Свойства графена

Изучение оптических, электрических, механических и термических свойств графена. История открытия рассматриваемого химического элемента. Методы получения и область применения углерода. Вклад Гейма и Новосёлова в изучение электронных свойств графена.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 18.12.2013
Размер файла 729,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КУРСОВАЯ РАБОТА

Свойства графена

Авторы:

Гольдт Илья Валерьевич

Шляхтин Олег Александрович

Введение

На сегодняшний день графен самый тонкий материал, известный человечеству, толщиной всего в один атом углерода. Популярность графена среди исследователей и инженеров растет день ото дня, поскольку он обладает необычными оптическими, электрическими, механическими и термическими свойствами. Поскольку графен был открыт совсем недавно, его свойства изучены не до конца, но уже точно известна его уникальность, поэтому именно он стал объектом изучения нашей работы.

Интересные факты о графене:

1. В статье, опубликованной 10 ноября 2005 года в журнале Nature, Константин Новосёлов и Андрей Гейм утверждают, что электрические заряды в графене ведут себя как релятивистские частицы с нулевой эффективной массой. Эти частицы, известные как без массовые фермионы Дирака, описываются уравнением Дирака, хотя в эффекте Шубникова-де Гааза (осцилляции магнетосопротивления) наблюдаемые осцилляции соответствуют конечной циклотронной массе;

2. Так как закон дисперсии для носителей идентичен закону для без массовых частиц, графен может выступать в качестве экспериментальной лаборатории для квантовой электродинамики;

3. Квантовый эффект Холла в графене может наблюдаться даже при комнатной температуре благодаря большой циклотронной энергии, при которой температурное размытие функции распределения Ферми-Дирака меньше этой энергии (это расстояние между первым и нулевым уровнями Ландау равно 1200 K при магнитном поле 9 Т);

4. При сворачивании графена в цилиндр получается нанотрубка. В зависимости от конкретной схемы сворачивания графитовой плоскости, нанотрубки могут обладать или металлическими, или полупроводниковыми свойствами;

5. В графене отсутствует вигнеровская кристаллизация;

6. В графене нарушается приближение Борна-Оппенгеймера (адиабатическое приближение), гласящее, что в силу медленного движения ионных остовов решётки их можно включить в рассмотрение как возмущение, известное как фононы решётки, - основное приближение, на котором строится зонная теория твёрдых тел;

7. За новаторские эксперименты с графеном Нобелевская премия 2010 года по физике присуждена Андрею Гейму и Константину Новосёлову;

8. Термоэлектрический эффект для графена превосходит резистивный омический нагрев, что в перспективе позволит создание на его базе схем, не требующих охлаждения;

9. В двойном слое графена электроны ведут себя как жидкий кристалл.

Задачи:

1) Ознакомиться с углеродом;

2) Рассмотреть графен как модификацию углерода;

3) Узнать о применении углерода;

4) Изучить биографию Гейма Андрея и Новосёлова Константина.

Цель: Изучить свойства графена.

1. Общая характеристика графена

Углерод.

Химический элемент IV группы периодической системы Менделеева, атомный номер 6, атомная масса 12,011. Известны два стабильных изотопа: 12С (98,892%) и 13С (1,108%). Из радиоактивных изотопов наиболее важен 14С с периодом полураспада (Т? = 5,6 * 103 лет). Небольшие количества 14С (около 2 * 10 - 10% по массе) постоянно образуются в верхних слоях атмосферы при действии нейтронов космического излучения на изотоп азота 14N. По удельной активности изотопа 14С в остатках биогенного происхождения определяют их возраст. 14С широко используется в качестве изотопного индикатора.

Историческая справка.

Углерод известен с глубокой древности. Древесный уголь служил для восстановления металлов из руд, алмаз - как драгоценный камень. Значительно позднее стали применять графит для изготовления тиглей и карандашей.

В 1778 году К. Шееле, нагревая графит с селитрой, обнаружил, что при этом, как и при нагревании угля с селитрой, выделяется углекислый газ. Химический состав алмаза был установлен в результате опытов А. Лавуазье (1772) по изучению горения алмаза на воздухе и исследований С. Теннанта (1797), доказавшего, что одинаковые количества алмаза и угля дают при окислении равные количества углекислого газа. Углерод был признан химическим элементом в 1789 году Лавуазье. Латинское название саrboneum Углерод получил от carbo - уголь.

Распространение Углерода в природе.

Среднее содержание Углерода в земной коре 2,3 * 10 - 2% по массе (1 * 10 - 2 в ультраосновных, 1 * 10 - 2 - в основных, 2 * 10-2 - в средних, 3 * 10 - 2 - в кислых горных породах). Углерод накапливается в верхней части земной коры (биосфере): в живом веществе 18% Углерода, древесине 50%, каменном угле 80%, нефти 85%, антраците 96%. Значительная часть Углерода литосферы сосредоточена в известняках и доломитах.

Число собственных минералов Углерода - 112, исключительно велико число органических соединений Углерода - углеводородов и их производных.

С накоплением Углерода в земной коре связано накопление и многих других элементов, сорбируемых органическим веществом и осаждающихся в виде нерастворимых карбонатов, и т. д.

Большую геохимическую роль в земной коре играют СО2 и угольная кислота. Огромное количество СО2 выделяется при вулканизме - в истории Земли это был основные источник Углерода для биосферы.

По сравнению со средним содержанием в земной коре человечество в исключительно больших количествах извлекает Углерод из недр (уголь, нефть, природный газ), так как эти ископаемые - основной источник энергии.

Огромное геохимическое значение имеет круговорот Углерода.

Углерод широко распространен также в космосе, на Солнце он занимает 4-е место после водорода, гелия и кислорода.

Физические свойства Углерода.

Известны несколько кристаллических модификаций Углерода: графит, алмаз, карбин, лонсдейлит и другие. Графит - серо-черная, непрозрачная, жирная на ощупь, чешуйчатая, очень мягкая масса с металлическим блеском. Построен из кристаллов гексагональной структуры. При комнатной температуре и нормальном давлении (0,1 Мн/м2, или 1 кг/с/см2) графит термодинамически стабилен. Алмаз - очень твердое, кристаллическое вещество. Кристаллы имеют кубическую гранецентрированную решетку. При комнатной температуре и нормальном давлении алмаз метастабилен. Заметное превращение алмаза в графит наблюдается при температурах выше 1400°С в вакууме или в инертной атмосфере. При атмосферном давлении и температуре около 3700°С графит возгоняется. Жидкий Углерод может быть получен при давлениях выше 10,5 Мн/м2 (105 кгс/см2) и температурах выше 3700°С. Для твердого Углерода (кокс, сажа, древесный уголь) характерно также состояние с неупорядоченной структурой - так называемых "аморфный" Углерод, который не представляет собой самостоятельной модификации, в основе его строения лежит структура мелкокристаллического графита.

