Оксибензойные кислоты (фенолокислоты)

Изучение свойств гидроксибензойных кислот. Анализ способов синтеза салициловой кислоты. Характеристика реакционной способности бензольного ядра. Исследование особенностей протокатеховой кислоты. Рассмотрение аспектов получения дубильных веществ.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 18.02.2014
Размер файла 629,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Республики Казахстан

Западно-Казахстанский Государственный Университет имени М. Утемисова

Курсовая работа

Специальность 050112 - «Химия»

Оксибензойные кислоты (фенолокислоты)

Мукашева М.М

Уральск 2011

Оксибензойные кислоты -- относятся к группе простейших фенольных соединений С6 -- С1-ряда, которые можно рассматривать как производные бензойной кислоты. Наряду с другими фенолами оксибензойные кислоты весьма широко распространены в природе: дубильные вещества, лигнин, некоторые гликозиды - это далеко не полный перечень природных веществ,построенных на их основе. Такие соединения, как салициловая, протокатеховая, ванилиновая, сиреневая и галловая кислоты обнаружены практически у всех покрытосеменных растений.

Оксибензойные кислоты - антисептики, входит в состав мазей, паст, присыпок и растворов для лечения кожных заболеваний . Ее применяют также в качестве консерванта некоторых пищевых продуктов, полупродукта в синтезе красителей и фунгицидов. Эфиры оксибензойных кислот и их соли - полупродукты в производстве душистых веществ. В больших масштабах оксибензойные кислоты потребляется в производстве азокрасителей.

Целью курсовой работы является рассмотрение химическую структуру оксибензойных кислот, изучить физико-химических свойств кислот и их производных и подробнее познакомиться о распространении в природе и применении этих феноло карбоновых соединений в разных отраслях науки.

гидроксибензойный кислота дубильный

Оксибензойные кислоты -- кристаллические вещества, растворимы в спирте, этилацетате, диэтиловом эфире, а также в водных растворах гидрокарбоната и ацетата натрия. Вступают в реакцию сочетания с диазотированными ароматическими аминами с образованием окрашенных соединений. Эта реакция используется для обнаружения бензойных кислот на хроматограммах.

Оксибензойные кислоты по числу ОН группы делятся на :

- моногидрооксибензойные кислоты;

- дигидрооксибензойные кислоты;

- полиоксибензойные кислоты.

Свойства гидроксибензойных кислот

Положение группы - ОН

Тривиальное название

Т. пл., °С

рК(20°С, вода)

Растворимость в воде, % по массе (25 °С) '

pK1

рК2

Моногидроксибензойные кислоты (мол.м. 138,1)

2

Салициловая кислота

159,5

1,443

2,7

7,5

1,80

3

-

203

1,484 (25 °С)

4,10

9,9

1,07

4

-

216,3

1,482 (25 °С)

4,60

9,3

0,49 (20 °С)

Дигидроксибензойные кислоты (мол.м. 154,1)

2,3

Пирокатеховая кислота

204

1,542

2,8

10,1

.

2,4

b-Резорциловая кислота

227

-

3,3

9,12 (4-ОН)*

0,57

2,5

Гентизиновая кислота

205

-

3,1

10,2

2,10

2,6

g-Резорциловая кислота

167

-

1,05

-

2,80

3,4

Пирокатехиновая кислота

200-2 (с разл.)

1,542

4,52

7,22**

3,5

a-Резорциловая кислота

238-240

-

4,1

6,76**

10,10

Тригидроксибензойные кислоты (мол.м. 170,1)

2,3,4

Пирогаллоловая кислота

207-8 (с разл.)

-

-

-

2,3,5

Оксигидрохиноновая кислота

234,5-235

-

-

-

-

2,4,5

-

217-218 (с разл.)

-

-

-

-

2,4,6

Флороглюциновая кислота

100 (с разл.)

-

-

-

-

3,4,5

Галловая кислота

240 (с разл.)

1,694 (4°С)

4,40

9,14

1,16

2,3,6

188,5-190 (с разл.)

* рК3 15,6 (2-ОН). ** В 80%-ном 2-метоксиэтаноле.

Салициловая кислота (от латинского слово « Salix» -- ива, из коры которой она была впервые выделена) -- 2-гидроксибензойная или фенольная кислота, С6Н4(ОН)СООН; Выделена из ивовой коры итальянским химиком Рафаэлем Пириа и затем синтезирована им же.

