Технология производства аммиака
Катализаторы и промышленные способы синтеза аммиака, и сырье для его производства. Ресурсы атмосферного азота и сырьевая база азотной промышленности. Виды топлив для получения водородсодержащего газа. Значение воды в химической отрасли промышленности.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 14.12.2013 |
Размер файла | 26,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
12
Содержание
Введение
1. Промышленные способы синтеза аммиака
2. Сырье для производства аммиака
2.1 Азот
2.2 Виды топлив для получения водородсодержащего газа
2.3 Вода
3. Катализаторы, используемые для синтеза аммиака
Заключение
Список литературы
Введение
Во всех индустриально развитых странах азотная промышленность является в настоящее время одной из основных ведущих отраслей. Доказательством этого служат цифры, характеризующие стремительный рост производство связанного азота. В 1955г во всем мире было произведено аммиака около 8 млн. т, в 1965г - 20 млн. т, в 1975г - 66 млн. т, в 1980г - 100 млн. т, в 1985 - 120 млн. т.
Такое бурное развитие азотной промышленности диктуется в первую очередь необходимостью удовлетворения неудержимо растущего населения земного шара продуктами земледелия. Без минеральных удобрений, и в первую очередь азотных, невозможно решить задачи интенсификации сельского хозяйства.
Производству азотных удобрений и их основы, аммиака, в нашей стране всегда уделялось первостепенное внимание. Среднегодовой прирост темпа аммиака за последние 20 лет составлял 10-19%.
Производство аммиака, как известно, отличается большой энергоемкостью. Историю развития производства аммиака можно рассматривать как борьбу за повышение полезного использования электрической, тепловой, и механической энергии. На первых установках производства аммиака к. п. д. на превышал 10-11%. Использование природного газа в производстве аммиака увеличило общий энергетический к. п. д. до 40%. . Современные энерготехнологические агрегаты аммиака практически автономны и имеют производительность 450-500 тыс. т. в год и общий энергетический к. п. д.50-52% .Это обеспечено достижениями химической технологии, химического и энергетического машиностроения, металлургической и приборостроительной промышленности, а также высокой квалификацией строителей, монтажников, эксплуатационников.
1. Промышленные способы синтеза аммиака
В производстве синтетического аммиака применяется давление от 10 до 100 МПа. В зависимости от применяемого давления различают системы низкого давления (10-15 МПа), среднего давления (25-60 МПа) и высокого давления (60-100 МПа). Наиболее распространены системы, работающие при среднем давлении, т. к. при этих условиях удачно решаются вопросы выделения аммиака при достаточной скорости процесса в контактном аппарате. Азотоводородная смесь при прохождении через слой катализатора не полностью превращается в аммиак. В газе на выходе из контактного аппарата содержание аммиака составляет 14-20%. Газовая смесь, выходящая из контактного аппарата, охлаждается, аммиак конденсируется и отделяется от газа, а непрореагировавшая азотоводородная смесь при помощи циркуляционного компрессора возвращается вновь в контактный аппарат. Свежая азотоводородная смесь, в количестве, отвечающем массе образовавшегося в контактном аппарате аммиака, добавляется к оборотной смеси [см Приложение 1].
