Метод алкалиметрии. Броуновское движение, диффузия, осмотическое давление. Аналитическая классификация катионов

Изучение основ алкалиметрии. Рассмотрение метода нейтрализации в среде протофильного растворителя диметилформамида. Ознакомление с молекулярно-кинетическими свойствами дисперсных систем. Принципы кислотно-основной классификации катионов на группы.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 17.11.2013
Размер файла 221,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Задание 1

Раскройте основы метода алкалиметрии: обоснование, основное уравнение, особенности приготовления рабочих растворов; установочные вещества, индикация, способы титрования, возможности метода. Рассчитайте навеску вещества, необходимую для приготовления рабочих растворов, концентрации 0,5 моль/л КОН V=250 мл.

Алкалиметрия. Метод нейтрализации в среде протофильного растворителя диметилформамида (ДМФА). Фенолы проявляют очень слабые кислотные свойства, их определение алкалиметрическим методом нейтрализации в водных или смешанных средах невозможно, поэтому используют титрование в среде неводных растворителей, в частности, ДМФА. Метод основан на солеобразовании определяемой слабой кислоты (фенола) с титрантом - метилатом натрия в среде протофильного растворителя, усиливающего кислотные свойства:

В качестве индикатора применяют тимоловый синий. Э=М

Индикатор в методе алкалиметрии (нейтрализации) - фенолфталеин.

Нейтрализации метод -- объемный (титриметрический) метод определения концентрации кислот (ацидиметрия) и щелочей (алкалиметрия) в растворах. В основе метода нейтрализации лежит использование реакции нейтрализации, т. е. соединения водородных и гидроксильных ионов: Н+ + ОН- =Н20. При определении концентрации кислоты к точно отмеренному пипеткой объему исследуемого раствора постепенно приливают из бюретки рабочий раствор щелочи (обычно NaOH) известной концентрации, пока не изменится окраска индикатора, предварительно добавленного к титруемому раствору. Объем рабочего раствора, пошедший на взаимодействие с кислотой, отсчитывают по шкале бюретки. Определение концентрации щелочи производят аналогичным путем, только в качестве рабочего раствора в этом случае используют раствор кислоты (обычно HCl). Концентрацию кислоты или щелочи вычисляют по формуле

,

где V и Vp -- объемы, а Н и Hp-- нормальные концентрации анализируемого и рабочего растворов соответственно. При титровании слабой кислоты сильной щелочью в качестве индикатора применяют обычно фенолфталеин, а при титровании слабой щелочи сильной кислотой -- метиловый оранжевый. При титровании сильной кислоты сильной щелочью можно применять любой из названных индикаторов. Метод нейтрализации широко применяется в клинических и санитарно-гигиенических лабораториях.

Задача:

Рассчитайте навеску вещества, необходимую для приготовления рабочих растворов, концентрации 0,5 моль/л КОН V=250 мл.

Решение:

Дано: С KOH = 0,5 моль/л

V = 250мл.

Найти: a КOH - ?

Решение:

а KOH =

M KOH = 39+16+1 =56

a KOH = = 7 г

Ответ: необходимая навеска вещества составляет 7 грамм.

Задание 2

Молекулярно-кинетические свойства дисперсных систем: броуновское движение, диффузия, осмотическое давление. Седиментация, центрифугирование.

Все молекулярно-кинетические свойства вызваны хаотическим тепловым движением молекул дисперсионной среды, которое складывается из поступательного, вращательного и колебательного движения молекул.

Броуновским называют непрерывное, хаотическое, равновероятное для всех направлений движение мелких частиц, взвешенных в жидкостях или газах, за счет воздействия молекул дисперсионной среды.

Мельчайшие частицы незначительной массы испытывают неодинаковые удары со стороны молекул дисперсионной среды, возникает сила, движущая частицу, направление и импульс силы, непрерывно меняются, поэтому частица совершает хаотические движения.

Диффузией называют самопроизвольное распространение вещества из области с большей концентрацией в область с меньшей концентрацией. Различают следующие виды диффузии: молекулярную, ионную и коллоидных частиц.

При разделении двух растворов различной концентрации или раствора и чистого растворителя полупроницаемой перегородкой (мембраной) возникает поток растворителя от меньшей концентрации к большей, выравнивающей концентрацию. Этот процесс называется осмосом.

