Процессы нефтехимического синтеза

Изучение основных источников газа (термический и каталитический крекинг, коксование, каталитический риформинг) нефтеперерабатывающего завода и промышленных методов химической переработки нефтяного сырья (хлорирование и гидрохлорирование, нитрование).

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 25.02.2014
Размер файла 65,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Оглавление

Введение

1. Состав газов нефтеперерабатывающих заводов

2. Основные процессы нефтехимического синтеза

2.1. Хлорирование и гидрохлорирование

2.2. Нитрование

2.3.Окисление

2.4. Гидратация

2.5. Изомеризация и полимеризация

2.6. Гидрирование и дегидрирование

2.7.Сульфирование

Заключение

Список литературы

Введение

Современный период развития нефтяной промышленности характеризуется все большим развитием химической переработки углеводородных газов, образующихся при термической переработке нефти - процессах крекинга, риформинга, пиролиза и т.д. Химическому использованию подвергаются также природные углеводородные газы. На основе этих газов в промышленном масштабе производятся синтетические спирты, хлорпроизводные углеводороды, растворители и другие органические продукты.

1 Состав газов нефтеперерабатывающих заводов

В нефтезаводских газах содержатся насыщенные и ненасыщенные углеводороды от С1 до С4. Кроме того, в состав этих газов обычно входят водород, сероводород и небольшое количество органических сернистых соединений.

Состав газа нефтеперерабатывающего завода зависит от того, какие процессы осуществляются на данном заводе. Основным источником газа являются процессы деструктивной переработки нефти (термический и каталитический крекинг, коксование, каталитический риформинг); на установках прямой перегонки нефти выделяется лишь небольшое количество газа (газ, растворенный в нефти). В газах крекинга и коксования наряду с насыщенными углеводородами содержится довольно много олефинов и некоторое количество водорода. Газ каталитического риформинга богат водородом (до 60 объемн. %) и содержит только предельные углеводороды. Такое различие состава газов, выделяющихся при разных процессах нефтепереработки, обуславливает неодинаковый состав газов разных заводов и колебания состава газа даже в пределах одного завода. Нестабильность состава нефтезаводских газов несколько усложняет их переработку.

В зависимости от типа нефтепереработки изменяются количество и состав отходящих газов. Примерный состав этих газов в табл.1.

Таблица 1 Примерный состав газов нефтепереработки (средние данные в % по объему)

Наименование компонентов

Жидкофазный крекинг

Парофазный крекинг

Пиролиз керосина

Каталитический крекинг

Окись углерода

Водород

Метан

Этан

Этилен

Пропан

Пропилен

Бутаны

Бутилены

Дивинил

Высшие углеводороды

0,5

6,0

30,5

16,0

4,5

15,0

7,5

8,0

6,0

-

6,0

-

8,0

32,0

14,0

12,0

6,0

15,0

2,0

6,0

-

5,0

0,5

15,0

45,0

7,0

17,0

1,0

8,0

0,2

2,8

1,5

2,0

5,4

9,9

6,1

20,8

6,1

46,2

5,5

-

-

2 Основные процессы нефтехимического синтеза

На основе различных вариантов крекинг-процесса промышленность приобрела мощный источник получения главного целевого продукта нефтепереработки - моторного топлива, а также углеводородных газов для дальнейшей переработки.

Газы крекинга содержат в среднем около 30% непредельных углеводородов, высокая реакционная способность которых позволила осуществить химическую переработку их в продукты, имеющие большое значение - спирты, хлорпроизводные углеводородов, эфиры, амины и др.

Предельные углеводороды, являющиеся главной составной частью газов, получающихся при процессах нефтепереработки, превращаются в непредельные углеводороды или же непосредственно используются для получения ценных химических продуктов.

Вне зависимости от характера исходного нефтяного сырья промышленные методы химической переработки его основаны на превращениях, к которым в первую очередь относятся следующие:

1. Хлорирование и гидрохлорирование.

2. Нитрование

3. Окисление.

4. Гидратация. газ термический химический коксование

5. Изомеризация и полимеризация.

6. Гидрирование и дегидрирование.

