Физико-химические методы исследования
Изучение основ метода алкалиметрии. Особенности приготовления рабочих растворов. Рассмотрение молекулярно-кинетических свойств дисперсных систем. Характеристика основных принципов, положенных в основу кислотно-основной классификации катионов на группы.
Рубрика | Химия |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 07.11.2013 |
Размер файла | 150,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
Пермский институт (филиал)
Федерального государственного бюджетного образовательного учреждения
высшего профессионального образования
«Российский государственный торгово-экономический университет»
Контрольная работа
По дисциплине «Физико-химические методы исследования»
Работу выполнила
Студентка Светлана
Преподаватель:
к.т.хим. наук, доцент
Пермь, 2013
Задание 1
Раскройте основы метода алкалиметрии: обоснование, основное уравнение, особенности приготовления рабочих растворов; установочные вещества, индикация, способы титрования, возможности метода. Рассчитайте навеску вещества, необходимую для приготовления рабочих растворов, концентрации 0,5 моль/л КОН V=250 мл.
Алкалиметрия. Метод нейтрализации в среде протофильного растворителя диметилформамида (ДМФА). Фенолы проявляют очень слабые кислотные свойства, их определение алкалиметрическим методом нейтрализации в водных или смешанных средах невозможно, поэтому используют титрование в среде неводных растворителей, в частности, ДМФА. Метод основан на солеобразовании определяемой слабой кислоты (фенола) с титрантом - метилатом натрия в среде протофильного растворителя, усиливающего кислотные свойства:
В качестве индикатора применяют тимоловый синий. Э=М
Индикатор в методе алкалиметрии (нейтрализации) - фенолфталеин.
Нейтрализации метод -- объемный (титриметрический) метод определения концентрации кислот (ацидиметрия) и щелочей (алкалиметрия) в растворах.
В основе метода нейтрализации лежит использование реакции нейтрализации, т. е. соединения водородных и гидроксильных ионов: Н+ + ОН- =Н20.
При определении концентрации кислоты к точно отмеренному пипеткой объему исследуемого раствора постепенно приливают из бюретки рабочий раствор щелочи (обычно NaOH) известной концентрации, пока не изменится окраска индикатора, предварительно добавленного к титруемому раствору. Объем рабочего раствора, пошедший на взаимодействие с кислотой, отсчитывают по шкале бюретки. Определение концентрации щелочи производят аналогичным путем, только в качестве рабочего раствора в этом случае используют раствор кислоты (обычно HCl). Концентрацию кислоты или щелочи вычисляют по формуле
,
где V и Vp -- объемы, а Н и Hp-- нормальные концентрации анализируемого и рабочего растворов соответственно.
При титровании слабой кислоты сильной щелочью в качестве индикатора применяют обычно фенолфталеин, а при титровании слабой щелочи сильной кислотой -- метиловый оранжевый. При титровании сильной кислоты сильной щелочью можно применять любой из названных индикаторов.
Метод нейтрализации широко применяется в клинических и санитарно-гигиенических лабораториях.
Задача:
Рассчитайте навеску вещества, необходимую для приготовления рабочих растворов, концентрации 0,5 моль/л КОН V=250 мл.
Решение:
Дано:
С KOH = 0,5 моль/л
V = 250мл.
Найти:
a КOH - ?
Решение:
а KOH =
M KOH = 39+16+1 =56
a KOH = = 7 г
Ответ: необходимая навеска вещества составляет 7 грамм.
Задание 2
Молекулярно-кинетические свойства дисперсных систем: броуновское движение, диффузия, осмотическое давление. Седиментация, центрифугирование.
Все молекулярно-кинетические свойства вызваны хаотическим тепловым движением молекул дисперсионной среды, которое складывается из поступательного, вращательного и колебательного движения молекул.
Броуновским называют непрерывное, хаотическое, равновероятное для всех направлений движение мелких частиц, взвешенных в жидкостях или газах, за счет воздействия молекул дисперсионной среды.
Мельчайшие частицы незначительной массы испытывают неодинаковые удары со стороны молекул дисперсионной среды, возникает сила, движущая частицу, направление и импульс силы, непрерывно меняются, поэтому частица совершает хаотические движения.