Осмотическое давление - такое избыточное давление над раствором, которое необходимо для исключения переноса растворителя через мембрану. Осмотическое давление равно тому давлению, которое производила бы дисперсная фаза (растворенное вещество), если бы она в виде газа при той же температуре занимала тот же объем, что и коллоидная система (раствор)

Седиментация -- направленное движение частиц (твёрдых крупинок, капелек, пузырьков) в поле действия гравитационных или центробежных сил. Скорость седиментации зависит от массы, размера и формы частиц, вязкости и плотности среды, а также от ускорения свободного падения или действующих на частицы центробежных сил. В гравитационном поле седиментируют достаточно крупные частицы, не подверженные тепловому (броуновскому) движению, в поле центробежных сил возможна седиментация коллоидных частиц и макромолекул -- молекул природных и синтетических полимеров. Для мелких не взаимодействующих между собой сферических частиц, оседающих в ламинарном режиме, скорость седиментации вычисляют по формуле Стокса.

Седиментация в дисперсных системах с жидкой и особенно газовой дисперсионной средой часто сопровождается укрупнением седиментирующих частиц вследствие коагуляции и (или) коалесценции. Седиментацию используют в промышленности при обогащении полезных ископаемых, разделении продуктов химической и нефтехимической технологии, очистке и гидравлической классификации различных порошкообразных материалов. Седиментация в гравитационное поле, а также в центрифугах и ультрацентрифугах лежит в основе седиментационного анализа.

Центрифугирование - процесс разделения суспензий и эмульсий в поле центробежных сил с использованием сплошных или проницаемых для жидкости перегородок. Процессы центрифугирования проводят в центрифугах.

Основная часть центрифуги - барабан со сплошными или перфорированными стенками, вращающийся в основном в неподвижном кожухе. Внутренняя поверхность ротора с перфорированными стенками часто покрывается фильтровальной тканью или тонкой металлической сеткой.

Под действием центробежных сил суспензия разделяется на осадок и жидкую фазу - фугат. Используют центрифуги фильтрующие и отстойные. В фильтрующих центрифугах разделяют суспензии. Стенки фильтрующих центрифуг имеют отверстия, а на их внутренней стороне укладывается фильтровальная перегородка. Эта перегородка пропускает фильтрат, который движется под действием центробежной силы, задерживая осадок.

Задание 3

Назовите принципы, положенные в основу кислотно-основной классификации катионов на группы. Укажите общие аналитические признаки групп и действие группового реагента для 5 группы катионов.

В основе кислотно-основной классификации катионов, предложенной С.Д. Бесковым и О.А. Слизковой, лежит их различное отношение к соляной и серной кислотам, к растворам щелочей и аммиака. Катионы делятся на шесть аналитических групп (см. табл. 1)

Первая аналитическая группа катионов (растворимая группа) включает ионы К+, Na+ и NH4+. Эта группа не имеет группового реагента, так как большинство соединений катионов этой группы хорошо растворимо в воде.

Вторая аналитическая группа катионов (хлоридная группа) включает катионы Ag+, Hg22+, Pb2+. Групповым реагентом является соляная кислота, которая осаждает эти катионы в виде малорастворимых хлоридов.

Третья аналитическая группа катионов (сульфатная группа) включает катионы Ba2+, Ca2+, Sr2+. Их групповым реагентом является серная кислота, которая осаждает эти катионы в виде малорастворимых в воде сульфатов.

Четвертая аналитическая группа катионов (амфолитная группа) объединяет катионы Аl3+, Cr3+, Sn2+, Zn2+. Групповым реагентом служит раствор щелочи, при действии избытка которого образуются растворимые комплексные соединения (гидроксокомплексы).

Таблица 1

Аналитическая кислотно-основная классификация катионов

Пятая аналитическая группа катионов (гидроксидная группа) включает ионы Mg2+, Fe2+, Fe3+, Mn2+, Sb3+. В качестве группового реагента используется 25%-ный раствор аммиака, который осаждает эти катионы в виде гидроксидов, нерастворимых в избытке реагента.

Шестая аналитическая группа катионов (аммиакатная группа) объединяет ионы Сu2+, Co2+, Ni2+. Групповым реагентом является 25%-ный раствор аммиака, при избытке которого образуются растворимые в воде комплексные соединения (аммиакаты). Анализ смеси катионов I-VI аналитических групп, основанный на кислотно-основной классификации, начинают обычно с обнаружения иона аммония дробным методом. Систематический анализ начинают с осаждения и отделения хлоридов катионов II аналитической группы. Затем переводят в осадок и отделяют сульфаты катионов III аналитической группы. При обработке раствора, полученного после осаждения катионов II и III аналитических групп, избытком раствора гидроксида натрия в осадок переводят основные по своей природе гидроксиды катионов V и VI групп, а в растворе остаются катионы IV аналитической группы в виде соответствующих гидроксокомплексов. При обработке концентрированным раствором аммиака осадка, содержащего катионы V и VI аналитических групп, катионы VI аналитической группы образуют растворимые комплексные соединения - аммиакаты, тогда как катионы V аналитической группы остаются в осадке в виде соответствующих гидроксидов. После разделения катионов на группы с помощью групповых реагентов проводят обнаружение ионов внутри каждой группы.

