Процессы нефтехимического синтеза
Изучение основных источников газа (термический и каталитический крекинг, коксование, каталитический риформинг) нефтеперерабатывающего завода и промышленных методов химической переработки нефтяного сырья (хлорирование и гидрохлорирование, нитрование).
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 25.02.2014 |
Размер файла | 65,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Оглавление
Введение
1. Состав газов нефтеперерабатывающих заводов
2. Основные процессы нефтехимического синтеза
2.1. Хлорирование и гидрохлорирование
2.2. Нитрование
2.3.Окисление
2.4. Гидратация
2.5. Изомеризация и полимеризация
2.6. Гидрирование и дегидрирование
2.7.Сульфирование
Заключение
Список литературы
Введение
Современный период развития нефтяной промышленности характеризуется все большим развитием химической переработки углеводородных газов, образующихся при термической переработке нефти - процессах крекинга, риформинга, пиролиза и т.д. Химическому использованию подвергаются также природные углеводородные газы. На основе этих газов в промышленном масштабе производятся синтетические спирты, хлорпроизводные углеводороды, растворители и другие органические продукты.
1 Состав газов нефтеперерабатывающих заводов
В нефтезаводских газах содержатся насыщенные и ненасыщенные углеводороды от С1 до С4. Кроме того, в состав этих газов обычно входят водород, сероводород и небольшое количество органических сернистых соединений.
Состав газа нефтеперерабатывающего завода зависит от того, какие процессы осуществляются на данном заводе. Основным источником газа являются процессы деструктивной переработки нефти (термический и каталитический крекинг, коксование, каталитический риформинг); на установках прямой перегонки нефти выделяется лишь небольшое количество газа (газ, растворенный в нефти). В газах крекинга и коксования наряду с насыщенными углеводородами содержится довольно много олефинов и некоторое количество водорода. Газ каталитического риформинга богат водородом (до 60 объемн. %) и содержит только предельные углеводороды. Такое различие состава газов, выделяющихся при разных процессах нефтепереработки, обуславливает неодинаковый состав газов разных заводов и колебания состава газа даже в пределах одного завода. Нестабильность состава нефтезаводских газов несколько усложняет их переработку.
В зависимости от типа нефтепереработки изменяются количество и состав отходящих газов. Примерный состав этих газов в табл.1.
Таблица 1 Примерный состав газов нефтепереработки (средние данные в % по объему)
Наименование компонентов |
Жидкофазный крекинг |
Парофазный крекинг |
Пиролиз керосина |
Каталитический крекинг |
|
Окись углерода Водород Метан Этан Этилен Пропан Пропилен Бутаны Бутилены Дивинил Высшие углеводороды |
0,5 6,0 30,5 16,0 4,5 15,0 7,5 8,0 6,0 - 6,0 |
- 8,0 32,0 14,0 12,0 6,0 15,0 2,0 6,0 - 5,0 |
0,5 15,0 45,0 7,0 17,0 1,0 8,0 0,2 2,8 1,5 2,0 |
5,4 9,9 6,1 20,8 6,1 46,2 5,5 - - |
2 Основные процессы нефтехимического синтеза
На основе различных вариантов крекинг-процесса промышленность приобрела мощный источник получения главного целевого продукта нефтепереработки - моторного топлива, а также углеводородных газов для дальнейшей переработки.
Газы крекинга содержат в среднем около 30% непредельных углеводородов, высокая реакционная способность которых позволила осуществить химическую переработку их в продукты, имеющие большое значение - спирты, хлорпроизводные углеводородов, эфиры, амины и др.
Предельные углеводороды, являющиеся главной составной частью газов, получающихся при процессах нефтепереработки, превращаются в непредельные углеводороды или же непосредственно используются для получения ценных химических продуктов.
Вне зависимости от характера исходного нефтяного сырья промышленные методы химической переработки его основаны на превращениях, к которым в первую очередь относятся следующие:
1. Хлорирование и гидрохлорирование.
2. Нитрование
3. Окисление.
4. Гидратация. газ термический химический коксование
5. Изомеризация и полимеризация.