Диффузией называют самопроизвольное распространение вещества из области с большей концентрацией в область с меньшей концентрацией. Различают следующие виды диффузии: молекулярную, ионную и коллоидных частиц.
При разделении двух растворов различной концентрации или раствора и чистого растворителя полупроницаемой перегородкой (мембраной) возникает поток растворителя от меньшей концентрации к большей, выравнивающей концентрацию. Этот процесс называется осмосом.
Осмотическое давление - такое избыточное давление над раствором, которое необходимо для исключения переноса растворителя через мембрану. Осмотическое давление равно тому давлению, которое производила бы дисперсная фаза (растворенное вещество), если бы она в виде газа при той же температуре занимала тот же объем, что и коллоидная система (раствор)
Седиментация-- направленное движение частиц (твёрдых крупинок, капелек, пузырьков) в поле действия гравитационных или центробежных сил. Скорость седиментации зависит от массы, размера и формы частиц, вязкости и плотности среды, а также от ускорения свободного падения или действующих на частицы центробежных сил. В гравитационном поле седиментируют достаточно крупные частицы, не подверженные тепловому (броуновскому) движению, в поле центробежных сил возможна седиментация коллоидных частиц и макромолекул -- молекул природных и синтетических полимеров. Для мелких не взаимодействующих между собой сферических частиц, оседающих в ламинарном режиме, скорость седиментации вычисляют по формуле Стокса.
Седиментация в дисперсных системах с жидкой и особенно газовой дисперсионной средой часто сопровождается укрупнением седиментирующих частиц вследствие коагуляции и (или) коалесценции. Седиментацию используют в промышленности при обогащении полезных ископаемых, разделении продуктов химической и нефтехимической технологии, очистке и гидравлической классификации различных порошкообразных материалов . Седиментация в гравитационное поле, а также в центрифугах и ультрацентрифугах лежит в основе седиментационного анализа.
Центрифугирование - процесс разделения суспензий и эмульсий в поле центробежных сил с использованием сплошных или проницаемых для жидкости перегородок. Процессы центрифугирования проводят в центрифугах.
Основная часть центрифуги - барабан со сплошными или перфорированными стенками, вращающийся в основном в неподвижном кожухе. Внутренняя поверхность ротора с перфорированными стенками часто покрывается фильтровальной тканью или тонкой металлической сеткой.
Под действием центробежных сил суспензия разделяется на осадок и жидкую фазу - фугат.
Используют центрифуги фильтрующие и отстойные. В фильтрующих центрифугах разделяют суспензии. Стенки фильтрующих центрифуг имеют отверстия, а на их внутренней стороне укладывается фильтровальная перегородка. Эта перегородка пропускает фильтрат, который движется под действием центробежной силы, задерживая осадок.
Задание 3
Назовите принципы, положенные в основу кислотно-основной классификации катионов на группы. Укажите общие аналитические признаки групп и действие группового реагента для 5 группы катионов.
В основе кислотно- основной классификации катионов, предложенной С.Д. Бесковым и О.А. Слизковой, лежит их различное отношение к соляной и серной кислотам, к растворам щелочей и аммиака. Катионы делятся на шесть аналитических групп (см. табл. 1)
^ Первая аналитическая группа катионов (растворимая группа) включает ионы К+, Na+ и NH4+. Эта группа не имеет группового реагента, так как большинство соединений катионов этой группы хорошо растворимо в воде.
^ Вторая аналитическая группа катионов (хлоридная группа) включает катионы Ag+, Hg22+, Pb2+. Групповым реагентом является соляная кислота, которая осаждает эти катионы в виде малорастворимых хлоридов.
^ Третья аналитическая группа катионов (сульфатная группа) включает катионы Ba2+, Ca2+, Sr2+. Их групповым реагентом является серная кислота, которая осаждает эти катионы в виде малорастворимых в воде сульфатов.