Нагревание некоторых разновидностей "аморфного" Углерода выше 1500-1600°С без доступа воздуха вызывает их превращение в графит. Физические свойства "аморфного" Углерода очень сильно зависят от дисперсности частиц и наличия примесей. Плотность, теплоемкость, теплопроводность и электропроводность "аморфного" Углерода всегда выше, чем графита. Карбин получен искусственно. Он представляет собой мелкокристаллический порошок черного цвета (плотность 1,9-2 г/см3). Построен из длинных цепочек атомов С, уложенных параллельно друг другу. Лонсдейлит найден в метеоритах и получен искусственно.

Химические свойства Углерода.

Конфигурация внешней электронной оболочки атома Углерода 2s22p2. Для Углерода характерно образование четырех ковалентных связей, обусловленное возбуждением внешней электронной оболочки до состояния 2sp3. Поэтому Углерод способен в равной степени как притягивать, так и отдавать электроны.

Химическая связь может осуществляться за счет sp3-, sp2- и sp- гибридных орбиталей, которым соответствуют координационные числа 4, 3 и 2. Число валентных электронов Углерода и число валентных орбиталей одинаково, это одна из причин устойчивости связи между атомами Углерода.

Уникальная способность атомов Углерода соединяться между собой с образованием прочных и длинных цепей и циклов привела к возникновению громадного числа разнообразных соединений Углерода, изучаемых органической химией.

В соединениях Углерод проявляет степени окисления -4, +2, +4. Атомный радиус 0,77A, ковалентные радиусы 0,77A, 0,67A, 0,60A соответственно в одинарной, двойной и тройной связях, ионный радиус С4, 2,60A, С4, 0,20A. При обычных условиях Углерод химически инертен, при высоких температурах он соединяется со многими элементами, проявляя сильные восстановительные свойства. Химическая активность убывает в ряду: "аморфный" Углерод, графит, алмаз, взаимодействие с кислородом воздуха (горение) происходит соответственно при температурах выше 300-500°С, 600-700°С и 850-1000°С с образованием оксида углерода (IV) СО2 и оксида углерода (II) СО.

СО2 растворяется в воде с образованием угольной кислоты. В 1906 году О. Дильс получил не оксид Углерода С3О2. Все формы Углерода устойчивы к щелочам и кислотам и медленно окисляются только очень сильными окислителями (хромовая смесь, смесь концентрированных HNO3 и КСlO3 и других). "Аморфный" Углерод реагирует с фтором при комнатной температуре, графит и алмаз - при нагревании. Непосредственное соединение Углерода с хлором происходит в электрической дуге, с бромом и йодом Углерод не реагирует, поэтому многочисленные галогениды углерода синтезируют косвенным путем. Из оксигалогенидов общей формулы СОХ2 (где X - галоген) наиболее известна хлороксид СОСl (фосген). Водород с алмазом не взаимодействует с графитом и "аморфным" Углеродом реагирует при высоких температурах в присутствии катализаторов (Ni, Pt): при 600-1000°С образуется в основном метан СН4, при 1500-2000°С - ацетилен С2Н2;в продуктах могут присутствовать также других углеводороды, например этан С2Н6, бензол С6Н6. Взаимодействие серы с "аморфным" Углеродом и графитом начинается при 700-800°С, с алмазом при 900-1000°С, во всех случаях образуется сероуглерод CS2. Другие соединения Углерода, содержащие серу (тиооксид CS, тионедооксид С3S2, серооксид COS и тиофосген CSCl2), получают косвенным путем. При взаимодействии CS2 с сульфидами металлов образуются тиокарбонаты - соли слабой тиоугольной кислоты. Взаимодействие Углерода с азотом с получением циана (CN)2 происходит при пропускании электрического разряда между угольными электродами в атмосфере азота. Среди азотсодержащих соединений Углерода важное практическое значение имеют цианистый водород HCN (Синильная кислота) и его многочисленные производные: цианиды, галогенцианы, нитрилы и других При температурах выше 1000°С Углерод взаимодействует со многими металлами, давая карбиды. Все формы Углерода при нагревании восстанавливают оксиды металлов с образованием свободных металлов (Zn, Cd, Cu, Рb и других) или карбидов (СаС2, Мо2С, WC, ТаС и других). Углерод реагирует при температурах выше 600-800°С с водяным паром и углекислым газом (Газификация топлив). Отличительной особенностью графита является способность при умеренном нагревании до 300-400°С взаимодействовать со щелочными металлами и галогенидами с образованием соединений включения типа С8Ме, С24Ме, С8Х (где X - галоген, Me - металл). Известны соединения включения графита с HNO3, H2SO4, FeCl3 и другие (например, бисульфат графита C24SO4H2). Все формы Углерода нерастворимы в обычных неорганических и органических растворителях, но растворяются в некоторых расплавленных металлах (например, Fe, Ni, Co).

Народнохозяйственное значение Углерода определяется тем, что свыше 90% всех первичных источников потребляемой в мире энергии приходится на органическое топливо, главенствующая роль которого сохранится и на ближайшие десятилетия, несмотря на интенсивное развитие ядерной энергетики. Только около 10% добываемого топлива используется в качестве сырья для основного органического синтеза и нефтехимического синтеза, для получения пластических масс и других.

Графен - двумерная аллотропная модификация углерода, образованная слоем атомов углерода толщиной в один атом, находящихся в sp? гибридизации и соединённых посредством у- и р-связей в гексагональную двумерную кристаллическую решётку.

Его можно представить как одну плоскость графита, отделённую от объёмного кристалла. По оценкам, графен обладает большой механической жёсткостью и хорошей теплопроводностью.

Высокая подвижность носителей заряда (максимальная подвижность электронов среди всех известных материалов) делает его перспективным материалом для использования в самых различных приложениях, в частности, как будущую основу наноэлектроники и возможную замену кремния в интегральных микросхемах.

Основной из существующих в настоящее время способов получения графена в условиях научных лабораторий основан на механическом отщеплении или отшелушивании слоёв графита от высоко ориентированного пиролитического графита (HOPG).

Он позволяет получать наиболее качественные образцы с высокой подвижностью носителей. Этот метод не предполагает использования масштабного производства, поскольку это ручная процедура. Другой известный способ - метод термического разложения подложки карбида кремния - гораздо ближе к промышленному производству. Поскольку графен впервые был получен только в 2004 году, он ещё недостаточно хорошо изучен и привлекает к себе повышенный интерес.

Из-за особенностей энергетического спектра носителей графен проявляет специфические, в отличие от других двумерных систем, электрофизические свойства.

За «передовые опыты с двумерным материалом - графеном» А.К. Гейму и К.С. Новосёлову была присуждена Нобелевская премия по физике за 2010 год.