В систему с циклическим процессом должна поступать по возможности более чистая азотоводородная смесь. Практически получить азотоводородную смесь, абсолютно свободную от примесей, крайне трудно. При циркуляционной схеме процесса даже при минимальном содержании инертных примесей (CH4 , Ar) в поступающей на синтез свежей азотоводородной смеси происходит постепенное накопление примесей в цикле, что снижает производительность колонны синтеза. Частично примеся растворяются в конденсирующемся жидком аммиаке и выводятся из цикла. Однако вывод примесей с продукционным аммиаком не компенсирует притока их со свежей азотоводородной смесью, и в производственной практике приходится прибегать к выбросу части циркулирующей газовой смеси (продувочные газы), чтобы снизить содержание примесей в цикле. В отечественной промышленности получили распространение энерго-технологические системы со средним давлением (30-32 МПа), в которых теплота реакции используется для производства пара. Схема цикла синтеза такой установки показана на рисунке 1. Подготовленная к синтезу азотоводородная смесь подается в колонну синтеза, где происходит образование аммиака. Прореагировавшая азотоводородно-аммиачная смесь выводится из колонны синтеза при 4000 С, подается в водяной холодильник, где охлаждается до температуры 30-400С, и затем в сепаратор. В водяном холодильнике при №0 МПа конденсируется лишь часть аммиака. Далее газ турбоциркуляционным компрессором подается в колонну и испаритель, где за счет испарении жидкого аммиака, получают холод, необходимый для более полного выделения аммиака из газовой смеси. Из конденсационной колонны га снова поступает в колонну синтеза. Свежая азотоводородная смесь подается, как правило, в нижнюю часть конденсационной колонны, где она очищается промывкой жидким аммиаком от следов влаги, масла и СО2.
2. Сырье для производства аммиака
Сырьем для получения продуктов в азотной промышленности является атмосферный воздух, вода и различные виды топлива.
В число постоянных составляющих воздуха входят следующие газы (в% по объему): азот - 78,16; кислород - 20,90; аргон - 0,93; гелий, неон, криптон, ксенон и другие инертные газы - 0,01. В технических расчетах принимают, что воздух содержит 79% азота и 21% кислорода.
Для синтеза аммиака в некоторых схемах необходима азотоводородная смесь в соотношении N2: H2=1: 3.
2.1 Азот
Азот получают разделением воздуха или же совместно с водородом в виде азотоводородной смеси. В других схемах используют и чистый жидкий азот для тонкой очистки синтез - газа от вредных примесей, и газообразный, вводя его в строго корректируемом соотношении в конвертированный газ. Экономически выделение азота из атмосферы обусловлено дешевизной метода сжижения очищенного воздуха (пары воды, CO2, пыль, другие примеси удалены). Последовательные циклы сжатия, охлаждения и расширения такого воздуха приводят к его сжижению. Жидкий воздух подвергают фракционной перегонке при медленном подъеме температуры. Первыми выделяются благородные газы, затем азот, и остается жидкий кислород. Очистка достигается многократностью процессов фракционирования. Таким методом производят многие миллионы тонн азота ежегодно, преимущественно для синтеза аммиака, который является исходным сырьем в технологии производства различных азотсодержащих соединений для промышленности и сельского хозяйства. Кроме того, очищенную азотную атмосферу часто используют, когда недопустимо присутствие кислорода.
Поскольку ресурсы атмосферного азота огромны, то сырьевая база азотной промышленности в основном определяется вторым видом сырья - топливом, применяемым для получения водорода или водородсодержащего газа.
2.2 Виды топлив для получения водородсодержащего газа
В настоящее время основным сырьем в производстве аммиака является природный газ.
Синтез-газ из твердых топлив. Первым из основных источников сырья для получения синтез - газа явилось твердое топливо, которое перерабатывалось в газогенераторах водяного газа по следующим реакциям:
C+H2O - CO +H2; ДH>0
C+O2 -CO2; ДH<0
Такой способ получения заключается в попеременной подаче через слой крупнокускового твердого топлива (антрацита, кокса, полукокса) воздушного и парового дутья. Синтез - газ получают на стадии парового дутья, а необходимая температура слоя топлива достигается в течение стадии воздушного дутья. Цикл работы генератора составляет 3-5 мин. Полученный водяной газ содержит 50-53% Н2 и ~365 СО.
Для дальнейшего использования в производстве водяной газ необходимо очистить от сернистых соединений и провести конверсию оксида углерода по реакции:
CO+H2O-CO2+H2; ДH<0
а затем удалить диоксид углерода полностью в случае его применения для синтеза аммиака.
Недостатками процесса являются его периодичность, низкая единичная производительность газогенератора, а также высокие требования к сырью по количеству и температуре плавления золы, его гранулометрическому составу и другим характеристикам.