В природе встречается в растениях в виде производных -- главным образом в виде гликозида метилового эфира (в частности, салициловая кислота была впервые выделена из коры ивы (Salix.), откуда и происходит название), свободная салициловая кислота наряду с салициловым альдегидом в небольших количествах содержится в эфирном масле, выделяемых из цветов некоторых видов спиреи (Spiraea ulmaria, Spiraea digitata).

Салициловая кислота - бесцветные кристаллы, легкорастворима в этаноле, диэтиловом эфире и других полярных органических растворителях, малорастворима в сероуглероде.

Растворимость в воде (г/л): (0оС), 1.8 (20оС), 8.2 (60оС), 20.5 (80оС).

Салициловая кислота - одна из наиболее распространенных оксибензойных кислот.

Основной промышленный способ синтеза салициловой кислоты и ее производных -карбоксилирование сухого фенолята Na (Кольбе-Шмитта реакция) действием СО 2 при давлении 0,6 МПа, т-ре 185°С в течение 8-10 ч:

С многоатомными фенолами, например с резорцином, эта реакция проходит легче. Так, резорциловая кислота образуется уже при нагревании резорцина с раствором бикарбоната аммония:

Резорцин резорцилат аммония

Салициловую кислоту можно также получить окислением салицилового альдегида или фенолят натрия с четыреххлористым углеродом и щелочью:

Является двухосновной кислотой: pK1 = 2,7, pK2 = 7,5.

Реакционная способность бензольного ядра салициловой кислоты определяется наличием двух заместителей с противоположными мезомерным и индуктивным эффектами: донорной гидроксильной и акцепторной карбоксильной: в результате салициловая кислота значительно сильнее бензойной и своих изомеров, но не так активно, как фенол, такой орто-эффект оксигруппы обьясняется образованием водородной связи между функциональными группами, что увеличивает у+ заряд на карбоксильном углероде:

Нуклеофильное замещение направляется в орто- и пара-положения к гидроксилу и зачастую сопровождается декарбоксилированием: так, нитрование салициловой кислоты приводит к пикриновой кислоте (2,4,6-тринитрофенолу), а бромирование -- к 2,4,6-трибромфенолу, хотя сульфирование олеумом идёт без декарбоксилирования и даёт сульфосалициловую (2-гидрокси-5-сульфобензойную) кислоту. При нагревании салициловая кислота декарбоксилируется до фенола, в промышленности салициловую кислоту обычно получают обратной реакцией -- карбоксилированием фенолята натрия углекислым газом при 150--180 °C и давлении 5 атм (реакция Кольбе -- Шмитта):

Следует обратить внимание, что такое карбоксилирование фенола, во-первых обратимо и, во-вторых, существенную роль в карбоксилирование в орто-положение к фенольному гидроксилу играет эффект взаимодействия координационной связи катионащелочного металла с кислородными лигандами с образованием хелатообразного промежуточного состояния: так, в орто-положение с образованием салицилата карбоксилирование происходит только в случае фенолятов натрия и лития, в случае фенолятов калия, рубидия и цезия карбоксилирование идёт по пара-положению -- катионы этих щелочных металлов имеют больший радиус и координационная стабилизация переходного состояния невозможна. Об обратимости реакции говорит также перегруппировка дикалиевой соли салициловой кислоты в дикалиевую соль пара-гидроксибензойной кислоты и превращение натриевой соли пара-гидроксибензойной кислоты при нагревании в динатриевую соль салициловой кислоты.

Такое хелатообразование характерно для салициловой кислоты -- так, качественный метод обнаружения салициловой кислоты основан на образовании интенсивно окрашенных в сине-фиолетовый цвет комплексов с хлоридом железа (III).

Салициловая кислота образует по функциональным группам два ряда производных. Хлористыми ацилами и ангидридами кислот ацилируется по гидроксигруппе; например , под действием ацетилангидрида превращается в ацетилсалициловую кислоту (аспирин):

Хлор ангидрид салициловой кислоты образует с фенолами или спиртами сложные эфиры другого типа (по карбоксилу), например:

салициловая кислота салол

Салициловая кислота взаимодействуя с анилином в присутствии РСl3 ведет к салициланилиду:

салициловая кислота салициланилид

Аспирин употребляется в качестве жаропонижающего и анальгетического средства, салол является антисептиком, рекомендуемым при желудочно-кишечных заболеваниях.

