Сложные эфиры
Физические и химические свойства сложных эфиров карбоновых кислот и спиртов; пути их получения. Ознакомление с видами изометрии, характерными для сложных эфиров. Особенности применения эфиров борной, муравьиной, уксусной, ортотитановой и азотной кислот.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 14.11.2013 |
Размер файла | 301,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Строение
2. Номенклатура и изомерия
3. Физические свойства и нахождение в природе
4. Химические свойства
5. Физико-химические свойства сложных эфиров
6. Получение
7. Применение
7.1 Применение в медицине
7.2 Применение сложных эфиров неорганических кислот
7.3 Применение сложных эфиров органических кислот
Заключение
Использованные источники информации
Введение
Среди функциональных производных кислот особое место занимают сложные эфиры -- производные кислот, у которых кислотный водород заменён на алкильные (или вообще углеводородные) радикалы.
Сложные эфиры делятся в зависимости от того, производной какой кислоты они являются (неорганической или карбоновой). Среди сложных эфиров особое место занимают природные эфиры -- жиры и масла, которые образованы трехатомным спиртом глицерином и высшими жирными кислотами, содержащими четное число углеродных атомов. Жиры входят в состав растительных и животных организмов и служат одним из источников энергии живых организмов, которая выделяется при окислении жиров.
1. Строение
Общая формула сложных эфиров карбоновых кислот:
где R и R' -- углеводородные радикалы (в сложных эфиpax муравьиной кислоты R -- атом водорода).
Общая формула жиров:
гдеR', R", R"' -- углеродные радикалы.
Жиры бывают "простыми" и "смешанными". В состав простых жиров входят остатки одинаковых кислот (т. е. R' = R" = R'"), в состав смешанных -- различных.
В жирах наиболее часто встречаются следующие жирные кислоты:
Алкановые кислоты
1. Масляная кислота СН3 -- (CH2)2 -- СООН
2. Капроновая кислота СН3 -- (CH2)4 -- СООН
3. Пальмитиновая кислота СН3 -- (CH2)14 -- СООН
4. Стеариновая кислота СН3 -- (CH2)16 -- СООН
Алкеновые кислоты
5. Олеиновая кислота С17Н33СООН
СН3--(СН2)7--СН === СН--(СН2)7--СООН
Алкадиеновые кислоты
6. Линолевая кислота С17Н31СООН
СН3--(СН2)4--СН = СН--СН2--СН = СН--СООН
Алкатриеновые кислоты
7. Линоленовая кислота С17Н29СООН
СН3СН2СН = CHCH2CH == CHCH2CH = СН(СН2)4СООН
2. Номенклатура и изомерия
Названия сложных эфиров производят от названия углеводородного радикала и названия кислоты, в котором вместо окончания -овая используют суффикс -ат, например:
Для сложных эфиров характерны следующие виды изомерии:
1. Изомерия углеродной цепи начинается по кислотному остатку с бутановой кислоты, по спиртовому остатку -- с пропилового спирта, например, этилбутирату изомерны этилизобутират, пропилацетат и изопропилацетат.
2. Изомерия положения сложноэфирной группировки --СО--О--. Этот вид изомерии начинается со сложных эфиров, в молекулах которых содержится не менее 4 атомов углерода, например этилацетат и метилпропионат.
3. Межклассовая изомерия, например, метилацетату изомерна пропановая кислота.
Для сложных эфиров, содержащих непредельную кислоту или непредельный спирт, возможны еще два вида изомерии: изомерия положения кратной связи и цис-, транс-изомерия.
3. Физические свойства и нахождение в природе
Сложные эфиры низших карбоновых кислот и спиртов представляют собой летучие, нерастворимые в воде жидкости. Многие из них имеют приятный запах. Так, например, бутилбутират имеет запах ананаса, изоамилацетат -- груши и т. д.
Сложные эфиры высших жирных кислот и спиртов -- воскообразные вещества, не имеют запаха, в воде не растворимы.
Приятный аромат цветов, плодов, ягод в значительной степени обусловлен присутствием в них тех или иных сложных эфиров.Жиры широко распространены в природе. Наряду с углеводородами и белками они входят в состав всех растительных и животных организмов и составляют одну из основных частей нашей пищи.
По агрегатному состоянию при комнатной температуре жиры делятся на жидкие и твердые. Твердые жиры, как правило, образованы предельными кислотами, жидкие жиры (их часто называют маслами) -- непредельными. Жиры растворимы в органических растворителях и нерастворимы в воде.