Другим направлением является газификация топлива в виде пыли. Этот процесс позволяет использовать практически любые виды топлива. Его особенностями является высокая турболизация в зоне реакции за счет подачи встречных потоков топливной смеси и хорошее смешение парокислородной смеси с топливной пылью.
Синтез - газ из жидких углеводородов. По технологическим схема переработки в синтез - газ жидкие топлива можно разделить на две группы. Первая группа включает топливо, перерабатываемые высокотемпературной кислородной конверсией. Сюда относятся тяжелые жидкие топлива - мазут, крекинг - остатки и т.п. Вторая группа - легкие прямоточные дистилляты (нафта), имеющие конечную температуру кипения не выше 200-220°С; она включает бензин, лигроины, смеси светлых дистиллятов. Вторая группа жидких топлив перерабатывается в синтез - газ каталитической конверсией водяным паром в трубчатых печах.
Достоинством этого метода является возможность получения синтез - газ под давлением, легкость регулирования состава синтез - газа, малый расход электроэнергии. К недостаткам можно отнести высокие требования к углеводородному составу исходного сырья по содержанию в нем непредельных и циклических углеводородов, серы и других примесей, большой удельный расход углеводородов.
Синтез-газ из природного газа. Синтез - газ из углеводородных газов (природного, попутного, газов переработки других топлив) в настоящее время является основным источником получения аммиака. По использованию окислителя и технологическому оформлению можно выделить следующие варианты процесса получения водородосодержащих газов:
высокотемпературная кислородная конверсия, каталитическая парокислородная конверсия в шахтных реакторах, каталитическая паро-углекислотная конверсия в трубчатых печах.
Окисление метана (основного компонента углбеводородных газов) при получении синтез - газа протекает по следующим основным суммарным реакциям:
CH4+0,5O2 = CO+2H2; ДH=-35,6 кДж
CH4+H2O = CO+3H2; ДH=206,4 кДж
CH4+CO2 = 2CO+2H2; ДH=248,3 кДж
2.3 Вода
Особое место среди природных ресурсов занимает вода. Она играет важную роль и в химической отрасли промышленности. Будучи универсальным растворителем и одним из наиболее распространенных катализаторов, вода дает возможность осуществлять многие химические реакции с большей скоростью (в растворах или в присутствии ее следов). Кроме того, вода используется как теплоноситель из-за ее большой теплоемкости, доступности и безопасности в применении. Ею охлаждают реагирующие массы, нагретые в результате экзотермических реакций. Водяным паром или горячей водой подогревают взаимодействующие вещества для ускорения реакций или проведения эндотермических процессов.
Современные химические комбинаты расходуют миллионы кубических метров воды в сутки. Например, для получения 1 т аммиака требуется 1500 м3 воды. Поэтому химические предприятия строят рядом с водными источниками.
3. Катализаторы, используемые для синтеза аммиака
Для реакции синтеза аммиака катализаторами являются железо, платина, осмий, марганец, вольфрам, уран, родий и другие металлы, атомы которых характеризуются незаполненным вторым снаружи электронным слоем. Особенно высокая активность обнаружена при лабораторных исследованиях у осмия и урана. Однако условия использования катализатора в лаборатории и на заводе, перерабатывающем в сутки сотни тысяч и миллионы кубических метров газа, различны. Понадобились большие усилия, чтобы найти катализаторы, удовлетворяющие производственным требованиям.
Промышленный катализатор должен быть активным при относительно низких температурах в связи с рассмотренной выше зависимостью состояния равновесия реакции от температуры. Активность катализатора должна поддерживаться на постоянном и достаточно высоком уровне в течение длительного времени. Присутствие в газе некоторых ядов, полное удаление которых является сложным и дорогим процессом, не должно оказывать существенного влияния на активность катализатора. Наконец, катализатор должен быть дешев. Этим требованиям не удовлетворяют, например: осмий, платина, уран, железо. Первые два металла активные и устойчивые катализаторы, но дороги; уран -- активный катализатор, но легко отравляется водяными парами; восстановленное металлическое железо -- активный и дешевый, но неустойчивый катализатор.