Было получено аналогичное соединение для кремния (силицен).

Графен является двумерным кристаллом, состоящим из одиночного слоя атомов углерода, собранных в гексагональную решётку. Его теоретическое исследование началось задолго до получения реальных образцов материала, поскольку из графена можно собрать трёхмерный кристалл графита. Графен является базой для построения теории этого кристалла. Графит является полуметаллом, и, как было показано в 1947 году П. Воллесом, в зонной структуре графена также отсутствует запрещённая зона, причём в точках соприкосновения валентной зоны и зоны проводимости энергетический спектр электронов и дырок линеен как функция волнового вектора. Такого рода спектром обладают без массовые фотоны и ультрарелятивистские частицы, а также нейтрино. Поэтому говорят, что эффективная масса электронов и дырок в графене вблизи точки соприкосновения зон равна нулю. Но здесь стоит заметить, что, несмотря на сходство фотонов и без массовых носителей, у графена есть несколько существенных отличий, делающих носители в нём уникальными по своей физической природе, а именно: электроны и дырки являются фермионами, и они заряжены. В настоящее время аналогов для этих без массовых заряженных фермионов среди известных элементарных частиц нет.

Несмотря на такие специфические особенности, экспериментального подтверждения эти выводы не получили до 2005 года, поскольку не удавалось создать графен. Кроме того, ещё раньше было доказано теоретически, что свободную идеальную двумерную плёнку получить невозможно из-за нестабильности относительно сворачивания или скручивания. Тепловые флуктуации приводят к плавлению двумерного кристалла при любой конечной температуре.

Интерес к графену появился снова после открытия углеродных нанотрубок, поскольку вся первоначальная теория строилась на простой модели нанотрубки как развёртки цилиндра. Поэтому теория для графена в приложении к нанотрубкам хорошо проработана.

Попытки получения графена, прикреплённого к другому материалу, начались с экспериментов, использующих простой карандаш, и продолжились с использованием атомно-силового микроскопа для механического удаления слоёв графита, но не достигли успеха. Использование графита с внедрёнными (интеркалированный графит - соединения, подобные ему калия KC8) в межплоскостное пространство чужеродными атомами (используется для увеличения расстояния между соседними слоями и их расщепления) тоже не привело к результату.

В 2004 году российскими и британскими учёными была опубликована работа в журнале Science, где сообщалось о получении графена на подложке окислённого кремния. Таким образом, стабилизация двумерной плёнки достигалась благодаря наличию связи с тонким слоем диэлектрика SiO2 по аналогии с тонкими плёнками, выращенными с помощью МПЭ. Впервые были измерены проводимость, эффект Шубникова - де Гааза, эффект Холла для образцов, состоящих из плёнок углерода с атомарной толщиной.

Метод отшелушивания является довольно простым и гибким, поскольку позволяет работать со всеми слоистыми кристаллами, то есть теми материалами, которые представляются как слабо (по сравнению с силами в плоскости) связанные слои двумерных кристаллов. В последующей работе авторы показали, что его можно использовать для получения других двумерных кристаллов: BN, MoS2, NbSe2, Bi2Sr2, Ca, Cu2Ox.

В 2011 году ученые из Национальной радиоастрономической обсерватории объявили, что им, вероятно, удалось зарегистрировать графен в космическом пространстве (планетарные туманности в Магеллановых облаках).

Существует несколько способов для получения графена, которые можно разделить на три большие группы. К первой группе относятся механические методы получения графена, основной из которых механическое отшелушивание, который на настоящий момент (2011) является наиболее распространённым методом для производства больших образцов с размером ~10 мкм пригодных для транспортных и оптических измерений. Ко второй группе методов относят химические методы, которые отличаются большим процентом выхода материала, но малыми размерами плёнок ~10-100 нм. К последней группе относятся эпитаксиальные методы и метод термического разложения SiC подложки благодаря которым можно вырастить плёнки графена.

При механическом воздействии на высоко ориентированный пиролитический графит или киш-графит можно получить плёнки графена вплоть до ~100 мкм. Сначала тонкие слои графита помещают между липкими лентами и отщепляют раз за разом тонкие плёнки графита, пока не будет получен достаточно тонкий слой (среди многих плёнок могут попадаться и однослойные, которые и представляют интерес). После отшелушивания скотч с тонкими плёнками графита и графена прижимают к подложке окисленного кремния. При этом трудно получить плёнку определённого размера и формы в фиксированных частях подложки (горизонтальные размеры плёнок составляют обычно около 10 мкм).

Найденные с помощью оптического микроскопа (они слабо видны при толщине диэлектрика 300 нм) плёнки подготавливают для измерений. С помощью атомно-силового микроскопа определяют реальную толщину плёнки графита (она может варьироваться в пределах 1 нм для графена). Графен можно также определить при помощи рассеяния света или измерением квантового эффекта Холла. Используя электронную литографию и реактивное плазменное травление, задают форму плёнки для электрофизических измерений.

Альтернативный метод предложен в работе. Метод заключается в том, что окисленную подложку кремния покрывают эпоксидным клеем (в работе использовался слой толщиной ~10 мкм) и тонкую пластинку графита прижимают к клею при помощи пресса. После удаления графитовой пластинки с помощью липкой ленты на поверхности клея остаются области с графеном и графитом. Толщину графита определяли с помощью комбинационного рассеяния света и атомно-силовым микроскопом измеряли шероховатость графена, которая оказалась равной всего 0.16 нм (в два раза меньше шероховатости графена на подложке кремния).

В статье предложен метод печати графеновых электрических схем (ранее этот метод использовался для печати тонкоплёночных транзисторов на основе нанотрубок и для органической электроники.). Сам процесс печати состоит из последовательного переноса с подложки SiSiO2 золотых контактов, графена и наконец диэлектрика (PMMA) с металлическим затвором на прозрачную подложку из полиэтилентерефталата (ПЭТФ) предварительно нагретую выше температуры размягчения до 170°С, благодаря чему контакты, вдавливались в ПЭТФ, а графен приобретает хороший контакт с материалом подложки. При таком методе нанесения графена подвижность не становится меньше, хотя и появляется заметная асимметрия между электронной (мe = 10000 см2) и дырочной (мh = 4000 см2) областями проводимости. Этот метод пригоден для нанесения графена на любую подложку пригодную, в частности, для оптических измерений.

Химические методы.

Кусочки графена также можно приготовить из графита, используя химические методы. Для начала микрокристаллы графита подвергаются действию смеси серной и азотной кислот. Графит окисляется, и на краях образца появляются карбоксильные группы графена. Их превращают в хлориды при помощи тионилхлорида. Затем под действием октадециламина в растворах тетрагидрофурана, тетрахлорметана и дихлорэтана они переходят в графеновые слои толщиной 0,54 нм. Этот химический метод не единственный, и, меняя органические растворители и химикаты, можно получить нанометровые слои графита

В статьях описан ещё один химический метод получения графена, встроенного в полимерную матрицу.