В основу классификации ионов в аналитической химии положено различие в растворимости образуемых ими солей и гидроксидов, позволяющее отделять (или отличать) одни группы ионов от других.

Существуют разные системы группового разделения ионов: сероводородная, кислотно-основная, аммиачно-фосфатная, тиоацетамидная и т. д. Каждая из этих систем имеет свои преимущества и недостатки. Основным недостатком сероводородной системы является необходимость работы с сероводородом, что требует хорошей вентиляции, склонность к образованию коллоидных сульфидных осадков, в результате чего нарушается разделение катионов на группы, и т. д. В кислотно-основной системе при разделении групп можно встретиться с затруднениями, особенно если концентрации разделяемых катионов сильно различаются. С подобными же затруднениями можно встретиться и в других системах разделения. Сознательный подход к групповому разделению позволяет в каждом конкретном случае использовать для этой цели метод, наиболее подходящий для анализируемой смеси ионов. Классический систематический метод качественного анализа катионов основан на сульфидной классификации катионов, в которой катионы подразделяются на пять групп на основании различия в растворимости их сульфидов, хлоридов, карбонатов и гидроксидов.

Основываясь на приведенных в данные, операцию обнаружения катионов различных аналитических групп проводят следующим образом.

1. Исследуемый раствор подкисляют разбавленной НCl. При этом ионы V группы осаждаются в виде соответствующих хлоридов.

2. Отделив осадок, пропускают через кислый раствор газообразный H2S. При этом катионы IV группы осаждаются в виде сульфидов. Для отделения ионов IVБ подгруппы осадок обрабатывают Na2S, после чего в осадке остаются только сульфиды катионов IVА подгруппы.

3. Раствор после отделения осадка сульфидов ионов IV группы нейтрализуют NH4OH (с NH4C1) и обрабатывают (NH4)2S. При этом осаждаются сульфиды или гидроксиды (в случае А13+,Сг3+) катионов III группы.

4. Разрушив избыток (NH4)2S кипячением с уксусной кислотой, на раствор действуют (NH4)2CO3. При этом катионы II группы выпадают в осадок в виде карбонатов, а катионы I группы остаются в растворе, где их и открывают.

Обнаружение иона NH4+, который в ходе анализа вводят в раствор с реактивами, проводят в отдельной порции исследуемого раствора с помощью специфической реакции (щелочь в газовой камере) или реактива Несслера, представляющего собой смесь K2[HgI4] и КОН. Реактив Несслера при взаимодействии с солями аммония образует красно-бурый осадок:

NH4C1 + 2K2[HgI4] + 4КОН = [OHg2NH2]I + 7KI + KCl + 3H2O

Связь сульфидной классификации катионов с электронной конфигурацией атомов и ионов. Растворимость солей и гидроксидов катионов, лежащая в основе аналитической классификации, как и все другие свойства катионов, функционально связана с положением соответствующих элементов в периодической системе. Катионы s-элементов, обладающие 2- и 8-электронным внешним слоем (Li+, Na+, K+, Mg2+, Са2+, Sr2+, Ba2+ и др.), являются слабыми поляризаторами и почти не поляризуются сами. При взаимодействии подобных катионов с сульфид-ионами не происходит заметной деформации электронных оболочек. Такие катионы, как правило, не образуют труднорастворимых в воде сульфидов и относятся к I и II аналитическим группам. Катионы Ag+, Hg2+, As(III), As(V), Sn+, Sb(III), Pb2+, Bi3+ и др., обладающие многоэлектронным внешним слоем (18 и 18 + 2), являются сильными поляризаторами и в то же время легко поляризуются сами. При взаимодействии подобных катионов с легко деформируемыми электронными оболочками сульфид-ионов происходит сильная поляризация обоих ионов и значительная деформация их внешних электронных оболочек. В соответствии с этим все катионы, обладающие внешней электронной структурой 18е- или (18 + 2e-) как правило, образуют сульфиды с очень малыми значениями констант растворимости и потому принадлежат к IV и V аналитическим группам.

