивы;
* проявляются молекулярно-кинетические свойства - броуновское движение, диффузия;
* рассеивают падающий свет;
* коагулируют (коалесцируют) под действием электролитов в соответствии с правилом Шульце-Гарди.
Концентрированные эмульсии седиментационно неустойчивы - вследствие высокой концентрации капли находятся в контакте и легко наступает коалесценция. Устойчивость таких эмульсий зависит только от эмульгатора.
Высококонцентрированные эмульсии - по своим свойствам сходны со структурированными коллоидными системами - гелями.
Для разрушения эмульсий применяются седиментация, коалесценция, химические, термические, электрические методы.
Размещено на Allbest.ru
...Подобные документы
Определение понятий "паста", "структура". Коагуляционная структура паст, ее свойства. Методы получения паст и методы разрушения их структуры. Классификация эмульсий, их агрегативная устойчивость. Пены. Классификация суспензий, их отличительные признаки.
реферат [31,3 K], добавлен 22.01.2009Классификация дисперсных систем по размеру частиц дисперсной фазы и по агрегатным состояниям фаз. Условия для получения устойчивых эмульсий. Молекулярно-кинетические свойства золей, сравнение их с истинными растворами. Внешние признаки коагуляции.
контрольная работа [719,2 K], добавлен 21.07.2011Определение суспензий, признаки классификации, методы получения. Отличительные свойства суспензий: оптические, электро-кинетические. Агрегативная устойчивость суспензии, условия ее достижения. Методы разрушения суспензий. Методы дисперсионного анализа.
реферат [22,7 K], добавлен 22.01.2009Определение и классификация эмульсии; характеристика эмульгаторов. Виды нестабильности и неустойчивости эмульсий; омыление, окисление, гидролиз компонентов, их взаимодействия между собой и с материалом упаковки. Рассмотрение стабилизирующего действия.
презентация [514,8 K], добавлен 28.08.2014Эмульсии. Условия их образования, классификация и свойства. Примеры эмульсий среди продуктов питания. Коагуляция дисперсной системы. Скорость коагуляции. Причины, вызывающие процесс самопроизвольной коагуляции. Адсорбционная хроматография. Теплоты нейтрал
контрольная работа [544,2 K], добавлен 25.07.2008Физико-химические основы процессов приготовления восковых эмульсий. Основные представления о структурно-коллоидных свойствах восковых эмульсий как нефтяных дисперсных системах. Добавки специального назначения. Роль эмульгатора в стабилизации системы.
курсовая работа [205,2 K], добавлен 09.04.2015Загрязнение вод нефтепродуктами. Понятие, виды и классификация эмульсий; их устойчивость. Математическая модели и механизм протекания коалесценции. Преимущества применения мембранных методов и ультрафильтрации для удаления нефтепродуктов из сточных вод.
дипломная работа [2,5 M], добавлен 11.07.2014Характеристика порошков как высококонцентрированных дисперсных систем, в которых дисперсной фазой являются твердые частицы, а дисперсионной средой — воздух или другой газ. Их классификация, способность к течению и распылению. Размерность частиц порошка.
реферат [29,5 K], добавлен 20.06.2013Классификация и область применения промышленных взрывчатых веществ. История появления эмульсионных взрывсистем. Безопасность при производстве, хранении, транспортировании и применении ПВВ. Теплота взрыва, работоспособность и чувствительность эмульсии.
дипломная работа [597,5 K], добавлен 11.07.2014Сущность суспензий, их классификация, методы получения, устойчивость и сенсибилизация. Общая характеристика аэрозолей, их виды, получение и разрушение. Их практическое применение. Особенности порошков: получение, свойства, устойчивость и использование.
курсовая работа [65,7 K], добавлен 04.12.2010Особенности строения и модификации оксида кремния (IV), нахождение в природе, физические и химические свойства, а также методы синтеза. Поликонденсация как современный способ получения коллоидного кремнезема. Агрегативная устойчивость данного соединения.
дипломная работа [987,2 K], добавлен 25.05.2019Простые и сложные липиды. Синтез жиров, использование их в фармацевтике, косметической и пищевой промышленностях. Происхождение и состав воска. Применение сфинголипидов и фосфатидов в сельском хозяйстве, при изготовлении продуктов, жироводных эмульсий.
презентация [3,6 M], добавлен 09.04.2014Получение эмульсии типа "м/в" и "в/м" с различными эмульгаторами. Оценка эффективности эмульгатора по гидрофильно-липофильному балансу, алгоритм определения его типа. Критические лиофильные эмульсии. Разрушение эмульсии, методы определения ее типа.
лабораторная работа [407,7 K], добавлен 13.12.2011Основные способы получения ацетилена, его применение химической промышленности, в области машиностроении и металлообработке. Схема современного генератора непрерывного действия системы "карбид в воду". Химизм процесса получения ацетилена из углеводородов.
реферат [1,6 M], добавлен 01.01.2015Общие сведения о методах получения наночастиц. Основные процессы криохимической нанотехнологии. Приготовление и диспергирование растворов. Биохимические методы получения наноматериалов. Замораживание жидких капель. Сверхзвуковое истечение газов из сопла.
курсовая работа [2,9 M], добавлен 21.11.2010Распространение хрома в природе. Особенности получения хрома и его соединений. Физические и химические свойства хрома, его практическое применение в быту и промышленности. Неорганические пигменты на основе хрома, технология и способы их получения.
курсовая работа [398,7 K], добавлен 04.06.2015Понятие о дисперсных системах. Разновидность дисперсных систем. Грубодисперсные системы с твердой дисперсной фазой. Значение коллоидной системы для биологии. Мицеллы как частицы дисперсной фазы золей. Последовательность в составлении формулы мицеллы.
реферат [16,2 K], добавлен 15.11.2009Частички газообразной, жидкой или твердой фазы в жидкости. Классификация различных дисперсных систем по размеру частиц дисперсной фазы, распределенной в дисперсионной среде. Удельная поверхность раздела фаз. Поверхностные процессы, адсорбция и адгезия.
презентация [94,0 K], добавлен 30.04.2014Понятие нитросоединений, их сущность и особенности, основные химические свойства. Классификация нитросоединений, их разновидности и характеристика, отличительные черты и способы получения. Парофильное нитрование, его применение в промышленности.
реферат [118,8 K], добавлен 21.02.2009Состав эмульсий и факторы, определяющие их стабильность. Крем - косметическое средство для ухода за кожей, его виды в зависимости от назначения. Компоненты гелей и пен, их образование и применение. Содержание и лечебные свойства мазей, их разновидности.
презентация [1,1 M], добавлен 29.03.2011