4. Химические свойства
1. Реакция гидролиза, или омыления. Так, как реакция этерификации является обратимой, поэтому в присутствии кислот протекает обратная реакция гидролиза:
Реакция гидролиза катализируется и щелочами; в этом случае гидролиз необратим, так как получающаяся кислота со щелочью образует соль:
2. Реакция присоединения. Сложные эфиры, имеющие в своем составе непредельную кислоту или спирт, способны к реакциям присоединения.
3. Реакция восстановления. Восстановление сложных эфиров водородом приводит к образованию двух спиртов:
4. Реакция образования амидов. Под действием аммиака сложные эфиры превращаются в амиды кислот и спирты:
5. Физико-химические свойства сложных эфиров
Название |
Давление пара при 20°С, кПа |
Молеку- лярная масса |
Темпера-тура кипения при 101,325 кПа. °С |
Плотность при 20°С. г/см3 |
Показа- тель перелом- ления n20 |
Поверхнос- тное натяжение 20°С. мН/м |
|
Метилацетат |
23,19 |
74,078 |
56,324 |
0,9390 |
1,36193 |
24,7625,7 |
|
Этилацетат |
9,86 |
88,104 |
77,114 |
0,90063 |
1,37239 |
23,75 |
|
Пропилацетат |
3,41 |
102,13 |
101,548 |
0,8867 |
1,38442 |
20,53 |
|
Изопропилацетат |
8,40 |
102,13 |
88,2 |
0,8718 |
1,37730 |
22,1022 |
|
Бутилацетат |
2,40 |
116,156 |
126,114 |
0,8813 |
1,39406 |
25,2 |
|
Изоиутилацетат |
1,71 |
116,156 |
118 |
0,8745 |
1,39018 |
23,7 |
|
Втор-Бутилацетат |
- |
116,156 |
112,34 |
0,8720 |
1,38941 |
23,3322,1 |
|
Гексилацетат |
- |
114,21 |
169 |
0,890 |
- |
- |
|
Амилацетат |
2,09 |
130,182 |
149,2 |
0,8753 |
1,40228 |
25,8 |
|
Изоамилацетат |
0,73 |
130,182 |
142 |
0,8719 |
1,40535 |
24,6221,1 |
|
Ацетат монометилового эфира этиленгликоля (метилцеллозольвацетат) |
0,49 |
118,0 |
144,5 |
1,007 |
1,4019 |
- |
|
Ацетат моноэтилового эфира этиленгликоля (этилцеллозольвацетат) |
0,17 |
132,16 |
156,4 |
0,9748 |
1,4030 |
- |
|
Этиленгликольмоноацетат |
- |
104 |
181-182 |
1,108-1,109 |
- |
- |
|
Этиленгликольдиацетат |
0,05 |
146 |
186-190 |
1,106 |
- |
- |
|
Циклогексилацетат |
0,97 |
142 |
175 |
0,964 |
1,4385 |
- |
|
Этиллактат |
0,13 |
118,13 |
154,5 |
1,031 |
1,4118 |
28,917,3 |
|
Бутиллактат |
0,05 |
146,0 |
185 |
0,97 |
- |
- |
|
Пропиленкарбонат |
- |
102,088 |
241,7 |
1,206 |
1,4189 |
- |
6. Получение
Эфиры карбоновых кислот, могут быть получены из различных производных кислот. С высоким выходом их получают путем алкилирования солей карбоновых кислот алкилгалогенидами.
Этерификация
Карбоновые кислоты реагируют со спиртами с образованием сложных эфиров (эстеров) по реакции конденсации получившей название этерификация.
Реакция этерификации катализируется кислотами. Без добавления кислоты равновесие достигается очень медленно, но если же смесь спирта и кислоты нагревать в присутствии небольшого количества концентрированной серной кислоты или хлороводорода, равновесие устанавливается за несколько часов.
С помощью меченых атомов было установлено, что гидроксильную группу в этой реакции отдает кислота, а не спирт.
Реакция получения бутилацетата
проходит по следующему механизму:
7. Применение
Сложные эфиры широко используются в качестве растворителей, пластификаторов, ароматизаторов.
Эфиры муравьиной кислоты:
· HCOOCH3 -- метилформиат, tкип = 32 °C; растворитель жиров, минеральных и растительных масел, целлюлозы, жирных кислот; ацилирующий агент; используют в производстве некоторых уретанов, формамида.