Эпитаксия и разложение.

Следует упомянуть ещё два метода: радиочастотное плазмохимическое осаждение из газовой фазы (англ. PECVD), рост при высоком давлении и температуре (англ. HPHT). Из этих методов только последний можно использовать для получения плёнок большой площади.

Работы посвящёны получению графена, выращенного на подложках карбида кремния SiC(0001). Графитовая плёнка формируется при термическом разложении поверхности подложки SiC (этот метод получения графена гораздо ближе к промышленному производству), причём качество выращенной плёнки зависит от того, какая стабилизация у кристалла: C-стабилизированная или Si-стабилизированная поверхность - в первом случае качество плёнок выше. В работах та же группа исследователей показала, что, несмотря на то, что толщина слоя графита составляет больше одного монослоя, в проводимости участвует только один слой в непосредственной близости от подложки, поскольку на границе SiC-C из-за разности работ выхода двух материалов образуется не компенсированный заряд. Свойства такой плёнки оказались эквивалентны свойствам графена. Графен можно вырастить на металлических подложках рутения и иридия.

Другие методы.

Если кристалл пиролитического графита и подложку поместить между электродами, то, как показано в работе, можно добиться того, что кусочки графита с поверхности, среди которых могут оказаться плёнки атомарной толщины, под действием электрического поля могут перемещаться на подложку окисленного кремния. Для предотвращения пробоя (между электродами прикладывали напряжение от 1 до 13 кВ) между электродами также помещали тонкую пластину слюды.

Некоторая комбинация механического метода (графитовым стержнем пишут по поверхности подложки кремния, оставляя плёнки при разрушении) и последующего высокотемпературного отжига (~1100 K) использована для получения тонких слоёв графита вплоть до однослойных плёнок.

Одним из последних способов получения графена является весьма оригинальная технология, разработанная группой американского ученого Махера Эль-Кади. Своеобразным инструментом стал обычный DVD-проигрыватель! Сперва на DVD-диск наносят слой полимера, затем слой оксида графена. Обработанный диск помещают в обычный DVD-рекордер, лазерный луч считывателя которого и восстанавливает графен из его оксида. В результате полимерный слой с нанесенным на него слоем графена отделяется от поверхности диска.

Предполагается, что полученная таким образом графеновая пленка может быть нанесена на субстраты, используемые для изготовления высокопроизводительных гибких конденсаторов, которые в свою очередь используются в производстве гибких дисплеев и гибких солнечных панелей.

Дефекты.

Идеальный графен состоит исключительно из шестиугольных ячеек. Присутствие пяти- и семиугольных ячеек будет приводить к различного рода дефектам.

Наличие пятиугольных ячеек приводит к сворачиванию атомной плоскости в конус. Структура с 12 такими дефектами одновременно известна под названием фуллерен. Присутствие семиугольных ячеек приводит к образованию видных искривлений атомной плоскости. Комбинация этих дефектов и нормальных ячеек может приводить к образованию различных форм поверхности.

Возможные применения.

Считается, что на основе графена можно сконструировать баллистический транзистор. В марте 2006 года группа исследователей из технологического института штата Джорджия заявила, что ими был получен полевой транзистор на графене, а также квантово-интерференционный прибор. Исследователи полагают, что благодаря их достижениям в скором времени появится новый класс графеновой наноэлектроники с базовой толщиной транзисторов до 10 нм. Данный транзистор обладает большим током утечки, то есть нельзя разделить два состояния с закрытым и открытым каналом.

Использовать напрямую графен при создании полевого транзистора без токов утечки не представляется возможным из-за отсутствия запрещённой зоны в этом материале, поскольку нельзя добиться существенной разности в сопротивлении при любых приложенных напряжениях к затвору, то есть не получается задать два состояния, пригодных для двоичной логики: проводящее и непроводящее. Сначала нужно создать каким-нибудь образом запрещённую зону достаточной ширины при рабочей температуре (чтобы термически возбуждённые носители давали малый вклад в проводимость). Один из возможных способов предложен в работе. В этой статье предлагается создать тонкие полоски графена с такой шириной, чтобы благодаря квантово-размерному эффекту ширина запрещённой зоны была достаточной для перехода в диэлектрическое состояние (закрытое состояние) прибора при комнатной температуре (28 мэВ соответствует ширине полоски 20 нм). Благодаря высокой подвижности (имеется в виду, что подвижность выше, чем в кремнии, используемом в микроэлектронике) 104 см2 быстродействие такого транзистора будет заметно выше.

Несмотря на то, что это устройство уже способно работать как транзистор, затвор к нему ещё не создан.

Другая область применения предложена в статье и заключается в использовании графена в качестве очень чувствительного сенсора для обнаружения отдельных молекул химических веществ, присоединённых к поверхности плёнки. В этой работе исследовались такие вещества, как NH3, CO, H2O, NO2. Сенсор размером 1 мкм ? 1 мкм использовался для детектирования присоединения отдельных молекул NO2 к графену.

Принцип действия этого сенсора заключается в том, что разные молекулы могут выступать как доноры и акцепторы, что в свою очередь ведёт к изменению сопротивления графена. В работе теоретически исследуется влияние различных примесей (использованных в отмеченном выше эксперименте) на проводимость графена. В работе было показано, что NO2 молекула является хорошим акцептором благодаря своим парамагнитным свойствам, а диамагнитная молекула N2O4 создаёт уровень близко к точке электронейтральности.

В общем случае примеси, молекулы которых имеют магнитный момент (не спаренный электрон), обладают более сильными легирующими свойствами. Ещё одна перспективная область применения графена - его использование для изготовления электродов в ионисторах (конденсаторах) для использования их в качестве перезаряжаемых источников тока. Опытные образцы ионисторов на графене имеют удельную энергоёмкость 32 Вт * ч/кг, сравнимую с таковой для свинцово-кислотных аккумуляторов (30-40 Вт/ч/кг). Недавно был создан новый тип светодиодов на основе графена (LEC). Процесс утилизации новых материалов экологичен при достаточно низкой цене. В 2011 году в журнале Science была опубликована работа, где на основе графена предлагалась схема двумерного метаматериала (может быть востребован в оптике и электронике).

Графеновый полевой транзистор - транзистор из графена, который использует электрическое поле, создаваемое затвором для управления проводимостью канала.

На сегодняшний момент не существует промышленного способа получения графена, но предполагается, что его хорошая проводимость поможет создать транзисторы с высокой подвижностью носителей и по этому показателю превзойти подвижность в полевых транзисторах на основе кремниевой технологии.

Созданные полевые транзисторы не совершенны и обладают большими токами утечки (из-за того, что графен - полуметалл), хотя модуляция проводимости может быть существенной.