6. Гидрирование и дегидрирование.
7. Сульфирование.
Эти методы, каждый в отдельности или в комбинации, служат основой нефтехимического синтеза и при помощи их может быть осуществлена комплексная химическая переработка углеводородных газов различного состава.
2.1 Хлорирование и гидрохлорирование
Среди процессов химической переработки углеводородных газов одним из наиболее распространенных методов является хлорирование.
Химическая сущность реакции хлорирования заключается в замене атома водорода (одного или нескольких) в парафиновом или непредельном углеводороде на атом хлора или же в присоединении атомов хлора к олефиновым углеводородам.
Хлорирование углеводородов проводится в промышленных масштабах в паровой и жидкой фазах различными способами: при нагревании до 400-500 0С (термическое хлорирование), в присутствии катализаторов (каталитическое хлорирование) при специальном освещении реагирующих компонентов (фотохимическое хлорирование).
Хлорпроизводные метана и других низших алканов являются хорошими растворителями жиров, синтетических смол и каучуков, нитро- и ацетилцеллюлозы. Их можно использовать и для очистки призабойной зоны нефтяных скважин от асфальто-смолистых и парафиновых отложений. Применяют также и при депарафинизации масел.
Хлорпроизводные алканов используют для получения спиртов, в том числе и высших спиртов:
При пропускании хлористого метила (или смеси его с хлорзамещёнными ароматическими углеводородами) над медно-кремниевым сплавом при 300 0С образуются алкил- и арилхлорсиланы:
Алкил- и арилхлорсиланы являются исходным продуктом в синтезе кремнийорганических соединений, применяемых в производстве силиконовых жидкостей, консистентных смазок, смол и каучуков.
Хлороформ и четырёххлористый углерод используют для получения хлорфтор- и фторпроизводных:
CCl4 + HF > CCl2F2 ,
которые применяют в качестве хладоагентов - фреонов.
Хлорирование непредельных углеводородов имеет большое значение в производстве пластмасс, каучуков, растворителей. Хлорированием этилена получают растворитель - дихлорэтан:
Из дихлорэтана получают хлористый винил - важный продукт для производства полихлорвиниловых пластмасс:
2.2 Нитрование
Нитрование углеводородов осуществляют с помощью азотной кислоты при температуре 200-450 0С. Нитрование всегда сопровождается частичным разложением углеводородов, что приводит к получению нитросоединений с меньшим числом атомов углерода. Из пропана таким путём помимо 1- и 2-нитропропанов образуются нитроэтан и нитрометан:
Нитрометан, нитроэтан, нитропропан являются хорошими растворителями эфиров целлюлозы, полимеров, лаков. Они могут применяться в качестве добавок, снижающих температуру самовоспламенения дизельных топлив.
Восстановлением нитроалканов в кислой среде можно получить амины:
Амины используют для получения ингибиторов коррозии, поверхностно-активных веществ, для очистки газов от сероводорода.
2.3 Окисление
Синтез-газ получают также конверсией метана водяным паром или диоксидом углерода:
Синтез-газ используют для получения многих органических продуктов.
Окисление алканов кислородом воздуха в более мягких условиях приводит к получению смеси карбоновых кислот, спиртов, альдегидов, кетонов.
Окислением метана и продуктов его окисления можно получить метиловый спирт, формальдегид, муравьиную кислоту:
Метиловый спирт применяют в качестве горючего, растворителя, для предотвращения образования газовых гидратов в трубопроводах.
Формальдегид применяется во многих органических промышленных синтезах, большое количество его используется для получения пластмасс, пластификаторов, взрывчатых веществ. Применяют также для предотвращения бактериальной коррозии металлов, для борьбы с сульфатвосстанавливающими бактериями.
При неполном окислении этана образуются метиловый СН3ОН и этиловый С2Н5ОН спирты, уксусный альдегид СН3СНО. Для преимущественного получения спиртов используют воздух, обеднённый кислородом.
Исключительный интерес для промышленности представляет процесс неполного окисления бутана, позволяющий получить большое количество альдегида и уксусной кислоты:
В зависимости от температуры процесса соотношение между продуктами окисления может существенно меняться.