· HCOOC2H5 -- этилформиат, tкип = 53 °C; растворитель нитрата и ацетата целлюлозы; ацилирующий агент; отдушка для мыла, его добавляют к некоторым сортам рома, чтобы придать ему характерный аромат; применяют в производстве витаминов B1, A, E.
· HCOOCH2CH(CH3)2 -- изобутилформиат несколько напоминает запах ягод малины.
· HCOOCH2CH2CH(CH3)2 -- изоамилформиат (изопентилформиат) растворитель смол и нитроцеллюлозы.
· HCOOCH2C6H5 -- бензилформиат, tкип = 202 °C; имеет запах жасмина; используется как растворитель лаков и красителей.
· HCOOCH2CH2C6H5 -- 2-фенилэтилформиат имеет запах хризантем.
Эфиры уксусной кислоты
· CH3COOCH3 -- метилацетат, tкип = 58 °C; по растворяющей способности аналогичен ацетону и применяется в ряде случаев как его заменитель, однако он обладает большей токсичностью, чем ацетон.
· CH3COOC2H5 -- этилацетат, tкип = 78 °C; подобно ацетону растворяет большинство полимеров. По сравнению с ацетоном его преимущество в более высокой температуре кипения (меньшей летучести).
· CH3COOC3H7 -- н-пропилацетат, tкип = 102 °C; по растворяющей способности подобен этилацетату.
· CH3COOCH(CH3)2 -- изопропилацетат, tкип = 88 °C; по растворяющим свойствам занимает промежуточное положение между этил- и пропилацетатом.
· CH3COOC5H11 -- н-амилацетат (н-пентилацетат), tкип = 148 °C; напоминает по запаху грушу, применяется как растворитель для лаков, поскольку он испаряется медленнее, чем этилацетат.
· CH3COOCH2CH2CH(CH3)2 -- изоамилацетат (изопентилацетат), используется как компонент грушовой и банановой эссенции.
· CH3COOC8H17 -- н-октилацетат имеет запах апельсинов.
Эфиры масляной кислоты
· C3H7COOCH3 -- метилбутират, tкип = 102,5 °C; по запаху напоминает ранет.
· C3H7COOC2H5 -- этилбутират, tкип = 121,5 °C; имеет характерный запах ананасов.
· C3H7COOC4H9 -- бутилбутират, tкип = 166,4 °C;
· C3H7COOC5H11 -- н-амилбутират (н-пентилбутират) и C3H7COOCH2CH2CH(CH3)2 -- изоамилбутират (изопентилбутират) имеют запах груш, а также служат растворителями в лаках для ногтей.
Эфиры изовалериановой кислоты
· (CH3)2CHCH2COOCH2CH2CH(CH3)2 -- изоамилизовалерат (изопентилизовалерат) имеет запах яблока.
7.1 Применение в медицине
В конце XIX -- начале XX века, когда органический синтез делал свои первые шаги, было синтезировано и испытано фармакологами множество сложных эфиров.
Они стали основой таких лекарственных средств, как салол, валидол и др. Как местнораздражающее и обезболивающее средство широко использовался метилсалицилат, в настоящее время практически вытесненный более эффективными средствами.
7.2 Применение сложных эфиров неорганических кислот
Эфиры борной кислоты -- триалкилбораты -- легко получаются нагреванием спирта и борной кислоты с добавкой концентрированной серной кислоты. Борнометиловый эфир (триметилборат) кипит при 65° С, борноэтиловый (триэтилборат) -- при 119° С. Эфиры борной кислоты легко гидролизуются водой.
Реакция с борной кислотой служит для установления конфигурации многоатомных спиртов и была неоднократно использована при изучении Сахаров.
Ортокремневые эфиры -- жидкости. Метиловый эфир кипит при 122° С, этиловый при 156° С. Гидролиз водой проходит легко уже на холоду, но идет постепенно и при недостатке воды приводит к образованию высокомолекулярных ангидридных форм, в которых атомы кремния соединены друг с другом через кислород (силоксановые группировки):
Эти высокомолекулярные вещества (полиалкоксисилоксаны) находят применение в качестве связующих, выдерживающих довольно высокую температуру, в частности для покрытия поверхности форм для точной отливки металла.
Аналогично SiCl4 реагируют диалкилдихлорсиланы, например ((СН3)2SiCl2, образуя диалкоксильные производные:
Их гидролиз при недостатке воды дает так называемые полиалкилсилоксаны:
\
Они обладают разным (но очень значительным) молекулярным весом и представляют собой вязкие жидкости, используемые в качестве термостойких смазок, а при еще более длинных силоксановых скелетах -- термостойкие электроизоляционные смолы и каучуки.