Каталитическое гидрирование на платине, а также восстановление натрием в изоамиловом спирте протекает с образованием пимелиновой кислоты ; промежуточно образуется тетрагидросалициловая кислота, которая гидролизуется по типу «кислотного расщепления » ацетоуксусного эфира:

м -Оксибензойная кислота получается при щелочном плавлении м-сульфобензойной кислоты:

п- Оксибензойную кислоту синтезируют по Кольбе с применением калиевой щелочи. Ее метиловый эфир (по оксигруппе), называемый анисовой кислотой, получают окислением анетола ( метилового эфира п-пропенилфенола):

В природе салициловая кислота встречается в различных растениях главном образом в виде гликозида ее метилового эфира и применяется в медицине.

В аналитической химии салициловая кислота - реагент для фотометрического определения Fe и Си, экстракционной отделения Th от других элементов; кислотно-основной люминесцентный индикатор (при рН 2,5-4,0 появляется синяя люминесценция); металлохромный индикатор для титриметрического определения Fe(III) при рН 1,8-3,0 (исчезает фиолетовое окрашивание) и T i(IV) при рН 2-3 (переход окраски от фиолетовой к бесцветной ).

Салициловая кислота и салицилаты, а также её сложные эфиры (метилсалицилат) и другие синтетические производные салициловой кислоты (например, ацетилсалициловая кислота -- аспирин), обладают выраженным жаропонижающим, противовоспалительным и болеутоляющим действием.

Салициловая кислота - антисептик, входит в состав мазей, паст, присыпок и растворов для лечения кожных заболеваний (напр., "салициловый спирт", представляющий собой раствор салициловой кислоты в этаноле, паста Лассара, мозольная жидкость и др.). Ее применяют также в качестве консерванта некоторых пищевых продуктов, полупродукта в синтезе красителей и фунгицидов. Эфиры салициловой кислоты и салицилаты (см. таблицу-2) - полупродукты в производстве душистых веществ. Ее натриевая соль применяется как лекарство при суставном ревматизме, а фениловый эфир (салол) - антисептик, рекомендуемым при желудочно-кишечных заболеваниях, пара-аминосалициловую кислоту (структурно близкую с пара-аминобензойной кислотой, необходимой туберкулезным микобактериям, и поэтому метаболически конкурирующую с ней) -- как специфическое противотуберкулёзное средство. В больших масштабах салициловая кислота потребляется в производстве азокрасителей.

Полиоксибензойные кислоты весьма распространены в природе. Они содержатся в виде гликозидов или других производных во многих растениях. Такими являются, например, протокатеховая кислота (1) и ее производные : ванилиновая (2), изованилиновая (3) и вератровая (4) кислоты:

Протокатеховая кислота - эта кислота в 60-х годах представляла весьма крупный интерес для химиков, потому что ее постоянно открывали в продуктах разложения при помощи сплавления с едкими щелочами самых разнообразных смол, некоторых алкалоидов, красильных веществ и т. д. Впервые она была открыта Гессе в 1859 г., который получил ее окислением бромной водой хинной кислоты и так как ее эмпирическая формула отличается от формулы гидрохинона (С 6 Н 6 О 2) на CO 2, то она этим исследователем и была названа карбогидрохиноновой. Название протокатеховая было дано собственно кислоте, полученной Штреккером в 1861 г. при сплавлении с едким кали пипериновой кислоты.

В 1863г. Глазивец показал тожественность карбогидрохиноновой кислоты с П. Штреккера и это последнее название и удержалось в науке.

Протокатеховую кислоту обычно получают при нагревании пирокатехина в водном растворе ( NH4)2CO3:

3,4-дигидроксибензойную кислоту синтезируют также щелочным омылением 3-хлор- или З-бром-4-гидроксибензойной кислоты под действием КОН (кат.-порошок Сu, 190-200 °С) или окислением ванилина Ag2O. Щелочным плавлением 5-карбокси-1,3-бензолдисульфокислоты при 220-250° получают 3,5-дигидроксибензойную кислоту.

