Поверхностные явления
Классификация поверхностных явлений, происходящих на границе раздела двух фаз гетерогенной системы. Адгезия и когезия как явления, обусловленные межмолекулярными взаимодействиями. Основные характеристики поверхностного натяжения на границе газ-жидкость.
Рубрика | Химия |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 20.11.2013 |
Размер файла | 21,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
1. Поверхностные явления
2. Задачи
Литература
1. Поверхностные явления
Фаза - это часть гетерогенной системы, однородная по химическому составу и физическим свойствам и ограниченная от остальной системы границей раздела. Явления, происходящие на границе раздела двух фаз, называются поверхностными явлениями.
Свойства межфазовой границы. Поверхностное натяжение
На границе раздела фаз каждая из граничащих фаз имеет избыток потенциальной энергии, который называется поверхностная энергия. Стремление вещества уменьшить поверхностную энергию - поверхностное натяжение. Существует оно потому, что состояние молекулы внутри фазы и на её границе различно:
1. Внутри фазы молекула окружена другими такими же молекулами. Силовые поля этих молекул полностью компенсированы друг другом, молекулы связаны между собой одинаково.
2. На границе раздела фаз молекулы рассматриваемой фазы одновременно взаимодействуют с молекулами как своей, так и другой фазы, причём характер взаимодействия между молекулами разных фаз другой, нежели между молекулами одной фазы. Это приводит к тому, что молекулы рассматриваемой фазы "выталкиваются" из своей фазы в другую или сильнее притягиваются к молекулам другой фазы, чем к "своим" молекулам.
3. Поверхностное натяжение - это величина свободной энергии Гиббса на единицу поверхности вещества. Стремление вещества уменьшить эту величину приводит к самопроизвольному сокращению границы раздела фаз. Примеры: круглая форма капли жидкости при отсутствии воздействий со стороны (в невесомости, при достаточно малом объёме жидкости (поверхностное натяжение сильнее силы тяжести)), коагуляция, коалесценция и др.
4. Если площадь поверхности равна Щ, то при Р, Т=const
у = (dG/dЩ)P,T,nj (1)
Щ = ЩудV (2),
где Щуд - удельная поверхность фазы. Для сферических частиц
Щуд = 6/d (3),
d - диаметр частиц
5. Экспериментально можно определить лишь величину поверхностного натяжения. Существуют статические и полустатические (метод отрыва кольца) методы
Адгезия и когезия
1. Адгезия - это сцепление друг с другом поверхностей разнородных тел. Когезия - это сцепление друг с другом поверхностей одного тела. Обусловлены данные явления межмолекулярными взаимодействиями
2. Работа когезии Wc- это работа, затрачиваемая на преодоление сил сцепления между молекулами однородной жидкости и приводящая к возникновению двух новых поверхностей раздела фаз газ-жидкость. Wc = 2у. Работа адгезии Wа - это работа, затрачиваемая на преодоление сил сцепления между молекулами двух разных жидкостей на площади контакта 1 мІ. Для жидкостей А и В:
Wа = уА + уВ - уАВ (4)
3. Растекание жидкости А по поверхности жидкости В возможно в тех случаях, когда энергия взаимодействия молекул жидкости А друг с другом меньше энергии взаимодействия молекул жидкости А с молекулами жидкости В. Высокая работа адгезии наблюдается у клеев, по адгезионным свойствам различаются нормальные и раковые клетки
Смачивание
1. Смачивание - это явление на границе раздела жидкой и твёрдой фаз, заключающееся в растекании жидкости по поверхности твёрдого тела, пропитывании пористых тел и порошков с образованием мениска за счёт взаимодействий молекул жидкой и твёрдой фаз
2. Если поверхностное натяжение на границе газ-жидкость равна уж-г, поверхностная энергия на границе твёрдое вещество-жидкость утв-г, поверхностная энергия твёрдой поверхности утв, то существует такой угол и, что
утв- утв-г+ уж-гcosи=0 (5)
Это - краевой угол смачивания (угол между направлением силы поверхностного натяжения на границе газ-жидкость и твёрдой поверхностью)
3. Критерий смачивания
В=cosи (6)
4. Из формулы
B = (2 Wа - Wc)/ Wc (7)
следует, что чем больше разница между работой адгезии и работой когезии данной жидкости в отношении данного вещества, тем лучше данная жидкость смачивает данное вещество. Это означает, что жидкость будет хорошо смачивать вещество, если энергия взаимодействия молекул жидкости между собой меньше энергии взаимодействия молекул жидкости и твёрдой поверхности.