Эфиры ортотитановой кислоты.
Их получают аналогично ортокремневым эфирам по реакции:
Это жидкости, легко гидролизующиеся до метилового спирта и TiO2 применяются для пропитки тканей с целью придания им водонепроницаемости.
Эфиры азотной кислоты.
Их получают действием на спирты смеси азотной и концентрированной серной кислот. Метилнитрат СН3ONO2, (т. кип. 60° С) и этилнитрат C2H5ONO2 (т. кип. 87° С) при осторожной работе можно перегнать, но при нагревании выше температуры кипения или при детонации они очень сильно взрывают.
Нитраты этиленгликоля и глицерина, неправильно называемые нитрогликолем и нитроглицерином, применяются в качестве взрывчатых веществ. Сам нитроглицерин (тяжелая жидкость) неудобен и опасен в обращении.
Пентрит -- тетранитрат пентаэритрита С(CH2ONO2)4, получаемый обработкой пентаэритрита смесью азотной и серной кислот, -- тоже сильное взрывчатое вещество бризантного действия.
Нитрат глицерина и нитрат пентаэритрита обладают сосудорасширяющим эффектом и применяются как симптоматические средства при стенокардии.
Эфиры фосфорной кислоты -- высококипящие жидкости, лишь очень медленно гидролизуемые водой, быстрее щелочами и разбавленными кислотами. Эфиры, образованные этерификацией высших спиртов (и фенолов), находят применение как пластификаторы пластмасс и для извлечения солей уранила из водных растворов.
Известны эфиры типа (RO)2S=O, но они не имеют практического значения.
Из алкилсульфатов -- солей сложных эфиров высших спиртов и серной кислоты производят моющие средства. В общем виде образование таких солей можно изобразить уравнениями:
Эти соли содержат в молекуле от 12 до 14 углеродных атомов и обладают очень хорошими моющими свойствами. Кальциевые и магниевые соли растворимы в воде, а потому такие мыла моют и в жесткой воде. Алкилсульфаты содержатся во многих стиральных порошках. Они и обладают прекрасными моющими способностями. Принцип их действия тот же, что и у обычного мыла, только кислотный остаток серной кислоты лучше адсорбируется частицами загрязнения, а кальцевые соли алкилсерной кислоты растворимы в воде, поэтому это моющее средство стирает и в жесткой, и в морской воде.
7.3 Применение сложных эфиров органических кислот
Наибольшее применение в качестве растворителей получили эфиры уксусной кислоты - ацетаты. Прочие эфиры (кислот молочной - лактаты, масляной - бутираты, муравьиной - формиаты) нашли ограниченное применение. Формиаты из-за сильной омыляемости и высокой токсичности в настоящее время не используются. Определенный интерес представляют растворители на основе изобутилового спирта и синтетических жирных кислот, а также алкиленкарбонаты. Физико-химические свойства наиболее распространенных сложных эфиров приведены в таблице (см. приложение).
Метилацетат СН3СООСН3. Отечественной промышленностью технический метилацетат выпускается в виде древесно-спиртового растворителя, в котором содержится 50% (масс.) основного продукта. Метилацетат также образуется в виде побочного продукта при производстве поливинилового спирта. По растворяющей способности метилацетат аналогичен ацетону и применяется в ряде случаев как его заменитель. Однако он обладает большей токсичностью, чем ацетон.
Этилацетат С2Н5СООСН3. Получают методом этерификации на лесохимических предприятиях при переработке синтетической и лесохимической уксусной кислоты, гидролизного и синтетического этилового спирта или конденсацией ацетальдегида. За рубежом разработан процесс получения этилацетата на основе метилового спирта.
Этилацетат подобно ацетону растворяет большинство полимеров. По сравнению с ацетоном его преимущество в более высокой температуре кипения (меньшей летучести). Добавка 15-20 % этилового спирта повышает растворяющую способность этилацетата в отношении эфиров целлюлозы, особенно ацетилцеллюлозы.
Пропилацетат СН3СООСН2СН2СН3. По растворяющей способности подобен этилацетату.
Изопропилацетат СН3СООСН(СН3)2. По свойствам занимает промежуточное положение между этил- и пропилацетат.
Амилацетат CH3COOCH2CH2CH2CH2CH3, т. кип. 148° С, иногда называют "банановым маслом" (которое он напоминает по запаху). Он образуется в реакции между амиловым спиртом (часто - сивушным маслом) и уксусной кислотой в присутствии катализатора. Амилацетат широко применяется как растворитель для лаков, поскольку он испаряется медленнее, чем этилацетат.