Графеновые наноленты - узкие полоски графена с шириной порядка 10-100 нм. По своим физическим свойствам отличаются от более широких образцов, которые имеют линейный закон дисперсии как в бесконечном графене. Наноленты интересны тем, что обладают нелинейным законом дисперсии и полупроводниковыми свойствами из-за наличия запрещённой зоны, которая зависит от ширины ленты и расположения атомов на границах. Графеновые наноленты благодаря этому рассматриваются как важный шаг в создании транзистора на основе графена, который будет работать при комнатной температуре.

Методы изготовления.

Основной способ подготовки графеновых образцов это механическое отшелушивание слоёв пиролитического графита с помощью липкой ленты и последующее осаждение на подложку высоколегированного кремния покрытого слоем диэлектрика (SiO2). При использовании этого метода поиск графена осуществляется в оптическом микроскопе, а так как нанообъекты в этом случае рассмотреть нельзя, то сначала находят относительно большой образец. Его подвергают стандартной процедуре для использования электронной литографии, позволяющей добиться разрешения порядка 10 нм.

Сначала закрывают подложку с осаждённым графеном электронным резистом и с помощью электронного пучка засвечивают резист, нанося необходимые размеры графеновых нанолент, а после удаления неэкспонированного резиста (для негативного резиста или наоборот удаления экспонированного резиста для позитивного резиста) проводят плазменное травление. В работах использовали электронный резист HSQ.

Используя химический метод были созданы наноленты с шириной менее 10 нм. Для этого метода необходим термически расширенный графит. Этот метод не предполагает использование литографии и травления, поэтому границы нанолент получаются гладкими.

Существует ещё один метод не использующий литографию, поскольку маской здесь выступает тонкая кварцевая нить (диаметр 200 нм), что позволяет избежать возможных повреждений и загрязнений при литографии. Кроме того метод не времени затратный.

Идеальные наноленты.

Так как графен является полуметаллом, то невозможно избавиться от носителей в нём при приложении затворного напряжения, и поэтому всегда будет существовать высокий ток утечки в графеновых структурах. Для преодоления этого нежелательного эффекта предлагается использовать узкие полоски графена, из-за размера называемые нанолентами, где благодаря квантово-размерному эффекту возможно образование запрещённой зоны, ширина которой обратно пропорциональна поперечному размеру ленты.

Однако не все наноленты в теории обладают запрещённой зоной, поскольку это сильно зависит от расположения граничных атомов, и в общем случае все наноленты с расположением атомов на краю зигзагом (аценовый край) (англ. zig-zag) не имеют запрещённой зоны, то есть являются металлическими. Для бесконечного графена можно нарезать различные наноленты в зависимости от ориентации обладающие разным расположением атомов на границах. Если атомы расположены в виде кресла (фенантреновый край) (англ. armchair), и количество их отлично от:

N = (3M - 1)

Где:

M - целое число, образуется запрещённая зона;

N - число димеров, как показано - ширина наноленты.

Существует простая аналитическая модель основанная на использовании уравнения Дирака для графена с помощью которой можно оценить ширины запрещённых зон для идеальных графеновых нанолент, где граничные атомы расположены в виде кресла или зигзагом.

Для исследования графеновых нанолент с шероховатыми границами используются аналитические методы: адиабатическое приближение, либо более сложные методы численного моделирования: приближение сильной связи, метод функционала плотности.

При возникновении дефектов на границе наноленты переходят из металлического состояния в полупроводниковое. Так как не представляется возможным добиться атомарной точности при литографии, получить металлическую наноленту до сих пор не удалось.

Эксперимент.

С помощью электронной литографии из графена можно сделать узкие ленты вплоть до 20 нм. Из-за квантово-размерного эффекта ширина запрещённой зоны при ширине ленты 20 нм составляет 28 мэВ. При уменьшении ширины наноленты можно добиться большей ширины запрещённой зоны, поскольку она обратно пропорциональна ширине. Здесь электронной литографии не хватает и был предложен химический метод получения графеновых нанолент из графита. Используя этот метод можно создать наноленты с гладкими границами и шириной менее 10 нм. Эти транзисторы, где использовалась высоколегированная подложка кремния в качестве обратного затвора, показали отношение тока в открытом и закрытом состоянии около 106 при комнатной температуре. Из-за барьера Шотки между металлическим контактом (Pd или TiAu) и графеном сопротивление контактов составило около 60 кОм для нанолент шириной около 2,5 нм, а оценённая подвижность носителей около 100 см?.

Для наноленты длиной 850 нм и шириной 30 нм был измерен кондактанс (проводимость) как функция затворного напряжения, при приложенном постоянном смещении в 10 мВ.

Кондактанс на комнатной температуре имел гладкую V-образную характеристику, но при понижении температуры до 90К проявились несколько плато квантования с шагом 1.7 мСм. Это квантование кондактанса связано с образованием подзон размерного квантования в узких лентах шириной, когда волновой вектор частиц квантован в поперечном направлении:

Где:

m - целое число.

Энергия квазичастиц в одномерных подзонах описываются выражением:

Где:

h - постоянная Планка;

vF - Ферми скорость;

kЙЙ - волновой вектор связанный с движением вдоль наноленты;

б параметр который зависит от кристаллографической ориентации. Ширина запрещённой зоны равна:

Тут:

Представляется, как расстояние между уровнями. Кондактанс наноленты описывается следующим выражением:

Где:

Ti(E) - коэффициент прохождения носителей для каждой подзоны:

Представляется, как функция распределения Ферми - Дирака.

А м - химический потенциал.

Коэффициенты меняются ступенчатым образом, то есть когда энергия E превышает уровень размерного квантования коэффициент становится ненулевым (для простоты взят за единицу).

Благодаря температурному уширению квантование кондактанса как функция энергии Ферми (химического потенциала).

Следовательно и концентрации носителей и затворного напряжения не будет заметно при комнатной температуре при ширине наноленты 30 нм.

Но, следует заметить, что при более низких температурах хорошо заметно (см. рис. 3.).

Кристаллическая структура.

Рис. 1:

Изображение гексагональной решётки графена. Жёлтым цветом показана элементарная ячейка, красным и зелёным цветами показаны узлы различных подрешёток кристалла. e1 и e2 - вектора трансляций

Кристаллическая решётка графена (см. рис. 1) представляет собой плоскость, состоящую из шестиугольных ячеек, то есть является двумерной гексагональной кристаллической решёткой.

Для такой решётки известно, что её обратная решётка тоже будет гексагональной. В элементарной ячейке кристалла находятся два атома, обозначенные A и B.

Каждый из этих атомов при сдвиге на вектора трансляций (любой вектор вида, где m и n - любые целые числа) образует подрешётку из эквивалентных ему атомов, то есть свойства кристалла независимы от точек наблюдения, расположенных в эквивалентных узлах кристалла. На рисунке 3 представлены две подрешётки атомов, закрашенные разными цветами: зелёным и красным.