Для каждого катализатора характерен определенный оптимальный температурный режим. Катализаторы, приготовленные из железа или железной руды, дают возможность вести процесс при температурах: не ниже 450° и не выше 600°. Значительно отличаются от них в этом отношении железные активированные катализаторы, полученные комплексных цианистых солей, например железистосинеродистого калий-алюминия. Эти катализаторы активны уже при 400° и ниже.
Повышение активности катализатора -- эффективный способ увеличения производительности аппарата. Благодаря усовершенствованию методов получения катализаторов, удалось значительно повысить производительность колонн синтеза.
При очень высоких давлениях равновесие настолько значительно смещается в сторону образования аммиака, что представляется возможным повысить температуру до 800--900°, при которой (под давлением 500 ат) реакция протекает в отсутствие специально вводимых в аппарат катализаторов. При этих условиях, по-видимому, достаточно каталитического действия стенок реакционного аппарата, -- в лабораторном аппарате в отсутствие катализаторов реакция протекала с большой скоростью и была достигнута высокая степень превращения исходной смеси.
Заключение
Соединения азота имеют исключительно большое значение для всего народного хозяйства. В связи с этим азотная промышленность по темпам развития опережает другие подотрасли химической промышленности.
Опережающими темпами предусматривается развитие сырьевой базы для полного использования мощностей по производству минеральных удобрений и химических кормовых добавок.
Список литературы
1. Общая химическая технология: в 2 т. / под ред. И. П. Мухленова. -- 5-е изд., стер. -- М.: Альянс, 2009. Т. 2: Важнейшие химические производства / И. П. Мухленов [и др.]. -- 2009. -- 263 с.: ил. -- Библиогр.: с. 262.
2. http://ankomreactive.ru/ammiak
Размещено на Allbest.ru
...Подобные документы
Сырье для производства аммиака и технологический процесс производства. Характеристика химической и принципиальной схемы производства. Методы абсорбции жидкими поглотителями. Колонна синтеза аммиака с двойными противоточными теплообменными трубками.
контрольная работа [2,0 M], добавлен 11.12.2013Основные свойства и способы получения синтетического аммиака из природного газа. Использование аммиака для производства азотной кислоты и азотсодержащих солей, мочевины, синильной кислоты. Работа реакторов идеального вытеснения и полного смешения.
курсовая работа [1,0 M], добавлен 20.11.2012Характеристика исходного сырья для получения продуктов в азотной промышленности. Физико-химическое основы процеса. Характеристика целевого продукта. Технологическое оформление процесса синтеза аммиака. Охрана окружающей среды в производстве аммиака.
курсовая работа [267,9 K], добавлен 04.01.2009История получения аммиака. Строение атома азота. Образование и строение молекулы аммиака, ее физико-химические свойства. Способы получения вещества. Образование иона аммония. Токсичность аммиака и его применение в промышленности. Реакция горения.
презентация [3,9 M], добавлен 19.01.2014Азотная кислота как важнейший продукт химической промышленности. Производство концентрированной и неконцентрированной азотных кислот. Концентрирование нитратом магния. Прямой синтез азотной кислоты из окислов азота. Катализаторы окисления аммиака.
курсовая работа [1,5 M], добавлен 29.03.2009Исследование свойств аммиака как нитрида водорода, бесцветного газа с резким запахом и изучение физико-химических основ его синтеза. Определение активности катализатора синтеза аммиака, расчет материального и теплового баланса цикла синтеза аммиака.
курсовая работа [267,4 K], добавлен 27.07.2011В настоящее время в промышленных масштабах азотная кислота производится исключительно из аммиака. Физико-химические основы синтеза азотной кислоты из аммиака. Общая схема азотнокислотного производства. Производство разбавленной азотной кислоты.