Фруктовые эфиры. Характер многих фруктовых запахов, таких, как запахи малины, вишни, винограда и рома, отчасти обусловлен летучими эфирами, например этиловым и изоамиловым эфирами муравьиной, уксусной, масляной и валериановой кислот. Имеющиеся в продаже эссенции, имитирующие эти запахи, содержат подобные эфиры.
Винилацетат CH2=CHOOCCH3, образуется при взаимодействии уксусной кислоты с ацетиленом в присутствии катализатора. Это важный мономер для приготовления поливинилацетатных смол, клеев и красок.
Мыла -- это соли высших карбоновых кислот. Обычные мыла состоят главным образом из смеси солей пальмитиновой, стеариновой и олеиновой кислот. Натриевые соли образуют твердые мыла, калиевые соли -- жидкие мыла.
Мыла получаются при гидролизе жиров в присутствии щелочей:
Обычное мыло плохо стирает в жесткой воде и совсем не стирает в морской воде, так как содержащиеся в ней ионы кальция и магния дают с высшими кислотами нерастворимые в воде соли:
Ca2+ + 2C17H35COONa>Ca(C17H35COO)2v + 2Na+
В настоящее время для стирки в быту, для промывки шерсти и тканей в промышленности используют синтетические моющие средства, которые обладают в 10 раз большей моющей способностью, чем мыла, не портят тканей, не боятся жесткой и даже морской воды.
Заключение
По данной курсовой работе, можно сделать вывод, что сложные эфиры находят широкое применение, как в быту, так и в промышленности. Некоторые из сложных эфиров готовятся искусственно и под названием "фруктовых эссенций" широко применяются в кондитерском деле, в производстве прохладительных напитков, в парфюмерии и во многих других отраслях. Жиры используют для многих технических целей. Однако особенно велико их значение как важнейшей составной части рациона человека и животных, наряду с углеводами и белками. Прекращение использования пищевых жиров в технике и замена их непищевыми материалами - одна из важнейших задач народного хозяйства. Эта задача может быть разрешена только при достаточно основательных знаниях о сложных эфирах и дальнейшем изучении этого класса органических соединений.
Использованные источники информации
1. Несмеянов А. Н., Несмеянов Н. А., Начала органической химии, кн. 1-2, М.,1969-70.;
2. Глинка Н. Л. Общая химия: Учебное пособие для вузов. - 23-е изд., испр./ Под ред. В. А. Рабиновича. - Л.: Химия, 1983;
3. Несмеянов А. Н., Несмеянов Н. А., Начала органической химии, кн. 1--2, М., 1969--70; Чичибабин A. E., Основные начала органической химии, 7 изд., т. 1, М., 1963.
4. Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона.
5. http://penza.fio.ru
6. http://encycl.yandex.ru
7. http://ru.wikipedia.org
8. http://encyclopaedia.biga.ru
Размещено на Allbest.ru
...Подобные документы
Общее определение сложных эфиров алифатичеких карбоновых кислот. Физические и химические свойства. Методы получения сложных эфиров. Реакция этерификации и ее стадии. Особенности применения. Токсическое действие. Ацилирование спиртов галогенангидридами.
реферат [441,9 K], добавлен 22.05.2016Классификация, свойства, распространение в природе, основной способ получения эфиров карбоновых кислот путем алкилирования их солей алкилгалогенидами. Реакции этерификации и переэтерификация. Получение, восстановление и гидролиз сложных эфиров (эстеров).
лекция [151,9 K], добавлен 03.02.2009История открытия производных карбоновых кислот, в которых атом водорода карбоксильной группы замещен на углеводородный радикал. Номенклатура и изомерия, классификация и состав сложных эфиров. Их физические и химические свойства, способы получения.
презентация [1,6 M], добавлен 14.09.2014Изучение физических свойств сложных эфиров, которые широко распространены в природе, а также находят свое применение в технике и промышленности. Сложные эфиры высших карбоновых кислот и высших одноосновных спиртов (восков). Химические свойства жиров.
презентация [869,6 K], добавлен 29.03.2011Классификация и разновидности производных карбоновых кислот, характеристика, особенности, реакционная способность. Способы получения и свойства ангидридов, амидов, нитрилов, сложных эфиров. Отличительные черты непредельных одноосновных карбоновых кислот.