Протокатеховая кислота довольно трудно растворяется в холодной воде, хорошо - в горячей, спирте и эфире и почти не растворима, в кипящем бензоле, чем и отличается от весьма близких к ней других кислот. Характерны также для протокатеховая кислота цветные реакции с железными солями. Так, в присутствии хлорного железа кислота дает весьма интенсивное темно-зеленое окрашивание, переходящее от прибавления соды в темно-красное, а раствор ее солей от железного купороса становится фиолетовым.

Протокатеховая кислота восстановляет аммиачные растворы серебряных солей и при сухой перегонке или при сплавлении с едким кали переходит в пирокатехин по уравнению: С 6 Н 5 О 2.СО 2 Н - CO 2 = С 6 Н 6 О 2. Эта реакция важна потому, что она указывает, что в ней группа атомов С 6H5 О 2 имеет одинаковое строение с пирокатехином, а так как известно, что этот последний есть метадиоксибензол, то и протокатеховая кислота имеет бензольное ядро, в котором два водорода групп СН, находящихся в орто-положении, замещены водными остатками, т. е. ее формула будет С 6H3 (ОН) 2 СО 2 Н. Положение карбоксила (СО 2 Н) по отношению к оксигруппам доказывается на основании того, что сульфопараоксибензойная и сульфометаоксибензойная кислоты при сплавлении с едким кали дают протокатеховая кислота , а это указывает, что в ней один водный остаток стоит по отношению к карбоксилу в пара-, а другой в мета-положении. Следовательно, она есть пара-мета-диоксибензойная кислота

Из триоксибензойных кислот наибольшее значение имеет - галловая кислота (3,4,5-триоксибензойная кислота) --одна из наиболее распространенных растительных кислот. Она содержится в чернильных орешках, листьях чая, дубовой коре, корнях гранатового дерева и многих других растений. Не содержит галлия, несмотря на схожесть названия.

Галловая кислота открыта К. Шееле в 1786 году в вытяжках из чернильных орешков.

Образует кристаллогидрат с 1 молекулой воды (C7H6O5·H20) -- бесцветные кристаллы, темнеющие на свету. Галловая кислота хорошо растворима в кипящей воде, спирте, хуже -- в эфире, плохо -- в холодной воде; константа диссоциации К = 3,9-10?5 (25 °C).

Галловая кислота

При нагревании (100--120 °C) галловая кислота теряет воду; t пл безводной галловой кислоты 240 °C (с разложением); с хлорным железом даёт сине-чёрное окрашивание.

Получают ее щелочным или ферментативным гидролизом танинов:

Обладает всеми свойствами гидроксикарбоновых кислот. Наиболее реакционно способна ОН-группа в положении 4; например, при метилировании диметилсульфатом в присутствий 2 молей NaOH образуется 3,5-дигидрокси-4-метоксибензойная кислота, а в присутствий 5 молей NаОН-3,4,5-триметоксибензойная кислота. Галловая кислота восстанавливает, например, соли Аu и Ag до металлов, Fe2+ до Fe3+ . Щелочные соли галловой кислоты под действием О2 темнеют. Сухой перегонкой над пемзой в токе СО2 при 190-215 °С галловая кислота декарбоксилируется до пирогаллола. При нагр. ее с конц. H2SO4 образуется гексагидроксиантрахи-нон (руфигалловая к-та):

Галловая кислота применялась издавна для получении черных чернил и ряда красок. Висмутовая основная соль галловой кислоты употребляется в качестве сильного антисептика под названием дерматол. Диметиловый эфир галловый кислоты - сиреневая кислота также получается при расщеплении нмогих природных соединений, в частности лигнина:

Галловую кислоту применяют в аналитической химии, для синтеза красителей (антрагаллола и др.), в микроскопии, как деполяризатор при использовании методов электрохимического анализа. При сухой перегонке галловой кислоты образуется пирогаллол:

Цветная реакция: сине-черное окрашивание с FeCl3. Галловую кислоту применяют в произодстве пирогаллола, лекарственных веществ, красителей (галлофлавина, антрагаллола и др.), как реагент для отделения и фотометрического определения Bi(III) и Се(Ш), как цветеобразующую компоненту в тсрмочувствительных копировальных бумагах. Также галловая кислота является отправной точкой в одном из способов синтеза мескалина.

Сложные эфиры галловой кислоты- антиоксиданты жиров и масел.