Адсорбция
1. Адсорбция - это концентрирование вещества на границе раздела фаз в результате его самопроизвольного перехода данного вещества из объёма фазы. Адсорбционное равновесие определяется притяжением молекул к поверхности другой фазы и тепловым движением, стремящимся восстановить равенство концентраций в поверхностном слое и объёме фазы
2. Наблюдается адсорбция на поверхностях раздела следующих фаз: твёрдое вещество-жидкость, твёрдое вещество-газ, жидкость-жидкость, жидкость-газ. Адсорбент - твёрдое вещество, на поверхности которого происходит адсорбция. Адсорбтив (адсорбат) - вещество, концентрирующееся на границе раздела фаз
3. Адсорбция - частный случай сорбции. Если на границе раздела фаз вещество поглощается в результате образования химических соединений, это хемосорбция. Если вещество поглощается объёмом другой фазы, это абсорбция
4. Различают два случая адсорбции: адсорбция на твёрдой поверхности и адсорбция в поверхностном слое жидкости.
Адсорбция на однородной плоской поверхности раздела фаз - в поверхностном слое жидкостей.
Поверхностно-активные вещества. Правило Дюкло-Траубе
Поверхностно-активные вещества ПАВ - это вещества, способные концентрироваться на поверхности раздела фаз и понижать поверхностное натяжение жидкости. Направление процесса (концентрирования вещества в поверхностном слое фазы или выход его оттуда) определяется знаком dу/dc. Если c~a, то значению >0 соответствует отрицательная адсорбция, dу/dc<0 - положительная адсорбция. Поверхностная активность
G = - dу/dc (8)
при с>0 - адсорбция поверхностно-активных веществ положительна, адсорбция жидкостей - адсорбатов, имеющих большее поверхностное натяжение, чем у адсорбента, отрицательна.
Большинство поверхностно-активных веществ, меняющих поверхностное натяжение воды, имеет общую структуру: в молекуле содержатся гидрофильная головка и гидрофобный хвост.
При взаимодействии с водой гидрофильная головка оказывается сильно гидратированной, а гидрофобный хвост выталкивается наружу. Образуется мономолекулярный слой поверхностно-активного вещества на поверхности воды.
Правило Дюкло-Траубе: при увеличении числа углеродных атомов в гомологическом ряду в арифметической прогрессии поверхностная активность вещества возрастает в геометрической прогрессии.
Адсорбция на твёрдой поверхности
Мономолекулярная адсорбция на твёрдой поверхности
Основные положения теории Ленгмюра:
1. Адсорбция - процесс локализованный, она вызвана силами, близкими к химическим
2. Адсорбция протекает не на всей поверхности адсорбента, а в активных центрах
3. Каждый активный центр взаимодействует с одной молекулой адсорбата, в результате чего на поверхности адсорбента образуется один слой адсорбированных молекул
4. Адсорбция - процесс обратимый и равновесный
При адсорбционном равновесии скорость адсорбции равна скорости десорбции, она пропорциональна числу ударов молекул адсробтива о поверхность адсорбента, незанятую адсорбированными молекулами. Она равна
Wa = ka(1 - и)p (9)
ka - коэффициент пропорциональности, и - доля поверхности, покрытой адсорбированными молекулами, (1 - и) - доля свободной для адсорбции поверхности адсорбента.