^ Четвертая аналитическая группа катионов (амфолитная группа) объединяет катионы Аl3+, Cr3+, Sn2+, Zn2+. Групповым реагентом служит раствор щелочи, при действии избытка которого образуются растворимые комплексные соединения (гидроксокомплексы).
Таблица 1 Аналитическая кислотно-основная классификация катионов
№ группы |
Катионы |
Групповой реагент |
Характеристика группы |
Характер получаемых соединений |
|
I |
К+, Na+, NH4+ |
нет |
хлориды, сульфаты, гидроксиды, растворимые в воде |
раствор К+, Na+, NH4+ |
|
II |
Ag+,Hg22+,Pb2+ |
2 Мраствор НСl |
хлориды, малорастворимые в воде и в разбавленных кислотах |
осадок AgСl, Hg2Cl2,PbCl2 |
|
III |
Ba2+,Ca2+,Sr2+(Pb2+) |
1 Мраствор H2SO4 |
сульфаты, малорастворимые в воде и в разбавленных кислотах |
осадок BaSO4,CaSO4,SrSO4(PbSO4) |
|
IV |
Аl3+,Cr3+, Sn2+,Zn2+(Sb3+) |
4 Мраствор NaOH |
амфотерные гидроксиды, растворимые в избытке NaOH |
раствор[Al(OH)4]-,[Cr(OH)4]-,[Zn(OH)4]2-,[Sn(OH)4]2-([Sb(OH)4]-) |
|
V |
Mg2+, Fe2+, Fe3+,Mn2+, Sb3+ |
25%-ный раствор аммиака |
гидроксиды, не растворимые в избытке NaOH и аммиаке |
осадок Mg(OH)2,Mn(OH)2,Fe(OH)2,Fe(OH)3,Sb(OH)3 |
|
VI |
Сu2+,Co2+, Ni2+ |
25%-ный раствор аммиака |
гидроксиды, малорастворимые в избытке NaOH, но растворимые в избытке аммиака |
раствор [Сu(NH3)4]2+,[Co(NH3)6]2+,[Ni(NH3)6]2+ |
катион раствор алкалиметрия
Пятая аналитическая группа катионов (гидроксидная группа) включает ионы Mg2+, Fe2+, Fe3+, Mn2+, Sb3+. В качестве группового реагента используется 25%-ный раствор аммиака, который осаждает эти катионы в виде гидроксидов, нерастворимых в избытке реагента.
^ Шестая аналитическая группа катионов (аммиакатная группа) объединяет ионы Сu2+, Co2+, Ni2+. Групповым реагентом является 25%-ный раствор аммиака, при избытке которого образуются растворимые в воде комплексные соединения (аммиакаты).
Анализ смеси катионов I-VI аналитических групп, основанный на кислотно-основной классификации, начинают обычно с обнаружения иона аммония дробным методом.
Систематический анализ начинают с осаждения и отделения хлоридов катионов II аналитической группы. Затем переводят в осадок и отделяют сульфаты катионов III аналитической группы. При обработке раствора, полученного после осаждения катионов II и III аналитических групп, избытком раствора гидроксида натрия в осадок переводят основные по своей природе гидроксиды катионов V и VI групп, а в растворе остаются катионы IV аналитической группы в виде соответствующих гидроксокомплексов.
При обработке концентрированным раствором аммиака осадка, содержащего катионы V и VI аналитических групп, катионы VI аналитической группы образуют растворимые комплексные соединения - аммиакаты, тогда как катионы V аналитической группы остаются в осадке в виде соответствующих гидроксидов.
После разделения катионов на группы с помощью групповых реагентов проводят обнаружение ионов внутри каждой группы.
В основу классификации ионов в аналитической химии положено различие в растворимости образуемых ими солей и гидроксидов, позволяющее отделять (или отличать) одни группы ионов от других.