7. Сульфирование.

Эти методы, каждый в отдельности или в комбинации, служат основой нефтехимического синтеза и при помощи их может быть осуществлена комплексная химическая переработка углеводородных газов различного состава.

2.1 Хлорирование и гидрохлорирование

Среди процессов химической переработки углеводородных газов одним из наиболее распространенных методов является хлорирование.

Химическая сущность реакции хлорирования заключается в замене атома водорода (одного или нескольких) в парафиновом или непредельном углеводороде на атом хлора или же в присоединении атомов хлора к олефиновым углеводородам.

Хлорирование углеводородов проводится в промышленных масштабах в паровой и жидкой фазах различными способами: при нагревании до 400-500 0С (термическое хлорирование), в присутствии катализаторов (каталитическое хлорирование) при специальном освещении реагирующих компонентов (фотохимическое хлорирование).

Хлорпроизводные метана и других низших алканов являются хорошими растворителями жиров, синтетических смол и каучуков, нитро- и ацетилцеллюлозы. Их можно использовать и для очистки призабойной зоны нефтяных скважин от асфальто-смолистых и парафиновых отложений. Применяют также и при депарафинизации масел.

Хлорпроизводные алканов используют для получения спиртов, в том числе и высших спиртов:

При пропускании хлористого метила (или смеси его с хлорзамещёнными ароматическими углеводородами) над медно-кремниевым сплавом при 300 0С образуются алкил- и арилхлорсиланы:

Алкил- и арилхлорсиланы являются исходным продуктом в синтезе кремнийорганических соединений, применяемых в производстве силиконовых жидкостей, консистентных смазок, смол и каучуков.

Хлороформ и четырёххлористый углерод используют для получения хлорфтор- и фторпроизводных:

CCl4 + HF > CCl2F2 ,

которые применяют в качестве хладоагентов - фреонов.

Хлорирование непредельных углеводородов имеет большое значение в производстве пластмасс, каучуков, растворителей. Хлорированием этилена получают растворитель - дихлорэтан:

Из дихлорэтана получают хлористый винил - важный продукт для производства полихлорвиниловых пластмасс:

2.2 Нитрование

Нитрование углеводородов осуществляют с помощью азотной кислоты при температуре 200-450 0С. Нитрование всегда сопровождается частичным разложением углеводородов, что приводит к получению нитросоединений с меньшим числом атомов углерода. Из пропана таким путём помимо 1- и 2-нитропропанов образуются нитроэтан и нитрометан:

Нитрометан, нитроэтан, нитропропан являются хорошими растворителями эфиров целлюлозы, полимеров, лаков. Они могут применяться в качестве добавок, снижающих температуру самовоспламенения дизельных топлив.

Восстановлением нитроалканов в кислой среде можно получить амины:

Амины используют для получения ингибиторов коррозии, поверхностно-активных веществ, для очистки газов от сероводорода.

2.3 Окисление

Синтез-газ получают также конверсией метана водяным паром или диоксидом углерода:

Синтез-газ используют для получения многих органических продуктов.

Окисление алканов кислородом воздуха в более мягких условиях приводит к получению смеси карбоновых кислот, спиртов, альдегидов, кетонов.

Окислением метана и продуктов его окисления можно получить метиловый спирт, формальдегид, муравьиную кислоту:

Метиловый спирт применяют в качестве горючего, растворителя, для предотвращения образования газовых гидратов в трубопроводах.

Формальдегид применяется во многих органических промышленных синтезах, большое количество его используется для получения пластмасс, пластификаторов, взрывчатых веществ. Применяют также для предотвращения бактериальной коррозии металлов, для борьбы с сульфатвосстанавливающими бактериями.

При неполном окислении этана образуются метиловый СН3ОН и этиловый С2Н5ОН спирты, уксусный альдегид СН3СНО. Для преимущественного получения спиртов используют воздух, обеднённый кислородом.

Исключительный интерес для промышленности представляет процесс неполного окисления бутана, позволяющий получить большое количество альдегида и уксусной кислоты:

В зависимости от температуры процесса соотношение между продуктами окисления может существенно меняться.