Скорость десорбции:
Wд = kдни (10)
kд - коэффициент пропорциональности, н - число молекул на 1 мІ при максимальной упаковке.
Так как скорости процессов адсорбции и ресорбции равны, эти уравнения можно приравнять друг другу, и решением полученного уравнения относительно и будет
и = Kp/(1+Kp), K = ka/(kдн) (11)
Исходя из того, что число адсорбированных молекул на единице поверхности равно ин, то количество молей A на единицу поверхности равно
A = ин/NA (12)
Максимальная адсорбция:
A? = н/ NA (13)
Тогда уравнение изотермы адсорбции Ленгмюра, связывающее адсорбцию с давлением газа над адсорбентом имеет вид:
A = A? Kp/(1+Kp) (14)
Аналогичным путём выводится уравнение изотермы адсорбции Ленгмюра, связывающее адсорбцию с концентрацией:
Г = Г? C/(C+b) (16),
С - равновесная концентрация адсорбируемого вещества в растворе.
Полимолекулярная адсорбция. Уравнение БЭТ
Многие изотермы адсорбции имеют форму, отличную от изотермы адсорбции Ленгмюра. Пример: S-образные кривые, часто наблюдаемые при адсорбции паров
С. Брунауэр, П. Эммет, Дж. Теллер предложили теорию, по которой молекулы из газовой фазы могут адсорбироваться поверх уже адсорбированных молекул (Харкинс предложил ей название "теория БЭТ" по первым буквам фамилий авторов). Авторы принимали теорию Ленгмюра о динамическом характере адсорбционного равновесия и справедливость уравнения Ленгмюра для каждого адсорбционного слоя. Уравнение изотермы адсорбции БЭТ:
y/V(1 - y) = 1/CVm + (C - 1)y/VmC (15)
Уравнение изотермы адсорбции Фрейндлиха
Теория Ленгмюра даёт нам идеальную картину процесса адсорбции. С учётом разности расстояний между активными центрами, зависимости их друг от друга, взаимодействий между адсорбированными молекулами и т.д. вид изотермы адсорбции усложняется.
Г. Фрейндлих показал, что при T = const удельная адсорбция (число молей адсорбированного газа или растворённого вещества, приходящееся на единицу массы адсорбента), обозначаемая x/m, пропорциональна равновесному давлению (для газов) или равновесной концентрации (для веществ, адсорбируемых из раствора) адсорбируемого вещества, возведённым в степень меньше единицы.
x/m = aCn, x/m = aPn (16)
Ионная адсорбция. Иониты
При адсорбции ионов из раствора адсорбируется чаще всего один тип ионов. Адсорбция может проходить по двум механизмам:
1. Обменная адсорбция. При этом вместо ионов, адсорбируемых из раствора твёрдой фазой, из твёрдой фазы выделяется эквивалентное количество ионов того же знака. Примером такой адсорбции является адсорбция ионов солей ионитами (например, ионообменными смолами).
Иониты - это высокомолекулярные соединения, при диссоциации выделяющие в воду большое количество одноатомных ионов и высокомолекулярный ион противоположного знака. По типу выделяемых ионов они делятся на 2 класса: катиониты и аниониты. При диссоциации катионитов образуется высокомолекулярный анион, в воду выделяется множество катионов. При диссоциации анионитов, соответственно, происходит выделение в воду анионов.
По структуре иониты различают гелевые и макропористые. Гелевые иониты состоят из связанных между собой полимерных цепей. Для осуществления реакции ионного обмена они должны набухнуть. Набухание - это процесс проникновения растворителя в пространство между полимерными цепями ионита. Этот процесс занимает достаточно длительное время, поэтому в практической деятельности чаще применяются макропористые иониты. Их получают, проводя синтез полимера в присутствии соответствующего растворителя. После синтеза растворитель отмывают или отгоняют.