Существуют разные системы группового разделения ионов: сероводородная, кислотно-основная, аммиачно-фосфатная, тиоацетамидная и т. д. Каждая из этих систем имеет свои преимущества и недостатки. Основным недостатком сероводородной системы является необходимость работы с сероводородом, что требует хорошей вентиляции, склонность к образованию коллоидных сульфидных осадков, в результате чего нарушается разделение катионов на группы, и т. д. В кислотно-основной системе при разделении групп можно встретиться с затруднениями, особенно если концентрации разделяемых катионов сильно различаются. С подобными же затруднениями можно встретиться и в других системах разделения. Сознательный подход к групповому разделению позволяет в каждом конкретном случае использовать для этой цели метод, наиболее подходящий для анализируемой смеси ионов. Классический систематический метод качественного анализа катионов основан на сульфидной классификации катионов, в которой катионы подразделяются на пять групп на основании различия в растворимости их сульфидов, хлоридов, карбонатов и гидроксидов.
Основываясь на приведенных в данные, операцию обнаружения катионов различных аналитических групп проводят следующим образом.
1. Исследуемый раствор подкисляют разбавленной НCl. При этом ионы V группы осаждаются в виде соответствующих хлоридов.
2. Отделив осадок, пропускают через кислый раствор газообразный H2S. При этом катионы IV группы осаждаются в виде сульфидов. Для отделения ионов IVБ подгруппы осадок обрабатывают Na2S, после чего в осадке остаются только сульфиды катионов IVА подгруппы.
3. Раствор после отделения осадка сульфидов ионов IV группы нейтрализуют NH4OH (с NH4C1) и обрабатывают (NH4)2S. При этом осаждаются сульфиды или гидроксиды (в случае А13+,Сг3+) катионов III группы.
4. Разрушив избыток (NH4)2S кипячением с уксусной кислотой, на раствор действуют (NH4)2CO3. При этом катионы II группы выпадают в осадок в виде карбонатов, а катионы I группы остаются в растворе, где их и открывают.
Обнаружение иона NH4+, который в ходе анализа вводят в раствор с реактивами, проводят в отдельной порции исследуемого раствора с помощью специфической реакции (щелочь в газовой камере) или реактива Несслера, представляющего собой смесь K2[HgI4] и КОН. Реактив Несслера при взаимодействии с солями аммония образует красно-бурый осадок:
NH4C1 + 2K2[HgI4] + 4КОН = [OHg2NH2]I + 7KI + KCl + 3H2O
Связь сульфидной классификации катионов с электронной конфигурацией атомов и ионов. Растворимость солей и гидроксидов катионов, лежащая в основе аналитической классификации, как и все другие свойства катионов, функционально связана с положением соответствующих элементов в периодической системе. Катионы s-элементов, обладающие 2- и 8-электронным внешним слоем (Li+, Na+, K+, Mg2+, Са2+, Sr2+, Ba2+ и др.), являются слабыми поляризаторами и почти не поляризуются сами. При взаимодействии подобных катионов с сульфид-ионами не происходит заметной деформации электронных оболочек. Такие катионы, как правило, не образуют труднорастворимых в воде сульфидов и относятся к I и II аналитическим группам. Катионы Ag+, Hg2+, As(III), As(V), Sn+, Sb(III), Pb2+, Bi3+ и др., обладающие многоэлектронным внешним слоем (18 и 18 + 2), являются сильными поляризаторами и в то же время легко поляризуются сами. При взаимодействии подобных катионов с легко деформируемыми электронными оболочками сульфид-ионов происходит сильная поляризация обоих ионов и значительная деформация их внешних электронных оболочек. В соответствии с этим все катионы, обладающие внешней электронной структурой 18е- или (18 + 2e-) как правило, образуют сульфиды с очень малыми значениями констант растворимости и потому принадлежат к IV и V аналитическим группам.
Катионы с переходной электронной структурой, т. е. с незаконченным 18-электронным внешним слоем (Mn2+, Fc2+, Fe3+, Co2+, Ni2+ и др.), занимают промежуточное положение. Являясь сравнительно сильными поляризаторами, они в то же время заметно поляризуются сами и потому при взаимодействии с сульфид-ионами дают труднорастворимые сульфиды. Эти катионы образуют III аналитическую группу. Их сульфиды имеют значительно большие значения констант растворимости, чем катионы IV и V групп. Таким образом, сульфидная классификация катионов, основанная на признаке, имеющем на первый взгляд чисто практический характер, ни в коей мере не случайна, а связана с электронной конфигурацией атомов и ионов.