Продукты окисления низших алканов находят применение в качестве готовой продукции или полупродуктов при синтезе присадок, моющих средств, алкилирующих агентов, компонентов ракетного топлива, растворителей.

Важное промышленное значение приобрело каталитическое окисление высших алканов (С1225) с целью получения высших жирных спиртов и жирных кислот (ВЖС) (работы акад. С.С. Наметкина).

Сырьём являются парафины, получаемые при депарафинизации нефтепродуктов:

Образующиеся продукты используются для получения поверхностно-активных соединений, моющих средств, пластификаторов.

Окислением этилена производят окись этилена:

Окись этилена используют главным образом для производства этиленгликоля:

Он применяется для получения полиэфирных волокон, этаноламинов, поверхностно-активных веществ, антифризов.

При окислении смеси пропилена с аммиаком образуется акрилонитрил - важный мономер для синтетического каучука и химических волокон (нитрон), полимеров, которые находят большое применение в нефтехимической промышленности:

Важное промышленное значение имеют реакции полимеризации алкенов.

2.4 Гидратация

Гидратацией алкенов - присоединением воды - получают в промышленности одноатомные спирты: этиловый, изопропиловый и другие:

Важнейшим из них является этиловый спирт, который используется в качестве растворителя, в производстве синтетического каучука, полимеров, эфиров, как горючее, антифриз и т.д.

Этиловый, изопропиловый и другие спирты используют для вытеснения остаточной нефти. Их добавляют к кислотам при кислотной обработке скважин, что приводит к снижению набухаемости глинистых пород. Это способствует увеличению радиуса воздействия кислотой на пласт, облегчению выноса продуктов реакции из призабойной зоны и увеличению эффективности кислотных обработок.

2.5 Изомеризация и полимеризация

Под влиянием катализаторов при нагревании алканы изомеризуются в углеводороды разветвлённого строения:

Реакция изомеризации используется для повышения октанового числа бензинов.

Важное промышленное значение имеют реакции полимеризации алкенов.

2.6 Гидрирование и дегидрирование

В присутствии катализатора при нагревании из алканов за счёт разрыва связи С-Н происходит отщепление атомов водорода, что приводит к образованию алкенов. Например, дегидрированием этана можно получить этилен:

В результате дегидрирования бутана образуется бутилен или бутадиен:

Образующаяся смесь изомерных бутиленов широко применяется для получения полимербензинов и в синтезе алкилатов, являющихся высокооктановыми компонентами бензинов.

Особенно важен процесс дегидрирования бутана с целью получения бутадиена, который необходим для синтеза каучуков:

Дегидрированием изопентана, выделяемого из газового бензина и газов нефтепереработки, получают изопрен, также важный полупродукт для синтеза каучуков:

Дегидрирование низших алканов при очень высоких температурах приводит к образованию ацетилена:

2.7 Сульфирование

При слабом нагревании дымящая серная кислота сульфирует алканы, т.е. атом водорода в них замещается на сульфогруппу:

В результате образуются алкансульфокислоты.

Сульфохлорирование. При действии на алканы смеси сернистого газа и хлора идёт реакция сульфохлорирования:

Сульфохлориды легко гидролизуются до сульфокислот:

R - SO2Cl + H2O > R - SO3H .

Взаимодействием сульфохлоридов с избытком аммиака получают сульфамиды:

Сульфокислоты могут быть получены также и реакцией сульфоокисления:

Алкансульфокислоты образуют со щелочами соли - сульфонаты:

Сульфонаты и сульфамиды с 12-18 и выше атомами углерода, получаемые на основе жидких парафинов, выделяемых из дизельных фракций, служат в качестве поверхностно-активных и моющих веществ, эмульгаторов нефти и флотационных реагентов.

Присоединение серной кислоты к алкенам и циклоалкенам следует правилу Марковникова: атом отрицательной части реагента присоединяется к атому углерода, связанному с наименьшим числом атомов водорода. В результате реакции образуются кислые эфиры серной кислоты (алкилсульфаты), применяемые для получения поверхностно-активных веществ:

Реакция используется также для очистки и для определения алкенов в нефтепродуктах. Для этой цели применяется серная кислота с концентрацией 80-90%, так как более концентрированная кислота взаимодействует также и с аренами.