Процесс ионного обмена выглядит следующим образом. Вначале ион, содержащийся в растворе - он называется вытесняющий ион - попадает на поверхность ионита, потом диффундирует в объём ионита туда, где происходит акт обмена. Вытесняемый ион диффундирует из объёма ионита к его поверхности и переходит в раствор.
2. Специфическая адсорбция заключается в поглощении твёрдой фазой ионов, достраивающих её кристаллическую решётку. При этом вокруг фазы образуется слой противоионов. Формируется двойной электрический слой.
Строение двойного электрического слоя наиболее точно описывается современной теорией Штерна:
1. Поверхность твёрдой фазы адсорбирует ионы, достраивающие её кристаллическую решётку - потенциалопределяющие ионы
2. Адсорбционные силы принимают участие и в образовании первого слоя противоионов - адсорбционного слоя. Ионы этого слоя притягиваются к заряженной поверхности твёрдой фазы электростатическими силами и затем адсорбируются
3. За адсорбционным слоем образуется диффузный слой противоионов. Количество ионов в нём такое, что они полностью нейтрализуют оставшийся противоположный заряд потенциалопределяющих ионов
Потенциал диффузного слоя (ж-потенциал) - это электрокинетический потенциал коллоидной частицы, величина которого имеет большое значение во многих явлениях в коллоидах.
Двойной электрический слой стабилизирует мицеллы - частицы, составляющие дисперсную фазу гидрозолей.
2. Задачи
жидкость адгезия межмолекулярный
Задача 1. Мышьяк образует два оксида, из которых один содержит 65,2% (масс.) As, а другой 75,7% (масс.) As. Определить эквивалентные массы мышьяка в обоих случаях.
Дано: w1(As)=65,2%, w2(As)=75,7%
Решение: w1(O)=100%-w1(As)
w1(O)=100-65,2=34,85%
w2(O)=100-75,2=24,3%
Э(O)=A(O)/2; Э(О)=16/2=8 (г/моль)
Согласно закону эквивалентов:
1) 65,2г As эквивалентны 34,8г кислорода
Х г/моль As эквивалентны 8г/моль кислорода
Х=65,2*8/34,8=15 (г/моль)
2) 75,7г As эквивалентны 24,3г кислорода
Х г/моль As эквивалентны 8г/моль кислорода
Х=75,7*8/24,3=24,9 (г/моль)
Э1(As)=15 г/моль; Э2(As)=24,9 г/моль
Ответ: 15 г/моль; 24,9 г/моль
Задача 2. При нормальных условиях 1 г воздуха занимает объем 773 мл. Какой объем займет та же масса воздуха при 0оС и давлении, равном 93,3 кПа (700 мм рт.ст.)?
Дано:
Mвоздуха = 1 г
V1=773 мл
Р1=101,325 кПа
Р2=93,3 кПа
Т=const
V2=?
Решение: Согласно закону Бойля-Мариотта, при постоянной температуре, давление, производимое данной массой газа, обратно пропорционально объему газа:
Р2/Р1=V2/V1
V2=P1*V1/P2;
V2=101,325*773/93,3=839,5 (мл)
Ответ: 839,5 мл
Задача 3. Какой объем при нормальных условиях занимают 27*1021 молекул газа?
Дано: N=27*1021
Решение: 1 моль любого вещества содержит 6,02*1023 молекул (постоянная Авагадро, NA). Определим, какому количеству вещества соответствуют 27*1021 молекул:
n=N/NA;
n=27*1021/6,02*1023=4,485*10-2 (моль)
При нормальных условиях 1 моль любого газа занимает объем 22,4л (молярный объем, Vm). Определим, какой объем занимают 4.485*10-2 моль газа:
V=n*Vm;
V=4.485*10-2*22,4=1,00464 (л)
Ответ: 1,00464 л
Задача 4. При некоторой температуре плотность паров серы по азоту равна 9,14. Из скольких атомов состоит молекула серы при этой температуре?