Продукты окисления низших алканов находят применение в качестве готовой продукции или полупродуктов при синтезе присадок, моющих средств, алкилирующих агентов, компонентов ракетного топлива, растворителей.
Важное промышленное значение приобрело каталитическое окисление высших алканов (С12-С25) с целью получения высших жирных спиртов и жирных кислот (ВЖС) (работы акад. С.С. Наметкина).
Сырьём являются парафины, получаемые при депарафинизации нефтепродуктов:
Образующиеся продукты используются для получения поверхностно-активных соединений, моющих средств, пластификаторов.
Окислением этилена производят окись этилена:
Окись этилена используют главным образом для производства этиленгликоля:
Он применяется для получения полиэфирных волокон, этаноламинов, поверхностно-активных веществ, антифризов.
При окислении смеси пропилена с аммиаком образуется акрилонитрил - важный мономер для синтетического каучука и химических волокон (нитрон), полимеров, которые находят большое применение в нефтехимической промышленности:
Важное промышленное значение имеют реакции полимеризации алкенов.
2.4 Гидратация
Гидратацией алкенов - присоединением воды - получают в промышленности одноатомные спирты: этиловый, изопропиловый и другие:
Важнейшим из них является этиловый спирт, который используется в качестве растворителя, в производстве синтетического каучука, полимеров, эфиров, как горючее, антифриз и т.д.
Этиловый, изопропиловый и другие спирты используют для вытеснения остаточной нефти. Их добавляют к кислотам при кислотной обработке скважин, что приводит к снижению набухаемости глинистых пород. Это способствует увеличению радиуса воздействия кислотой на пласт, облегчению выноса продуктов реакции из призабойной зоны и увеличению эффективности кислотных обработок.
2.5 Изомеризация и полимеризация
Под влиянием катализаторов при нагревании алканы изомеризуются в углеводороды разветвлённого строения:
Реакция изомеризации используется для повышения октанового числа бензинов.
Важное промышленное значение имеют реакции полимеризации алкенов.
2.6 Гидрирование и дегидрирование
В присутствии катализатора при нагревании из алканов за счёт разрыва связи С-Н происходит отщепление атомов водорода, что приводит к образованию алкенов. Например, дегидрированием этана можно получить этилен:
В результате дегидрирования бутана образуется бутилен или бутадиен:
Образующаяся смесь изомерных бутиленов широко применяется для получения полимербензинов и в синтезе алкилатов, являющихся высокооктановыми компонентами бензинов.
Особенно важен процесс дегидрирования бутана с целью получения бутадиена, который необходим для синтеза каучуков:
Дегидрированием изопентана, выделяемого из газового бензина и газов нефтепереработки, получают изопрен, также важный полупродукт для синтеза каучуков:
Дегидрирование низших алканов при очень высоких температурах приводит к образованию ацетилена:
2.7 Сульфирование
При слабом нагревании дымящая серная кислота сульфирует алканы, т.е. атом водорода в них замещается на сульфогруппу:
В результате образуются алкансульфокислоты.
Сульфохлорирование. При действии на алканы смеси сернистого газа и хлора идёт реакция сульфохлорирования:
Сульфохлориды легко гидролизуются до сульфокислот:
R - SO2Cl + H2O > R - SO3H .
Взаимодействием сульфохлоридов с избытком аммиака получают сульфамиды:
Сульфокислоты могут быть получены также и реакцией сульфоокисления:
Алкансульфокислоты образуют со щелочами соли - сульфонаты:
Сульфонаты и сульфамиды с 12-18 и выше атомами углерода, получаемые на основе жидких парафинов, выделяемых из дизельных фракций, служат в качестве поверхностно-активных и моющих веществ, эмульгаторов нефти и флотационных реагентов.