контрольная работа [465,6 K], добавлен 30.03.2008Сущность технологического процесса промышленного синтеза аммиака на установке 600 т/сутки. Анализ зависимости выхода аммиака от температуры, давления и времени контактирования газовой смеси. Оптимизация химико-технологического процесса синтеза аммиака.
курсовая работа [963,0 K], добавлен 24.10.2011Жизнь и научная работа Карла Боша и Фрица Габера. Создание промышленного способа синтеза аммиака и фиксации атмосферного азота. Деятельность ученых в период Первой мировой войны. Вручение Нобелевской премии Габеру. Современное производство аммиака.
курсовая работа [907,4 K], добавлен 04.01.2012История развития промышленного производства азотной кислоты, особенности ее получения и сферы применения. Методика проведения расчета производительности, тепловых и конструктивных расчетов оборудования цеха по производству азотной кислоты из аммиака.
курсовая работа [63,8 K], добавлен 09.05.2010Порядок получения азота взаимодействием хлорида аммония с нитритом натрия, правила проведения данного опыта в лабораторных условиях и техника безопасности. Растворение аммиака в воде и его синтез. Варианты получения хлорида аммония. Окисление аммиака.
лабораторная работа [15,1 K], добавлен 02.11.2009Физические и химические свойства аммиака. Промышленный способ получения. Физиологическое действие нашатырного спирта на организм. Выбор оптимальных условий процесса синтеза аммиака. Влияние давления, температуры и катализаторов. Пассивация и регенерация.
реферат [318,6 K], добавлен 04.11.2015Характеристика способов получения аммиака. Цианамидный процесс - первый промышленный процесс, который использовался для получения аммиака. Работа современного аммиачного завода. Десульфуратор как техническое устройство по удалению серы из природного газа.
реферат [22,1 K], добавлен 03.05.2011Сущность промышленного получения азотной кислоты методом окисления аммиака кислородом воздуха. Обоснование принятой схемы производства. Оценка выпускаемой продукции, исходного сырья, вспомогательных материалов. Расчеты материальных балансов процессов.
курсовая работа [1,1 M], добавлен 11.08.2012Процесс производства аммиака. Очистка газа от двуокиси углерода. Метод низкотемпературной абсорбции метанолом. Равновесие основной реакции при различных температурах. Термодинамический анализ процесса очистки конвертированного газа от диоксида углерода.
курсовая работа [374,1 K], добавлен 21.04.2015Серная кислота как важнейший продукт химической промышленности, ее свойства и применение, сырье для производства. Совершенствование традиционных технологий ее получения: проблемы и пути решения. Описание аппаратурного оформления процесса синтеза.
курсовая работа [666,6 K], добавлен 26.05.2016Азотная кислота – одна из важнейших минеральных кислот. По объему производства в химической промышленности занимает 2 место после серной. Азотная кислота применяется для производства многих продуктов, используемых в промышленности и сельском хозяйстве.
курсовая работа [85,8 K], добавлен 04.01.2009Технологические свойства азотной кислоты, общая схема азотнокислотного производства. Физико-химические основы и принципиальная схема процесса прямого синтеза концентрированной азотной кислоты, расходные коэффициенты в процессах производства и сырье.
реферат [2,3 M], добавлен 08.04.2012Физические и физико-химические свойства азотной кислоты. Сырье для производства азотной кислоты. Характеристика целевого продукта. Процесс производства слабой (разбавленной) и концентрированной азотной кислоты. Действие на организм и ее применение.
презентация [1,6 M], добавлен 05.12.2013Выделяющийся аммиак. Соли аммония. Водород в аммиаке. Образование амидов металлов. Окислительно-восстановительная реакция. Водные растворы аммиака. Сульфат аммония. Нитрат аммония. Хлорид аммония или нашатырь. Промышленные установки синтеза аммиака.
дипломная работа [35,3 K], добавлен 14.12.2008