Для катионов практическое значение имеют два вида аналитической классификации - сульфидная (сероводородная) и кислотно-щелочная. ( Менее распространены аммиачно-фосфатная и тиоацетамидная классификации).
Действие группового реагента - гидроксида натрия.
На растворы солей катионов пятой аналитической группы действуют избытком разбавленного раствора гидроксида натрия. Образуются осадки гидроксидов катионов пятой аналитической группы: железа (II) - белый, постепенно переходящий в зеленый и бурый; железа (III) - бурый; марганца - белый, постепенно переходящий в бурый; магния, висмута, сурьмы (III), (V)- белые осадки.
FeSO4 + 2NaOH Fe(OH)2 + Na2SO4
Fe2+ + 2OH- Fe(OH)2v
MnSO4 + 2NaOH Mn(OH)2 + Na2SO4
Mn2+ + 2OH Mn(OH)2 (белый)
2Mn(OH)2 + O2 + 2H2O >2MnO(OH)2 (бурый)
MgSO4 + 2NaOH Mg(OH)2 + Na2SO4
Mg2+ + 2OH Mg(OH)2
Bi(NO3)3 + 3NaOH Bi(OH)3 + 3NaNO3
Bi3+ + 3OH Bi(OH)3
SbCl3 + 3NaOH Sb(OH)3 + 3NaCl
Sb3+ + 3OH Sb(OH)3
SbCl5 + 5NaOH SbO(OH)3 + 5NaCl + H2O
Sb5+ + 5OH SbO(OH)3 + H2O
Осадки растворяются в кислотах и не растворяются в щелочах.
Список литературы
1. Горбунцова И.П. Физическая и коллоидная химия.- М.: Альфа, 2008.- 269 с.
2. Васильев В.П. Аналитическая химия. Т.1,2. - Теоретические основы физико-химических методов анализа. - М.: Дрофа, 2002. - 752 с.
3. Под редакцией профессора В.Б.Алексковского и проф. К. Б. Яцимирского «Физико-химические методы анализа» - М.; «Химия» 1971
Размещено на Allbest.ru
...Подобные документы
Классификация катионов и анионов, изучение первой, второй, третьей и четвертой аналитической группы катионов. Количественный анализ катионов: метод окисления – восстановления, методы осаждения и комплексонообразования, физико-химические методы анализа.
методичка [4,8 M], добавлен 01.07.2009Коллоидная химия как наука, изучающая физико-химические свойства гетерогенных, высоко-дисперсных систем и высоко-молекулярных соединений. Производство и методы очищения коллоидных растворов. Применение гелей в пищевой промышленности, косметике и медицине.
презентация [6,3 M], добавлен 26.01.2015Первые практические сведения о коллоидах. Свойства гетерогенных смесей. Соотношение между поверхностью коллоидной частицы и объемом коллоидной частицы. Своеобразие дисперсных систем. Особенности коллоидных растворов. Классификация дисперсных систем.
презентация [150,3 K], добавлен 17.08.2015Понятие дисперсной системы, фазы и среды. Оптические свойства дисперсных систем и эффект Тиндаля. Молекулярно-кинетические свойства дисперсных систем. Теория броуновского движения и виды диффузии. Процесс осмоса и уравнение осмотического давления.
реферат [145,0 K], добавлен 22.01.2009Состав катионов первой аналитической группы; действие на них группового реактива. Химические свойства катионов II группы; их взаимодействие с органическими реагентами. Осаждение катионов III группы в виде сульфатов, а IV и V - в виде гидроксидов.
презентация [254,1 K], добавлен 28.10.2014Понятие об аналитических группах и классификации катионов. Порядок проведения анализа катионов, осмотр образца и подготовка пробы. Метод квартования. Превращение сульфатов в карбонаты. Обнаружение и отделение ионов бария. Разрушение аммиакатов VI группы.