Расстояние между ближайшими атомами углерода в шестиугольниках, обозначенное составляет 0,142 нм.

Рис. 2:

2. Немного об первооткрывателях графена

Краткие биографические сведения.

Гейм, Андрей Константинович (нидерл. Andre Geim, род. 21 октября 1958, Сочи) - советский и нидерландский ученый, лауреат Нобелевской премии по физике 2010 года (совместно с Константином Новосёловым), член Лондонского королевского общества (с 2007), известный в первую очередь как один из первооткрывателей графена. 31 декабря 2011 года указом королевы Елизаветы Второй за заслуги перед наукой ему присвоено звание рыцаря-бакалавра с официальным правом прибавлять к своему имени титул «сэр». Родился в 1958 году в Сочи, в семье инженеров немецкого происхождения (единственным известным Гейму исключением среди его немецких предков была прабабка с материнской стороны, которая была еврейкой). Гейм считает себя европейцем и полагает, что не нуждается в более подробной «таксономии». В 1964 году семья переехала в Нальчик.

Отец, Константин Алексеевич Гейм (1910-1998), с 1964 года работал главным инженером Нальчикского электровакуумного завода. Мать, Нина Николаевна Байер (род. 1927), работала главным технологом там же.

В 1975 году Андрей Гейм окончил с золотой медалью среднюю школу №3 города Нальчика и пытался поступить в МИФИ, но неудачно (препятствием явилось немецкое происхождение абитуриента). Поработав 8 месяцев на Нальчикском электровакуумном заводе, в 1976 году поступил в Московский физико-технический институт.

До 1982 года обучался на факультете общей и прикладной физики, окончил с отличием («четвёрка» в дипломе только по политэкономии социализма) и поступил в аспирантуру. В 1987 году получил степень кандидата физико-математических наук в Институте физики твёрдого тела РАН. Работал научным сотрудником в ИФТТ АН СССР и в Институте проблем технологии микроэлектроники АН СССР.

В 1990 году получил стипендию Английского королевского общества и уехал из Советского Союза. Работал в Ноттингемском университете, университете Бата (англ.) русск., а также недолго в Копенгагенском университете, перед тем как стал доцентом университета Неймегена (англ.) русск., а с 2001 года - Манчестерского университета. В настоящее время - руководитель Манчестерского центра по «мезонауке и нанотехнологиям», а также глава отдела физики конденсированного состояния. Почётный доктор Делфтского технического университета, Швейцарской высшей технической школы Цюриха и Антверпенского университета.

Имеет звание «профессор Лэнгуорти» Манчестерского университета (англ. Langworthy Professor, среди удостоенных этого звания были Эрнест Резерфорд, Лоурэнс Брэгг и Патрик Блэкетт).

В 2008 году получил предложение возглавить Институт Макса Планка в Германии, но ответил отказом.

Подданный Королевства Нидерландов. Супруга - Ирина Григорьева (выпускница Московского института стали и сплавов), работала, как и Гейм, в ИФТТ АН СССР, в настоящее время работает вместе с мужем в лаборатории Манчестерского университета.

После присуждения Гейму Нобелевской премии директор департамента международного сотрудничества фонда «Сколково» Алексей Ситников объявил о намерении пригласить его работать в Сколково. Гейм заявил: Там у вас люди что - с ума посходили совсем? Считают, что если они кому-нибудь отсыпят мешок золота, то можно всех пригласить?

При этом Гейм сказал, что не имеет российского гражданства и чувствует себя в Великобритании комфортно, выразив скептическое отношение к проекту российского правительства создать в стране аналог Кремниевой долины.

Среди достижений Гейма можно отметить создание биомиметического адгезива (клея), позднее ставшего известным как gecko tape.

Также широко известен эксперимент с диамагнитной левитацией (англ.) русск., в том числе, со знаменитой «летающей лягушкой», за который Гейм вместе с известным математиком и теоретиком сэром Майклом Берри из университета Бристоля (англ.) русск. получил в 2000 году Шнобелевскую премию.

В 2004 году Андрей Гейм совместно со своим учеником Константином Новосёловым изобрёл технологию получения графена - нового материала, представляющего собой одноатомный слой углерода. Как выяснилось в ходе дальнейших экспериментов, графен обладает рядом уникальных свойств: он обладает повышенной прочностью, проводит электричество так же хорошо, как медь, превосходит все известные материалы по теплопроводности, прозрачен для света, но при этом достаточно плотен, чтобы не пропустить даже молекулы гелия - самые мелкие из известных молекул. Всё это делает его перспективным материалом для ряда приложений, в частности создания сенсорных экранов, световых панелей и, возможно, солнечных батарей.

За это открытие Институт физики (англ.) русск. (Великобритания) в 2007 году наградил Гейма медалью Мотта (англ.) русск. Он также получил престижную премию «Еврофизика» (англ. EuroPhysics) (совместно с Константином Новосёловым). В 2010 году изобретение графена было также отмечено Нобелевской премией по физике, которую Гейм также разделил с Новосёловым.

Новосёлов, Константин Сергеевич Константин. Сергеевич Новосёлов род. 23 августа 1974, Нижний Тагил, СССР. Российский и британский ученый. Лауреат Нобелевской премии по физике 2010 года (совместно с Андреем Геймом), член Лондонского королевского общества (с 2011). Самый молодой из ныне живущих нобелевских лауреатов во всех областях (по состоянию на 2010 год).

31 декабря 2011 года было объявлено о присвоении ему звания рыцаря-бакалавра указом королевы Елизаветы II за заслуги перед наукой. По состоянию на март 2011 года имеет более 20000 цитирований своих работ.

Константин Новосёлов родился 23 августа 1974 года в городе Нижний Тагил. Отец Сергей Викторович - инженер, мать Татьяна Глебовна - учитель английского языка. Есть сестра Елена.

Учился в школе №39. Первый успех в учебе пришел уже в шестом классе - в 1986 году он занял первое место в областной олимпиаде по физике, а на Всесоюзной олимпиаде школьников СССР вошел в десятку сильнейших. С 1988-1991 годах дополнительно обучался в Заочной физико-технической школе. В 1990 и 1991 годах участвовал во всесоюзных олимпиадах по физике и математике. В 1991 году после окончания школы поступил в Московский физико-технический институт.

В 1997 году окончил с отличием факультет физической и квантовой электроники МФТИ по специализации «наноэлектроника». После окончания института два года работал в Черноголовке в Институте проблем технологии микроэлектроники РАН (ИПТМ РАН), был аспирантом ИПТМ РАН (руководитель - Юрий Дубровский).