реферат [56,0 K], добавлен 21.02.2009Способы получения, физические свойства, биологическое значение и методы синтеза простых эфиров. Примеры сложных эфиров, их химические и физические свойства. Методы получения: этерия, взаимодействие ангидридов со спиртами или солей с алкилгалогенидами.
презентация [405,8 K], добавлен 06.10.2015Способы получения сложных эфиров. Основные продукты и области применения эфиров. Условия проведения реакции этерификации органических кислот со спиртами. Катализаторы процесса. Особенности технологического оформления реакционного узла этерификации.
реферат [440,1 K], добавлен 27.02.2009Номенклатура сложных эфиров. Классификация и состав основных сложных эфиров. Основные химические свойства, производство и применение бутилацетата, бензойного альдегида, анисового альдегида, ацетоина, лимонена, земляничного альдегида, этилформиата.
презентация [703,6 K], добавлен 20.05.2013Открытие сложных эфиров первооткрывателем, русским академиком Тищенко Вячеславом Евгеньевичем. Структурная изомерия. Общая формула сложных эфиров, их классификация и состав, применение и получение. Липиды (жиры), их свойства. Состав пчелиного воска.
презентация [1,6 M], добавлен 19.05.2014Межмолекулярная дегидратацией спиртов. Синтез эфиров по реакции Вильямсона. Присоединение спиртов к алкенам. Синтез эфиров сольватомеркурированием - демеркурированием алкенов. Присоединение спиртов к алкинам. Триметилсилиловые эфиры. Силилирование.
реферат [156,5 K], добавлен 04.02.2009Основные классы органических кислородосодержащих соединений. Методы получения простых эфиров. Межмолекулярная дегидратация спиртов. Синтез простых эфиров по Вильямсону. Получение симметричных простых эфиров из неразветвленных первичных спиртов.
презентация [273,9 K], добавлен 24.01.2014Методы получения фосфорсодержащих (мет)акрилатов. Переэтерификация средних и кислых фосфитов. Механизм реакции переэтерификации эфиров кислот трехвалентного фосфора. Реакции этерификации и переэтерефикации, используемые для синтеза сложных эфиров.
дипломная работа [1,2 M], добавлен 08.12.2010Понятие простых эфиров, их сущность и особенности, общая формула, характеристика и химические свойства, образование названий. Отличительные черты циклических эфиров, причины их распространения и сферы использования. Представления и межфазном катализе.
реферат [94,8 K], добавлен 04.02.2009Физические и химические свойства спиртов, их взаимодействие с щелочными металлами. Замещение гидроксильной группы спирта галогеном, дегидратация, образование сложных эфиров. Производство этилового, метилового и других видов спиртов, области их применения.
презентация [1,5 M], добавлен 07.04.2014Основные способы получения спиртов. Гидрогенизация окиси углерода. Ферментация. Синтез спиртов из алкенов. Синтез спиртов из галогеноуглеводородов, из металлоорганических соединений. Восстановление альдегидов, кетонов и эфиров карбоновых кислот.
реферат [150,9 K], добавлен 04.02.2009Общее понятие и изучение номенклатуры циклических эфиров как химических соединений содержащих один атом кислорода. Описание строения и физических свойств этилоксирана, его реакционная способность. Присоединение спиртов и химические свойства эфиров.
реферат [588,4 K], добавлен 27.04.2015Ознакомление с классификацией и разновидностями карбоновых кислот, их главными физическими и химическими свойствами, сферах практического применения. Способы и приемы получения карбоновых кислот, их реакционная способность. Гомологический ряд и гомологи.
разработка урока [17,9 K], добавлен 13.11.2011Свойства изоамилацетата. Практическое применение в качестве растворителя в различных отраслях промышленности. Методика синтеза (уксусная кислота и уксуснокислый натрий). Реакция этерификации и гидролиз сложных эфиров. Механизм реакции этерификации.
курсовая работа [634,2 K], добавлен 17.01.2009Электроотрицательность элемента по Полингу. Константы Тафта, полученные для гидролиза сложных эфиров X-CH2COOEt. Проявления индуктивного эффекта. Дипольные моменты для алкилгалогенидов в газовой фазе. Термодинамические величины pKa для карбоновых кислот.
контрольная работа [113,3 K], добавлен 25.09.2012Применение 4-кетоноалкановых кислот в производстве смазочных материалов. Получение насыщенных кислот алифатического ряда. Расщепление фуранового цикла фурилкарбинолов. Взаимодействие этиловых эфиров 4-оксоалкановых кислот. Синтез гетероциклических систем.
курсовая работа [167,3 K], добавлен 12.06.2015