Присоединение серной кислоты к алкенам и циклоалкенам следует правилу Марковникова: атом отрицательной части реагента присоединяется к атому углерода, связанному с наименьшим числом атомов водорода. В результате реакции образуются кислые эфиры серной кислоты (алкилсульфаты), применяемые для получения поверхностно-активных веществ:
Реакция используется также для очистки и для определения алкенов в нефтепродуктах. Для этой цели применяется серная кислота с концентрацией 80-90%, так как более концентрированная кислота взаимодействует также и с аренами.
Заключение
Переработкой нефтегазового сырья для получения целевых продуктов или сырья для других химических производств занимается нефтехимическая промышленность. Уже в настоящее время 25 % мировой химической продукции выпускается на основе нефти и углеводородных газов.
На основе этих соединений получают мономеры для полимеров и пластмасс, синтетических каучуков, синтетические моющие средства и поверхностно-активные вещества, синтетические горючие смазочные масла, растворители, ядохимикаты, хладоагенты, антифризы, многочисленные индивидуальные органические вещества для промышленности основного органического синтеза: спирты, кислоты, альдегиды, кетоны, эфиры, гликоли, глицерин, нитросоединения, вырабатываемые для других отраслей химической промышленности: анилинокрасочной, лакокрасочной, фармацевтической, витаминной, резинотехнической, сельскохозяйственной и др.
Список литературы:
1. Алиева Р.Б., Мираламов Г.Ф. - Газовые конденсаты. - Баку: Заман,2000. - 331 с.
2. Брагинский Р.Б., Шлихтер З.Б. Перспективы химической переработки природных газов. Обзорная информация. ЦНИИТЭнефтехим: 2001. вып.61 - 62 с.
3. Бекиров Т.М., Ланчаков Г.А. Технология обработки газа и конденсата - М.: Недра, 200. - 595 с.
4. Газохимия в XXI веке. Проблемы и перспективы. Труды московского семинара по газохимии 2000-2002 гг. Под ред. А.И. Владимирова, А.Л. Лапидуса. - М.: Нефть и газ РГУ нефти и газа им. И.М. Губкина, 2003. - 288 с.
5. Николаев В.В., Бусыгина Н.В. Основные процессы физической и физико-химической переработки газа - М.: Недра, 2001. - 184 с.
Размещено на Allbest.ru
...Подобные документы
Углубляющие, облагораживающие и прочие химические способы переработки нефти. Сущность процесса термического и каталитического крекинга. Процесс переработки твёрдого топлива нагреванием без доступа кислорода (коксование). Каталитический риформинг.
презентация [241,6 K], добавлен 20.12.2012Каталитический крекинг как термокаталитическая переработка различных фракций нефти, его достоинства. Состав и свойства резиновых соединений. Марки топлив, масел, пластичных смазок, специальных жидкостей, применяемых для автомобилей ВАЗ-21093 и КрАЗ-65055.
контрольная работа [27,0 K], добавлен 23.09.2011Каталитический риформинг и работа установки полимеризации пропан-пропиленовой фракции: характеристика объекта, назначение установки, краткое описание технологической схемы. Особенности технологического режима, оборудование и автоматизация производства.
реферат [472,8 K], добавлен 06.11.2012Элементный и фракционный состав нефти. Краткая характеристика компонентов: алканы, циклоалканы, ароматические углеводороды, кислородные, сернистые и смолисто-асфальтеновые соединения. Углубленная переработка нефти, термический и каталитический крекинг.
курсовая работа [166,2 K], добавлен 11.03.2011Основные реакции каталитического риформинга. Превращения шестичленных нафтенов. Реакции дегидрирования, изомеризации. Превращения метилциклогексана на платиновом катализаторе. Основные технологические схемы современных нефтеперерабатывающих заводов.
курсовая работа [651,4 K], добавлен 06.02.2011Характеристика физических и химических свойств нефти, ее добыча, состав и виды фракций при перегонке. Особенности переработки нефти, сущность каталитического крекинга и коксования. Применение нефти и экологические проблемы нефтеперерабатывающих заводов.
презентация [329,5 K], добавлен 16.05.2013Понятие, общая характеристика и предназначение процесса каталитического риформинга. Химические основы процесса риформинга: превращение алканов, циклоалканов, аренов. Катализаторы и макрокинетика процесса. Промышленные установки каталитического процесса.