Дано:
DN2=9,14
Решение:
M(SN)=DN2*M(N2);
M(SN)=9,14*28=255,92 (г/моль)
N(S)=M(SN)/M(S);
N(S)=255,92/32?8
Ответ: Из 8 атомов.
Задача 5. Плотность этилена по кислороду равна 0,875. Определить молекулярную массу газа.
Дано: DO2=0,875
Решение:
Мэтилена=DO2*M(О2);
Mэтилена=0,875*32=28 (г/моль)
Ответ: Мэтилена=28 г/моль
Задача 6. Вычислить массу 1 мі воздуха при 17°С и давлении 83,2 кПа (624 мм рт. ст.).
Дано:
Vвоздуха=1 мі
Т=17°С=290 К
Р=83,2 кПа
Решение:
По уравнению Клайперона-Менделеева:
mвоздуха=Р*Vвоздуха*Мвоздуха/R*T
mвоздуха=83,2*1*29/8,31*290?1 (кг)
Ответ: 1кг.
Литература
1. А.И. Болдырев, Физическая и коллоидная химия - М: Высшая школа, 1974. - 504 с.
2. В.Н. Захарченко. Коллоидная химия. М: Высшая школа, 1989 г. - 226 с.
3. Н.Л. Глинка. Задачи и упражнения по общей химии. М: Интеграл-пресс, 2005 г. - 240 с.
3. Интернет-ресурс http://www.physchem.chimfak.rsu.ru/
4. Интернет-ресурс http://www.humuk.ru
5. Интернет-ресурс, Википедия - http://ru.wikipedia.org/
Размещено на Allbest.ru
...Подобные документы
Диффузионный и смешанный механизм адсорбции. Роль электростатических взаимодействий в процессе адсорбции ионогенных ПАВ на межфазной границе раздела жидкость–газ. Исследование динамического поверхностного натяжения водных растворов алкилсульфатов натрия.
дипломная работа [1,2 M], добавлен 10.02.2012Исследование кинетики адсорбции поверхностно-активных веществ на границе с газом или жидкостью, измерение динамического поверхностного натяжения водных растворов алкилсульфатов натрия, эффект появления максимума на изотерме поверхностного натяжения.
дипломная работа [2,2 M], добавлен 01.02.2012Получение лиофобных коллоидных систем, ее оптические свойства. Определение поверхностного натяжения растворов ПАВ и межфазного натяжения на границе двух несмешивающихся жидкостей сталагмометрическим методом. Коллоидная защита золей растворами ВМС.
реферат [148,3 K], добавлен 15.02.2016Природа поверхностной энергии. Особенности поверхностного натяжения и его зависимость от температуры. Самопроизвольные реакции в поверхностном слое. Положения, классификация и количественные характеристики адсорбции, виды соответственных процессов.
курсовая работа [27,3 K], добавлен 22.10.2011Когезия - взаимодействие (сцепление) молекул, атомов, ионов внутри одной фазы (гомогенной части системы). Когезионные и поверхностные силы. Адгезия (прилипание) - межфазное взаимодействие между поверхностями конденсированных тел разной природы.
реферат [22,9 K], добавлен 26.04.2008Частички газообразной, жидкой или твердой фазы в жидкости. Классификация различных дисперсных систем по размеру частиц дисперсной фазы, распределенной в дисперсионной среде. Удельная поверхность раздела фаз. Поверхностные процессы, адсорбция и адгезия.
презентация [94,0 K], добавлен 30.04.2014Адсорбция на границе раздела "твердое тело - газ" и "газ - жидкость". Классификация пористых тел по Дубинину. Капиллярно-конденсационный гистерезис. Теория объемного заполнения. Закон Генри и теория Лангмюра. Теория полимолекулярной адсорбции БЭТ.