В 1999 году переехал в Нидерланды, где стал работать с Андреем Геймом в Университете Неймегена (англ.). Вместе с ним в 2001 году перебрался в Манчестерский университет. В 2003 году Новосёлов защитил диссертацию на степень доктора философии под руководством профессора Ян-Кееса Маана.

Является профессором и членом Королевского научного общества Манчестерского университета.

Проживает в Манчестере, имеет двойное российско-британское гражданство. Супруга Ирина родом из Вологды, кандидат наук (защищала диссертацию в Санкт-Петербурге), микробиолог, познакомились в Нидерландах. В 2009 году родились дочери-двойняшки - Вика и Софья.

В интервью после присуждения Нобелевской премии Новосёлов так высказался о возможности работы в России:Мне очень нравится, как устроена работа в университете Манчестера, где я сейчас занимаюсь научной деятельностью, но, если бы мне сделали интересное предложение по работе в России, возможно я бы и вернулся. Хотя нет, всё-таки вряд ли. Дело в том, что организация работы в той же Англии намного проще и прозрачнее, чем в России или, скажем, в Германии. Дело не только в деньгах.

Занимается исследованиями в области мезоскопической физики и нанотехнологий.

В 2004 году совместно со своим руководителем Андреем Геймом открыл новую аллотропную модификацию углерода - графен, который представляет собой одинарный слой атомов углерода. В 2007-2008 годах получил ряд наград для молодых учёных, в частности, в 2007 европейскую премию Николаса Курти за работы в сфере исследования низких температур и магнитных полей. В 2008 году Новосёлов и Гейм получили премию «Еврофизика» (англ. Europhysics Prize) за «открытие графена и выяснение его замечательных электронных свойств». В 2010 году вместе со своим учителем Андреем Геймом был удостоен Нобелевской премии по физике за «передовые опыты с двумерным материалом - графеном». Лауреатам удалось «продемонстрировать, что монослойный углерод обладает исключительными свойствами, которые проистекают из удивительного мира квантовой физики», отметили в Нобелевском комитете. Новосёлов стал самым молодым нобелевским лауреатом по физике за последние 37 лет (с 1973 года) и единственным на 2010 год лауреатом во всех областях, родившимся позднее 1961 года. За выдающийся вклад в нидерландскую науку 24 ноября 2010 года произведён в командоры ордена Нидерландского льва. В 2010 году избран почётным членом Королевского Химического Общества. В 2011 году избран почётным членом Института Физики. 19 мая 2011 года избран членом Лондонского королевского общества. Опубликовал более 60 научных статей, включая 9 статей в журналах Nature и Science.

3. Дополнительная справка о необычных свойствах графена

Рис. 3:

Андрей Гейм и Константин Новоселов начали работать вместе еще в Нидерландах, а затем они оба перебрались в Великобританию. В 2004 г. они экспериментально доказали возможность получения наноматериала графена - особой формы углерода, представляющей собой лист толщиной в один атом. Он обладает уникальными физико-химическими свойствами, которые делают его незаменимым в самых разных сферах, в частности, в электронике.

Графен представляет собой одиночный слой атомов углерода, соединенных между собой структурой химических связей, напоминающих по своей геометрии структуру пчелиных сот.

При этом, графен обладает высокой прочностью, он прозрачен в силу своей чрезвычайно малой толщины. Кроме того, графен является прекрасным проводником электрического тока, что делает его очень привлекательными для использования в качестве прозрачных электродов солнечных батарей или сенсорных дисплеев.

Благодаря своим свойствам, графен считается следующим поколением материалов, которые найдут свое применение в наноэлекронике. Он позволит существенно повысить скорость работы вычислительных машин, снизить их энергопотребление и нагревание в ходе работы, сделать их легкими. Графен также может быть использован в качестве замены тяжелых медных проводов в авиационной и космической индустрии, а также в широком наборе гибких электронных устройств, прототипы которых разрабатываются в наши дни.

Графен (англ. graphene) - плоский слой sp2-гибридных атомов углерода толщиной в один атом, образующих гексагональную решетку, двумерная форма углерода.

Графен можно представить как одну атомарную плоскость графита, отделенную от объемного кристалла - плоскую сетку из шестиугольников, в вершинах которой находятся атомы углерода. Каждый из них имеет три соседа, на образование связей с которыми уходят три из четырех валентных электронов углерода. Четвертый электрон участвует в образовании - системы графенового листа, определяющей его электронные свойства.

Ранее считалось, что двумерные структуры не могут существовать в свободном состоянии вследствие высокой поверхностной энергии и должны превращаться в трехмерные, хотя и могут быть стабилизированы в результате нанесения на подложку. До 2004 г. получить их экспериментально не удавалось. Недавние же исследования показали, что существует целый класс двумерных кристаллов различного химического состава. Сам графен удалось получить из графита именно с помощью стабилизации монослоев подложками. Благодаря слабому связыванию между графитовыми слоями удалось последовательно расщепить графит на все более тонкие слои с помощью липкой ленты, а затем, растворив ее, перенести графеновые фрагменты на кремниевую подложку. За эту работу А.К. Гейму и К.С. Новоселову в 2010 г. была присуждена Нобелевская премия. Среди других способов можно выделить: основанные на эпитаксиальном росте при термическом разложении карбида кремния, на эпитаксиальном росте на металлических поверхностях, а также на химическом раскрытии нанотрубок.

Интерес к графену основывается на его электронных свойствах. Так, в нем реализуется баллистический (т. е., практически без рассеяния) транспорт электронов, на характеристики которого подложка и окружающая среда влияют весьма слабо. Особенности зонной структуры графена обуславливают существование электронов и дырок с нулевой эффективной массой, которые проявляют квазирелятивистское поведение, описываемое уравнением Дирака. При этом графен проявляет аномальный квантовый эффект Холла, наблюдаемый даже при комнатной температуре. Исследования показывают, что графен также является перспективным материалом для спинтроники. графен химический углерод

Свойства графена могут варьироваться под действием химической модификации. Наиболее реакционно-способными являются края графеновых фрагментов, однако можно добиться и полной или частичной функционализации всего фрагмента. Например, графен может быть гидрирован до графена.

Среди уже реализованных всего за несколько лет прототипов перспективных устройств на основе графена можно упомянуть полевые транзисторы с баллистическим транспортом при комнатной температуре, газовые сенсоры с экстремальной чувствительностью, графеновый одноэлектронный транзистор, жидкокристаллические дисплеи и солнечные батареи с графеном в качестве прозрачного проводящего слоя, спиновый транзистор и многие другие.