Амид галловой кислоты, образованный 3,4,5-триметоксибензойной кислотой и гетероциклическим амином - морфолином, называется андаксином и применяется как транквилизирующий (успокаивающий) медикамент:

Образованные двумя молекулами ароматических полиоксикислот сложные эфиры, в которых одна выступает как кислота, а другая как фенол, называюися депсидами. Примерами могут служить леканоровая кислота:

Леканоровая кислота

К группе фенольных кислот относятся и так называемые лишайниковые кислоты -- специфические соединения, синтезируемые лишайниками. Исходным соединением в образовании лишайниковых кислот является орселлиновая кислота, широко распространенная в виде депсида леканоровой кислоты, обладающей бактерицидными свойствами.

Дубильные вещества, экстрагируемые из некоторых растительных тканей, например из коры дуба, представляют собой производные депсидов. Дубильные вещества разделяются на два класса: гидролизуемые ( именно они и представляют собой сложные эфиры депсидов), негидролизуемые. Гидролизуемые дубильные вещества часто являются производными галловой и м-галлоил галловой(«м-дигалловой») кислоты.

Синтез м-галлоилгалловой кислоты из галловой был осуществлен по следующей схеме:

Таннины, извлекаемые из дубильных орешков, представляют собой глюкозу, ацелированную остатками м-галлоилгалловой кислоты:

При гидролизе таннинов образуется глюкоза, м-галлоилгалловая кислота и небольшое количество галловой кислоты.

Таннины,добываемые из разных видов дубильных орешков, несколько различаются по числу ацилов и по соотношению между остатками галловой и галлоилгалловой кислот. Даже танины, выделяемые из одного того же растения, представляют собой смесь веществ.

Общей чертой дубильных веществ, в том числе и синтетических, является большой молекулярный вес, ароматическая природа и кислотные свойства. Все это позволяет им проявлять свое главное практическое свойство - связываясь с белками, модифицировать их, например, осаждать белки из раствора, как это делает танин с альбуминами, или «дубить», превращая шкуру кожу.

Водный раствор танина, будучи нанесен на обожженное тело, связывает ядовитые белковые продуктыраспада тканей и способствует заживлению тканей.

Связанный с танином альбумин (танальбумин), попадая в пищеварительный тракт, по мере переваривания альбумина высвобождает танин, который связывает белковые токсины болезнетворных бактерий.

Таннины применяются для протравки хлопчатобумажных тканей при крашении (для закрепления красителя), в медицине и в других областях.

Размещено на Allbest.ru

...

Подобные документы

  • Одноосновные карбоновые кислоты. Общие способы получения. Двухосновные кислоты, химические свойства. Пиролиз щавелевой и малоновой кислот. Двухосновные непредельные кислоты. Окисление оксикислот. Пиролиз винной кислоты. Сложные эфиры. Получение жиров.

    учебное пособие [568,9 K], добавлен 05.02.2009

  • Теоретические и практические аспекты синтеза, очистки и анализа свойств сульфаниловой кислоты. Формула бензольного кольца ароматических сульфокислот, их молекулярное строение. Гидролиз сульфанилина в кислой среде. Физические свойства исходных веществ.

    курсовая работа [744,3 K], добавлен 31.01.2012

  • Реакция получения анилина из нитробензола. Производство салициловой кислоты. Схема азосочетания диазотированной сульфаниловой кислоты с N,N-диметиланилином. Структурные формулы фурана и пиримидина. Таутомерные превращения барбитала; строение папаверина.

    контрольная работа [451,5 K], добавлен 24.04.2013

  • Рассмотрение методов проведения реакций ацилирования (замещение водорода спиртовой группы на остаток карбоновой кислоты). Определение схемы синтеза, физико-химических свойств метилового эфира монохлоруксусной кислоты и способов утилизации отходов.

    контрольная работа [182,3 K], добавлен 25.03.2010

  • Ознакомление с историческими фактами открытия и получения фосфорной кислоты. Рассмотрение основных физических и химических свойств фосфорной кислоты. Получение экстракционной фосфорной кислоты в лабораторных условиях, ее значение и примеры применения.

    реферат [638,7 K], добавлен 27.08.2014

  • Структурная, химическая формула серной кислоты. Сырьё и основные стадии получения серной кислоты. Схемы производства серной кислоты. Реакции по производству серной кислоты из минерала пирита на катализаторе. Получение серной кислоты из железного купороса.