курсовая работа [1,2 M], добавлен 13.10.2011Основные представления о катализе и свойствах катализаторов. Сырье и продукты каталитического крекинга. Технологический режим и материальный баланс процесса. Установка каталитического крекинга с шариковым катализатором. Контроль и регулирование процесса.
курсовая работа [292,4 K], добавлен 26.11.2011Первичные и основные способы переработки нефти. Увеличения выхода бензина и других светлых продуктов. Процессы деструктивной переработки нефтяного сырья. Состав продуктов прямой гонки. Виды крекинг-процесса. Технологическая схема установки крекинга.
курсовая работа [1,8 M], добавлен 29.03.2009Разработка альтернативных видов топлива и новых направлений в области переработки природного газа и других источников углерода. Технологии синтеза диметилового эфира из биомассы и синтез-газа. Особенности нетрадиционных процессов получения топлива.
контрольная работа [227,2 K], добавлен 04.09.2010Функционалы нелинейных кинетических моделей. Схема Михаэлиса-Ментен и случай глобальной неидентифицируемости. Каталитический крекинг в нефтепереработке, аморфные и кристаллические (цеолиты) алюмосиликаты. Скелетная изомеризация парафинов, алкилирование.
реферат [74,7 K], добавлен 28.01.2009Сущность нефтеперерабатывающего производства. Разделение нефтяного сырья на фракции. Переработка фракций путем химических превращений содержащихся в них углеводородов и выработка компонентов товарных нефтепродуктов. Атмосферно-вакуумная перегонка нефти.
презентация [157,1 K], добавлен 29.04.2014Исследование технологии установки каталитического крекинга с прямоточным лифт-реактором. Характеристика продуктов секции "Каталитического крекинга" комбинированной установки глубокой переработки мазута КТ-1 ТОО "ПНХЗ", оценка их выходных свойств.
дипломная работа [258,6 K], добавлен 31.05.2014Промышленные катализаторы крекинга. Основное назначение процесса. Недостатки системы Гудри. Материалы, используемые для изготовления реактора и регенератора. Десорберы различных установок каталитического крекинга. Концевые устройства лифт-реактора.
презентация [2,2 M], добавлен 12.11.2015Кислородсодержащие высокооктановые добавки, их достоинства и недостатки. Реакция этерификации. Назначение процесса риформинга, возможные реакторные схемы и основные реакции. Виды крекинга, отличия и сходства этих процессов по сырью, продуктам и режимам.
реферат [22,5 K], добавлен 28.02.2009Исследование возможности применения синтез–газа в виде альтернативного нефти сырья, его роль в современной химической технологии. Получение метанола, суммарная реакция образования. Продукты синтеза Фишера–Тропша. Механизм гидроформилирования олефинов.
реферат [1,6 M], добавлен 27.02.2014Общие вопросы химической технологии. Равновесие в химико-технологическом процессе. Каталитические процессы и контактные аппараты. Синтез аммиака и производство азотной кислоты. Производство минеральных удобрений. Химическая переработка топлива.
учебное пособие [51,6 K], добавлен 19.07.2009Скорость химического превращения на поверхности в стационарном режиме. Режим диффузионный и кинетический. Адсорбция на поверхности. Поверхностный гетерогенно-каталитический процесс. Предельные режимы цепной разветвлённой реакции. Разветвление и обрыв.
реферат [169,5 K], добавлен 30.01.2009Назначение установки для переработки смесей гудрона с тяжелым каталитическим газойлем и тяжелых нефтяных дистиллятов и ее производительность. Характеристика сырья и получаемой продукции, ее дальнейшее использование. Сущность технологического процесса.
отчет по практике [197,6 K], добавлен 17.12.2011Цели и задачи, основные процессы и технологические схемы установок очистки попутного нефтяного газа. Методы очистки газа от газоконденсата, нефти, капельной, мелкодисперсной, аэрозольной влаги и механических шламовых примесей. Абсорбционная очистка газа.
реферат [286,1 K], добавлен 11.01.2013