Источники

1. Novoselov K.S., Geim A.K., Morozov S.V. et al. // Science. 2004. V. 306. P. 666.

2. Novoselov K.S., Jiang D., Schedin F. et al. // Proc. Natl. Acad. Sci. 2005. V. 102. P. 10451.

3. Geim A.K., Novoselov K.S. // Nature Mater. 2007. V. 6. P. 183.

4. Novoselov K.S., Geim A.K., Morozov S.V. et al. // Nature. 2005. V. 438. P. 197.

5. Zhang Y., Tan Y., Stormer H.L., Kim P. // Nature. 2005. V 438. P. 201.

6. Elias D.C., Nair R.R., Mohiuddin T.M.G. et al. // Science. 2009. V. 323. P. 610.

7. Schedin F., Geim A.K., Morozov S.V. et al. // Nature Mater. 2007. V. 6. P. 652.

8. Ponomarenko L.A., Schedin F., Katsnelson M.I. et al. // Science. 2008. V. 320. P. 356.

9. Blake P., Brimikombe P.D., Nair R.R. et al. // Nano Lett. 2008. V. 8. P. 1704.

10. Морозов С.В., Новоселов К.С., Гейм А.К. // Тезисы докл. II Межд. форума по нанотехнологиям Rusnanotech'09, 2009. С. 444.

Размещено на Allbest.ru

...

Подобные документы

  • Механические (расщепление) и химические методы получения графена. Открытие в химии углерода, графита, фуллерена, нанотрубки. Холодный способ производства графенов Петрика. Промышленное производство графена. Использование графена в качестве транзистора.

    доклад [354,6 K], добавлен 13.03.2011

  • Графен — двумерная модификация углерода, образованная слоем атомов углерода толщиной в один атом. Кристаллическая решетка графена. Конденсатор, солнечные батареи и LEC-светодиоды на базе графена. Элемент резистивной памяти на основе оксида графена.

    презентация [3,4 M], добавлен 23.04.2011

  • Структурные особенности графена - однослойной двумерной углеродной структуры, его дефекты и свойства. Потенциальные области применения графена. Строение и получение фуллеренов. Классификация углеродных нанотрубок по количеству слоев, их применение.

    курсовая работа [1,6 M], добавлен 03.03.2015

  • Структура и свойства оксида графита. Получение графена из графита, расширенного графита, интеркалированных соединений графита, разворачиванием нанотрубок. Получение графена восстановлением оксида графита. Применение метода Хаммерса и метода Броди.

    курсовая работа [922,0 K], добавлен 28.05.2015

  • Полианилин как представитель класса органических высокомолекулярных полупроводников: анализ способов получения, рассмотрение основных свойств. Знакомство с этапами разработки тонкого и гибкого суперконденсатора с использованием композита из полианилина.

    курсовая работа [4,2 M], добавлен 13.01.2014

  • Особенности серы как химического элемента таблицы Менделеева, ее распространенность в природе. История открытия этого элемента, характеристика его основных свойств. Специфика промышленного получения и способов добычи серы. Важнейшие соединения серы.

    презентация [152,3 K], добавлен 25.12.2011

  • Создатели графена: Гейм Андрей Константинович, Константин Новоселов. Графен как двумерная аллотропная модификация углерода, материал толщиной в один атом. Углерод, графит, фуллерен, нанотрубки. Холодный способ производства графенов В.И. Петрика.

    презентация [364,9 K], добавлен 13.03.2011

  • История открытия нобелия. Методы получения нового элемента. Химические свойства актиноидов. Помехи и трудности, неизбежные при определении дочерних продуктов альфа-распада ядер 102-го элемента. Закономерности ядерных реакций с участием тяжелых ионов.

    реферат [29,2 K], добавлен 18.01.2010

  • Структурная особенность полиолефинов. Сравнительная химическая стойкость полиолефинов в различных агрессивных середах. Изучение химических, физических, термических, механических, электрических свойств полиолефинов. Характеристика и структура полибутилена.

    курсовая работа [741,6 K], добавлен 14.01.2012

  • История открытия мышьяка и использование в древности. Основные способы его получения: процессы и производство. Совокупность свойств этого химического элемента, его модификации. Опасные и ядовитые соединения на основе мышьяка. Условия безопасного хранения.

    презентация [773,7 K], добавлен 16.12.2013

  • Общая характеристика кобальта как химического элемента. Определение и исследование физических и химических свойств кобальта. Изучение комплексных соединений кобальта и оценка их практического применения. Проведение химического синтеза соли кобальта.

    контрольная работа [544,0 K], добавлен 13.06.2012

  • Изучение истории открытия и развития производства радия. Исследование его физических и химических свойств, соединений. Технология получения радия из отходов переработки урановых руд. Методы разделения радия и бария. Действие элемента на организм человека.

    курсовая работа [59,2 K], добавлен 08.03.2015

  • Характеристика химических свойств хрома в чистом виде и в различных соединениях. Изучение истории открытия этого элемента, особенностей его применения в химической промышленности. Виды хромитов, легирование хромом стали, методы получение чистого хрома.

    реферат [25,1 K], добавлен 23.01.2010

  • Семейство лантана и лантаноидов, особенности их физических и химических свойств. История открытия, способы получения, применение лантана и его соединений. Строение электронных оболочек атомов лантана и лантаноидов. Аномальные валентности лантаноидов.

    реферат [71,7 K], добавлен 18.01.2010

  • Английский естествоиспытатель, физик и химик Генри Кавендиш - первооткрыватель водорода. Физические и химические свойства элемента, его содержание в природе. Основные методы получения и области применения водорода. Механизм действия водородной бомбы.

    презентация [4,5 M], добавлен 17.09.2012

  • Общие сведенья о понятии "кластер". Методы исследования свойств и поведения кластеров различных типов. Пути получения неравновесных кластеров в газовой среде. Строение и свойства кластеров. Фазовые переходы в кластерах. Кластеры в химических превращениях.

    реферат [34,9 K], добавлен 25.01.2010

  • Сведения об углероде, восходящие к древности и распространение его в природе. Наличие углерода в земной коре. Физические и химические свойства углерода. Получение и применение углерода и его соединений. Адсорбционная способность активированного угля.

    реферат [18,0 K], добавлен 03.05.2009

  • История открытия кислорода. Нахождение элемента в таблице Менделеева, его вхождение в состав других веществ и живых организмов, распространенность в природе. Физические и химические свойства кислорода. Способы получения и области применения элемента.

    презентация [683,8 K], добавлен 07.02.2012

  • Исследование химических свойств серы. Изучение истории названия и открытия элемента третьего периода периодической системы. Описания реакций с металлами, неметаллами и сложными веществами. Основные способы добычи серных руд. Аллотропные модификации серы.

    презентация [6,3 M], добавлен 23.02.2013

  • Получение углерода термическим разложением древесины, поглощение углем растворенных веществ и газов. Взаимодействие углекислого газа со щелочью, получение оксида углерода и изучение его свойств. Ознакомление со свойствами карбонатов и гидрокарбонатов.

    лабораторная работа [1,7 M], добавлен 02.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.