реферат [94,4 K], добавлен 22.01.2009Лиофильные и лиофобные системы. Способы получения дисперсных систем. Определение границы поверхностного слоя. Методы измерения поверхностного натяжения. Зависимость поверхностного натяжения от температуры и концентрации. Полная поверхностная энергия.
реферат [63,1 K], добавлен 22.01.2009Поверхностное натяжение как результат асимметрии сил когезии на поверхности. Связь адсорбции поверхностно-активных веществ на границе жидкость-воздух с критическим параметром упаковки. Применение теории регулярных растворов к поверхностному натяжению.
реферат [1,1 M], добавлен 17.09.2009Основной закон смачивания. Адгезия, когезия и теплота смачивания. Влияние различных факторов на процесс смачивания. Влияние шероховатости и гетерогенности. Эффекты обогащения и обеднения области вблизи линии смачивания поверхностно-активными веществами.
курсовая работа [820,8 K], добавлен 25.02.2012Понятие и работа процессов когезии и адгезии, смачивание и растекание. Краевой угол смачивания, гидрофобные и гидрофильные поверхности. Эффект Марангони и адсорбция ионов на кристалле. Электрокинетические явления и потенциал. Правила составления мицелл.
реферат [55,1 K], добавлен 22.01.2009Характерные особенности изотерм динамического поверхностного натяжения водных растворов некоторых ПАВ и их взаимосвязь со свойствами раствора. Исследование динамического поверхностного натяжения методом максимального давления в газовом пузырьке.
дипломная работа [788,3 K], добавлен 10.02.2012Метод капиллярного электрофореза: история появления, основной принцип. Двойной электрический слой. Схема процессов, происходящих на поверхности кварца. Формирование двойного электрического слоя и ход потенциала на границе раздела кварц-электролит.
реферат [217,2 K], добавлен 08.01.2012Потенциометрическое титрование в лабораторной практике. Возникновение потенциала на границе раздела двух сред. Кислотно-основное титрование (нейтрализация). Аппаратура для проведения анализа. Результаты ориентировочного титрования стандартизации NaOH.
курсовая работа [1,1 M], добавлен 25.12.2011Гетерогенные и гомогенные системы. Равновесие, устанавливающееся на границе раздела фаз. Межмолекулярные взаимодействия между растворителем и веществом с образованием сольватов. Концентрация насыщенного раствора. Природы вещества и растворителя.
презентация [1,4 M], добавлен 25.03.2014Изучение свойств поверхности материала, поверхностного натяжения. Определение величины поверхностной энергии. Понятие и причина когезии, адгезии, абсорбции, адсорбции. Рассмотрение процесса смачивания. Описание модели получения пленки полистирола.
презентация [3,3 M], добавлен 28.12.2015Механизмы процессов плавления и новой рекристаллизации кристаллических полимеров. Природа явлений, происходящих при нагревании в области плавления полимера. Подробное рассмотрение температурного режима плавления как этапов рекристаллизации полимеров.
статья [484,3 K], добавлен 22.02.2010Изучение процесса самопроизвольного изменения концентрации вещества на границе раздела фаз. Рассмотрение основных теорий адсорбции. Ознакомление с характеристиками обратного процесса - десорбции. Избирательная адсорбция ионов из раствора электролита.
презентация [5,1 M], добавлен 10.11.2015Изучение характерных особенностей изотерм динамического поверхностного натяжения водных растворов ПАВ, полученных методом максимального давления в газовом пузырьке. Влияние температуры и концентрации ПАВ на мицеллообразование в коллоидном растворе.
дипломная работа [3,9 M], добавлен 01.02.2012Растекание жидкостей по поверхностям. Концепция критического поверхностного натяжения твердых тел. Роль поверхностно-активных веществ: улучшение, ухудшение смачивания и растекания. Краевой угол капли жидкости на плоской поверхности твердого тела.
реферат [530,9 K], добавлен 17.09.2009