Заключение

Переработкой нефтегазового сырья для получения целевых продуктов или сырья для других химических производств занимается нефтехимическая промышленность. Уже в настоящее время 25 % мировой химической продукции выпускается на основе нефти и углеводородных газов.

На основе этих соединений получают мономеры для полимеров и пластмасс, синтетических каучуков, синтетические моющие средства и поверхностно-активные вещества, синтетические горючие смазочные масла, растворители, ядохимикаты, хладоагенты, антифризы, многочисленные индивидуальные органические вещества для промышленности основного органического синтеза: спирты, кислоты, альдегиды, кетоны, эфиры, гликоли, глицерин, нитросоединения, вырабатываемые для других отраслей химической промышленности: анилинокрасочной, лакокрасочной, фармацевтической, витаминной, резинотехнической, сельскохозяйственной и др.

Список литературы:

1. Алиева Р.Б., Мираламов Г.Ф. - Газовые конденсаты. - Баку: Заман,2000. - 331 с.

2. Брагинский Р.Б., Шлихтер З.Б. Перспективы химической переработки природных газов. Обзорная информация. ЦНИИТЭнефтехим: 2001. вып.61 - 62 с.

3. Бекиров Т.М., Ланчаков Г.А. Технология обработки газа и конденсата - М.: Недра, 200. - 595 с.

4. Газохимия в XXI веке. Проблемы и перспективы. Труды московского семинара по газохимии 2000-2002 гг. Под ред. А.И. Владимирова, А.Л. Лапидуса. - М.: Нефть и газ РГУ нефти и газа им. И.М. Губкина, 2003. - 288 с.

5. Николаев В.В., Бусыгина Н.В. Основные процессы физической и физико-химической переработки газа - М.: Недра, 2001. - 184 с.

Размещено на Allbest.ru

...

Подобные документы

  • Углубляющие, облагораживающие и прочие химические способы переработки нефти. Сущность процесса термического и каталитического крекинга. Процесс переработки твёрдого топлива нагреванием без доступа кислорода (коксование). Каталитический риформинг.

    презентация [241,6 K], добавлен 20.12.2012

  • Каталитический крекинг как термокаталитическая переработка различных фракций нефти, его достоинства. Состав и свойства резиновых соединений. Марки топлив, масел, пластичных смазок, специальных жидкостей, применяемых для автомобилей ВАЗ-21093 и КрАЗ-65055.

    контрольная работа [27,0 K], добавлен 23.09.2011

  • Каталитический риформинг и работа установки полимеризации пропан-пропиленовой фракции: характеристика объекта, назначение установки, краткое описание технологической схемы. Особенности технологического режима, оборудование и автоматизация производства.

    реферат [472,8 K], добавлен 06.11.2012

  • Элементный и фракционный состав нефти. Краткая характеристика компонентов: алканы, циклоалканы, ароматические углеводороды, кислородные, сернистые и смолисто-асфальтеновые соединения. Углубленная переработка нефти, термический и каталитический крекинг.

    курсовая работа [166,2 K], добавлен 11.03.2011

  • Основные реакции каталитического риформинга. Превращения шестичленных нафтенов. Реакции дегидрирования, изомеризации. Превращения метилциклогексана на платиновом катализаторе. Основные технологические схемы современных нефтеперерабатывающих заводов.

    курсовая работа [651,4 K], добавлен 06.02.2011

  • Характеристика физических и химических свойств нефти, ее добыча, состав и виды фракций при перегонке. Особенности переработки нефти, сущность каталитического крекинга и коксования. Применение нефти и экологические проблемы нефтеперерабатывающих заводов.

    презентация [329,5 K], добавлен 16.05.2013

  • Понятие, общая характеристика и предназначение процесса каталитического риформинга. Химические основы процесса риформинга: превращение алканов, циклоалканов, аренов. Катализаторы и макрокинетика процесса. Промышленные установки каталитического процесса.