    презентация [759,6 K], добавлен 27.04.2015

  • Технология производства уксусной кислоты из метанола и оксида углерода. Материальный баланс реактора и стадии синтеза уксусной кислоты. Получение уксусной кислоты окислением ацетальдегида, н-бутана, н-бутенов, парафинов С4-С8. Применение уксусной кислоты.

    курсовая работа [207,3 K], добавлен 22.12.2010

  • Общая характеристика салициловой кислоты, ее основные физические и химические свойства, реагентность. Стадии и назначение производства салициловой кислоты. Особенности пиразолоновых противовоспалительных средств и других нестероидных препаратов.

    реферат [184,7 K], добавлен 16.09.2008

  • Исследование роли лимонной кислоты в системе биохимических реакций клеточного дыхания организмов. Основное сырье и способы производства лимонной кислоты. Характеристика особенностей поверхностного и глубинного способов ферментации сахарсодержащих сред.

    курсовая работа [1,1 M], добавлен 06.01.2014

  • Изучение физико-химических свойств высокомолекулярной полимолочной кислоты. Технология ее получения и области применения. Сырье для производства полилактида. Преимущества и недостатки биополимеров. Синтез и строение изомеров полимолочной кислоты.

    курсовая работа [588,2 K], добавлен 07.11.2014

  • Технологическая схема производства синильной кислоты, ее применение в химической и горнодобывающей промышленности. Методы синтеза нитрила акриловой кислоты: взаимодействие ацетилена и синильной кислоты; дегидратация этиленциангидрина; основные параметры.

    реферат [10,9 M], добавлен 03.03.2011

  • Исследование мезогенных свойств жидкокристаллических полиэфиров, содержащих в качестве центрального ядра остаток камфорной кислоты. Изучение хироптических свойств сополиэфиров VIII в растворе, влияние растворителя. Получение оптически активных полимеров.

    статья [398,8 K], добавлен 18.03.2010

  • Карбоновые кислоты — более сильные кислоты, чем спирты. Ковалентный характер молекул и равновесие диссоциации. Формулы карбоновых кислот. Реакции с металлами, их основными гидроксидами и спиртами. Краткая характеристика физических свойств кислот.

    презентация [525,6 K], добавлен 06.05.2011

  • Изучение состава и свойств барбитуровой кислоты, методы её синтеза. Таутомерные формы барбитуровой кислоты и пути её метаболизма. Содержание алкильных или арильных заместителей в производных барбитуровой кислоты. Барбитураты и их применение в медицине.

    реферат [286,7 K], добавлен 02.06.2014

  • Описание промышленных способов получения серной кислоты. Термодинамический анализ процесса конденсации и окисления диоксида серы. Представление технологической схемы производства кислоты. Расчет материального и теплового баланса химических реакций.

    реферат [125,1 K], добавлен 31.01.2011

  • Моно-, ди- и оксокарбоновые кислоты, гидроксикислоты: номенклатура, изомерия, систематические и тривиальные названия, способы получения, физические и химические свойства, виды реакций. Функциональные производные, их общая формула, ацилирующая способность.

    презентация [1,2 M], добавлен 22.12.2014

  • Исследование методики синтеза ацетилсалициловой кислоты взаимодействием фенолята натрия с углекислым газом. Изучение строения, свойств, применения и лекарственного значения аспирина. Анализ влияния аспирина на процессы, протекающие в очаге воспаления.

    лабораторная работа [89,9 K], добавлен 24.06.2013

  • Свойства, области использования, сырье и технология изготовления серной кислоты, а также характеристика прогрессивных способов и перспектив развития ее производства. Анализ динамики трудозатрат при развитии технологического процесса серной кислоты.

    контрольная работа [228,6 K], добавлен 30.03.2010

  • Физико-химические свойства уксусной кислоты. Характеристика процесса окисления альдегида. Способ получения ацетальдегида и этаналя. Принципы расчёта количества образующихся побочных продуктов в процессе получения уксусной кислоты. Сущность метода Кольбе.

    курсовая работа [1009,8 K], добавлен 08.04.2015

  • Физические и физико-химические свойства азотной кислоты. Дуговой способ получения азотной кислоты. Действие концентрированной серной кислоты на твердые нитраты при нагревании. Описание вещества химиком Хайяном. Производство и применение азотной кислоты.

    презентация [5,1 M], добавлен 12.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.