Катионы с переходной электронной структурой, т. е. с незаконченным 18-электронным внешним слоем (Mn2+, Fc2+, Fe3+, Co2+, Ni2+ и др.), занимают промежуточное положение. Являясь сравнительно сильными поляризаторами, они в то же время заметно поляризуются сами и потому при взаимодействии с сульфид-ионами дают труднорастворимые сульфиды. Эти катионы образуют III аналитическую группу. Их сульфиды имеют значительно большие значения констант растворимости, чем катионы IV и V групп. Таким образом, сульфидная классификация катионов, основанная на признаке, имеющем на первый взгляд чисто практический характер, ни в коей мере не случайна, а связана с электронной конфигурацией атомов и ионов.

Для катионов практическое значение имеют два вида аналитической классификации - сульфидная (сероводородная) и кислотно-щелочная. (Менее распространены аммиачно-фосфатная и тиоацетамидная классификации).
Действие группового реагента - гидроксида натрия. На растворы солей катионов пятой аналитической группы действуют избытком разбавленного раствора гидроксида натрия. Образуются осадки гидроксидов катионов пятой аналитической группы: железа (II) - белый, постепенно переходящий в зеленый и бурый; железа (III) - бурый; марганца - белый, постепенно переходящий в бурый; магния, висмута, сурьмы (III), (V)- белые осадки.
FeSO4 + 2NaOH Fe(OH)2 + Na2SO4 Fe2+ + 2OH- Fe(OH)2v MnSO4 + 2NaOH Mn(OH)2 + Na2SO4 Mn2+ + 2OH Mn(OH)2 (белый) 2Mn(OH)2 + O2 + 2H2O >2MnO(OH)2 (бурый) MgSO4 + 2NaOH Mg(OH)2 + Na2SO4 Mg2+ + 2OH Mg(OH)2
Bi(NO3)3 + 3NaOH Bi(OH)3 + 3NaNO3 Bi3+ + 3OH Bi(OH)3 SbCl3 + 3NaOH Sb(OH)3 + 3NaCl Sb3+ + 3OH Sb(OH)3 SbCl5 + 5NaOH SbO(OH)3 + 5NaCl + H2O Sb5+ + 5OH SbO(OH)3 + H2O
алкалиметрия диметилформамид дисперсный катион
Осадки растворяются в кислотах и не растворяются в щелочах.
Список литературы

1. Горбунцова И.П. Физическая и коллоидная химия.- М.: Альфа, 2008.- 269 с.

2. Васильев В.П. Аналитическая химия. Т.1,2. - Теоретические основы физико-химических методов анализа. - М.: Дрофа, 2002. - 752 с.

3. Под редакцией профессора В.Б. Алексковского и проф. К.Б. Яцимирского "Физико-химические методы анализа" - М.; "Химия" 1971

Размещено на Allbest.ru

...

Подобные документы

  • Классификация катионов и анионов, изучение первой, второй, третьей и четвертой аналитической группы катионов. Количественный анализ катионов: метод окисления – восстановления, методы осаждения и комплексонообразования, физико-химические методы анализа.

    методичка [4,8 M], добавлен 01.07.2009

  • Метод дробного и систематического анализа структуры химических веществ. Аналитическая классификация катионов. Характеристика, общие и частные реакции катионов II аналитической группы (Ag+, Pb2+, Hg22+). Техника работы с ртутью, кислотами и щелочами.

    курсовая работа [36,4 K], добавлен 17.06.2011

  • Понятие об аналитических группах и классификации катионов. Порядок проведения анализа катионов, осмотр образца и подготовка пробы. Метод квартования. Превращение сульфатов в карбонаты. Обнаружение и отделение ионов бария. Разрушение аммиакатов VI группы.

    лабораторная работа [107,8 K], добавлен 09.01.2015

  • Состав катионов первой аналитической группы; действие на них группового реактива. Химические свойства катионов II группы; их взаимодействие с органическими реагентами. Осаждение катионов III группы в виде сульфатов, а IV и V - в виде гидроксидов.

    презентация [254,1 K], добавлен 28.10.2014

  • Общая характеристика катионов III аналитической группы катионов. Гидроксиды бария, кальция, стронция. Действие группового реагента (водного раствора серной кислоты). Действие окислителей и восстановителей. Применение солей кальция и бария в медицине.

    реферат [52,2 K], добавлен 13.03.2017

  • Анализ вещества, проводимый в химических растворах. Условия проведения аналитических реакций. Систематический и дробный анализ. Аналитические реакции ионов алюминия, хрома, цинка, олова, мышьяка. Систематический ход анализа катионов четвертой группы.