    курсовая работа [1,2 M], добавлен 13.10.2011

  • Основные представления о катализе и свойствах катализаторов. Сырье и продукты каталитического крекинга. Технологический режим и материальный баланс процесса. Установка каталитического крекинга с шариковым катализатором. Контроль и регулирование процесса.

    курсовая работа [292,4 K], добавлен 26.11.2011

  • Первичные и основные способы переработки нефти. Увеличения выхода бензина и других светлых продуктов. Процессы деструктивной переработки нефтяного сырья. Состав продуктов прямой гонки. Виды крекинг-процесса. Технологическая схема установки крекинга.

    курсовая работа [1,8 M], добавлен 29.03.2009

  • Разработка альтернативных видов топлива и новых направлений в области переработки природного газа и других источников углерода. Технологии синтеза диметилового эфира из биомассы и синтез-газа. Особенности нетрадиционных процессов получения топлива.

    контрольная работа [227,2 K], добавлен 04.09.2010

  • Функционалы нелинейных кинетических моделей. Схема Михаэлиса-Ментен и случай глобальной неидентифицируемости. Каталитический крекинг в нефтепереработке, аморфные и кристаллические (цеолиты) алюмосиликаты. Скелетная изомеризация парафинов, алкилирование.

    реферат [74,7 K], добавлен 28.01.2009

  • Сущность нефтеперерабатывающего производства. Разделение нефтяного сырья на фракции. Переработка фракций путем химических превращений содержащихся в них углеводородов и выработка компонентов товарных нефтепродуктов. Атмосферно-вакуумная перегонка нефти.

    презентация [157,1 K], добавлен 29.04.2014

  • Исследование технологии установки каталитического крекинга с прямоточным лифт-реактором. Характеристика продуктов секции "Каталитического крекинга" комбинированной установки глубокой переработки мазута КТ-1 ТОО "ПНХЗ", оценка их выходных свойств.

    дипломная работа [258,6 K], добавлен 31.05.2014

  • Промышленные катализаторы крекинга. Основное назначение процесса. Недостатки системы Гудри. Материалы, используемые для изготовления реактора и регенератора. Десорберы различных установок каталитического крекинга. Концевые устройства лифт-реактора.

    презентация [2,2 M], добавлен 12.11.2015

  • Кислородсодержащие высокооктановые добавки, их достоинства и недостатки. Реакция этерификации. Назначение процесса риформинга, возможные реакторные схемы и основные реакции. Виды крекинга, отличия и сходства этих процессов по сырью, продуктам и режимам.

    реферат [22,5 K], добавлен 28.02.2009

  • Исследование возможности применения синтез–газа в виде альтернативного нефти сырья, его роль в современной химической технологии. Получение метанола, суммарная реакция образования. Продукты синтеза Фишера–Тропша. Механизм гидроформилирования олефинов.

    реферат [1,6 M], добавлен 27.02.2014

  • Общие вопросы химической технологии. Равновесие в химико-технологическом процессе. Каталитические процессы и контактные аппараты. Синтез аммиака и производство азотной кислоты. Производство минеральных удобрений. Химическая переработка топлива.

    учебное пособие [51,6 K], добавлен 19.07.2009

  • Скорость химического превращения на поверхности в стационарном режиме. Режим диффузионный и кинетический. Адсорбция на поверхности. Поверхностный гетерогенно-каталитический процесс. Предельные режимы цепной разветвлённой реакции. Разветвление и обрыв.

    реферат [169,5 K], добавлен 30.01.2009

  • Назначение установки для переработки смесей гудрона с тяжелым каталитическим газойлем и тяжелых нефтяных дистиллятов и ее производительность. Характеристика сырья и получаемой продукции, ее дальнейшее использование. Сущность технологического процесса.

    отчет по практике [197,6 K], добавлен 17.12.2011

  • Цели и задачи, основные процессы и технологические схемы установок очистки попутного нефтяного газа. Методы очистки газа от газоконденсата, нефти, капельной, мелкодисперсной, аэрозольной влаги и механических шламовых примесей. Абсорбционная очистка газа.

    реферат [286,1 K], добавлен 11.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.