лабораторная работа [107,8 K], добавлен 09.01.2015Понятие растворов высокомолекулярных соединений (ВМС). Процесс набухания ВМС: его стадии, причины, давление и степень. Вязкость дисперсных систем и растворов ВМС, методы ее измерения. Структурная и относительная вязкость. Коагуляционные структуры.
реферат [52,4 K], добавлен 22.01.2009Общая характеристика катионов III аналитической группы катионов. Гидроксиды бария, кальция, стронция. Действие группового реагента (водного раствора серной кислоты). Действие окислителей и восстановителей. Применение солей кальция и бария в медицине.
реферат [52,2 K], добавлен 13.03.2017Конструкция ячейки, позволяющей одновременно быстро приготавливать растворы и проводить их экспресс-характеризацию по параметрам: электропроводности, светопропусканию и вязкости. Результаты исследования систем с участием ОП-10, воды и фурфурилового спирта
курсовая работа [1,7 M], добавлен 25.08.2010Применение флотационного метода очистки в локальных сооружениях для удаления основной массы загрязнений и выделения ПАВ. Действие основных сил, участвующих в процессе флотации диспергированных примесей. Физико-химические свойства пенного фракционирования.
реферат [12,2 K], добавлен 27.12.2011Классификация дисперсных систем по структурно-механическим свойствам. Возникновение объемных структур в различных дисперсных системах. Анализ многообразия свойств в дисперсных системах. Жидкообразные и твердообразные тела. Тиксотропия и реопексия.
реферат [228,7 K], добавлен 22.01.2009Метод дробного и систематического анализа структуры химических веществ. Аналитическая классификация катионов. Характеристика, общие и частные реакции катионов II аналитической группы (Ag+, Pb2+, Hg22+). Техника работы с ртутью, кислотами и щелочами.
курсовая работа [36,4 K], добавлен 17.06.2011Понятие и суть дисперсности, ее характеристика. Шкала дисперсности. Удельная поверхность и ее степень дисперсности. Классификация дисперсных систем. Понятия: дисперсная фаза и дисперсионная среда. Методы получения дисперсных систем и их особенности.
реферат [74,8 K], добавлен 22.01.2009Физико-химические основы процессов приготовления восковых эмульсий. Основные представления о структурно-коллоидных свойствах восковых эмульсий как нефтяных дисперсных системах. Добавки специального назначения. Роль эмульгатора в стабилизации системы.
курсовая работа [205,2 K], добавлен 09.04.2015Проблема очистки сточных вод от загрязнений, взвешенных и коллоидно-дисперсных частиц. Кинетика, механизм и физико-химические основы процесса флокуляции, влияние различных факторов. Способ подбора сорта флокулянта для эффективности осаждения дисперсий.
курсовая работа [57,2 K], добавлен 12.11.2014Практическое значение аналитической химии. Химические, физико-химические и физические методы анализа. Подготовка неизвестного вещества к химическому анализу. Задачи качественного анализа. Этапы систематического анализа. Обнаружение катионов и анионов.
реферат [65,5 K], добавлен 05.10.2011Классификация физико-химических методов анализа веществ и их краткая характеристика, определение эквивалентной точки титрования, изучение соотношений между составом и свойствами исследуемых систем. Метод низкочастотного кондуктометрического титрования.
учебное пособие [845,9 K], добавлен 04.05.2010Определение причин коррозии бетона; особенности воздействия на него пластофицирующих и гидрофобизирующих добавок. Очистка и защита замасленных поверхностей. Описание термических методов исследования физико-химических превращений, происходящих в минералах.
курсовая работа [1,4 M], добавлен 16.03.2011Строение и физико-химические свойства тетрахлороцинката аммония. Практическое применение тетрахлороцинката аммония. Способы получения тетрахлороцинката аммония. Исходные вещества, приготовление растворов, оборудование. Расчет теоретического выхода.
курсовая работа [32,8 K], добавлен 10.12.2014Виды устойчивости дисперсных систем и способность дисперсных систем образовывать агрегаты. Лиофобные и лиофильные золи. Сущность понятия седиментация и диффузия. Гипсометрический закон. Седиментационно-диффузионное равновесие и скорость седиментации.
учебное пособие [124,8 K], добавлен 22.01.2009