    реферат [7,5 M], добавлен 22.04.2012

  • Виды устойчивости дисперсных систем и способность дисперсных систем образовывать агрегаты. Лиофобные и лиофильные золи. Сущность понятия седиментация и диффузия. Гипсометрический закон. Седиментационно-диффузионное равновесие и скорость седиментации.

    учебное пособие [124,8 K], добавлен 22.01.2009

  • Аналитическая химия - наука о методах анализа; области ее применения. Сероводородная аналитическая и кислотно-основная классификация катионов по группам, групповые реагенты. Отбор проб сухих веществ и способы растворения. Анализ анионного состава смеси.

    курсовая работа [35,8 K], добавлен 07.12.2011

  • Понятие дисперсной системы, фазы и среды. Оптические свойства дисперсных систем и эффект Тиндаля. Молекулярно-кинетические свойства дисперсных систем. Теория броуновского движения и виды диффузии. Процесс осмоса и уравнение осмотического давления.

    реферат [145,0 K], добавлен 22.01.2009

  • Аналитическая химия - наука об определении химического состава веществ и их химической структуры. Понятие и сущность титриметрического метода анализа. Способы приготовления титрованного раствора. Методы кислотно-основного титрования (нейтрализации).

    реферат [1,3 M], добавлен 22.02.2012

  • Определение устойчивости дисперсных систем. Термодинамическая устойчивость лиофильных систем. Седиментация и диффузия. Гипсометрический закон. Седиментационно-диффузионное равновесие. Гипсометрический закон Лапласа-Перрена. Скорость коагуляции частиц.

    контрольная работа [130,3 K], добавлен 23.01.2015

  • Задачи и методы качественного и количественного анализа. Аналитическая система катионов. Закон действующих масс. Теория электролитической диссоциации. Окислительно-восстановительные реакции. Характеристика комплексных соединений. Буферные растворы.

    курс лекций [618,3 K], добавлен 15.12.2011

  • Виды устойчивости дисперсных систем. Лиофобные и лиофильные золи. Правила коагуляции электролитами. Виды коагуляции: концентрационная, нейтрализационная. Количественные характеристики коагуляции. Седиментация, диффузия и равновесное распределение частиц.

    учебное пособие [408,3 K], добавлен 22.01.2009

  • Систематический анализ, реакции и анализ смеси катионов. Анализ анионов и сухой соли. Гравиметрический метод анализа, метод нейтрализации, процентное содержание кислот. Методы окислительно-восстановительного титрования, перманганатометрия и йодометрия.

    лабораторная работа [64,8 K], добавлен 19.11.2010

  • Классификация дисперсных систем по структурно-механическим свойствам. Возникновение объемных структур в различных дисперсных системах. Анализ многообразия свойств в дисперсных системах. Жидкообразные и твердообразные тела. Тиксотропия и реопексия.

    реферат [228,7 K], добавлен 22.01.2009

  • Закономерности ионной эмиссии из катионпроводящих твердых электролитов. Получение интеркалатных соединений на основе дисульфида титана. Транспорт однозарядных катионов в рутилоподобных оксидах и перенос катионов через границу твердых электролитов оксида.

    автореферат [1,7 M], добавлен 22.03.2009

  • Понятие "гетерогенная система". Специфические, групповые, общие осадочные реакции. Кристаллический и аморфный осадок. Проведение реакций обнаружения ионов полумикрометодом. Кислотно-основная, сероводородная и аммиачно-фосфатная классификация катионов.

    презентация [3,2 M], добавлен 14.11.2013

  • Молекулярно–кинетические свойства коллоидов. Связь между средним сдвигом и коэффициентом диффузии. Гипсометрический закон Лапласа. Кинетическая или седиментационная устойчивость коллоидно-дисперсных систем. Ньютоновские и структурированные жидкости.

    реферат [325,2 K], добавлен 04.01.2011

  • Диметилацеталь диметилформамида как эквивалент карбонильной группы при образовании оснований Шиффа в реакции с первичными аминами. Методика применения диметилацеталя диметилформамида в качестве реагента для дериватизации аналитов в газовой хроматографии.

    дипломная работа [2,1 M], добавлен 24.06.2015

  • Тепловой эффект реакции при стандартных условиях. Зависимость скорости химической реакции от температуры. Температурный коэффициент. Осмос, осмотическое давление, осмотический коэффициент. Отличительные признаки дисперсных систем от истинных растворов.

    контрольная работа [49,7 K], добавлен 25.07.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.