Алканы. Строение и свойства предельных углеводородов
Понятие и структура алканов как наиболее простые органические соединения, анализ их гомологического ряда. Способы получения, основные физические и химические свойства алканов, их классификация и разновидности. Направления применения данных соединений.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 02.04.2014 |
Размер файла | 89,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Наиболее простыми органическими соединениями являются предельные углеводороды или алканы. В соответствии с названием, их молекулы состоят из атомов углерода, образующих скелет, и атомов водорода. Углеродный скелет представляет собой открытую линейную («нормальные» алканы) или разветвленную цепь. В молекулах этих соединений все атомы углерода имеют максимальную валентность, равную четырем, поэтому их называют предельными, или насыщенными. Таким образом, в алканах реализуются только одинарные -связи. Алканы образуют гомологический ряд, и формула любого члена этого ряда имеет вид CnH2n+2.
Гомологический ряд - это бесконечный ряд сходных по строению соединений, причем рядом стоящие представители этого ряда отличаются друг от друга на нефункциональную группу, которая мало влияет на свойства соединений. Она называется гомологической разностью (чаще всего это, как в алканах, группа СН2). Все представители гомологического ряда обладают сходными химическими свойствами.
Гомологический ряд алканов начинается с метана, имеющего один углеродный атом. Первые четыре члена ряда имеют тривиальные (случайные или исторические) названия, названия же остальных представителей являются производными греческих и латинских числительных в соответствии с количеством атомов углерода в наиболее длинной цепи молекулы. Физические свойства гомологов плавно меняются с изменением молярной массы, что особенно заметно по температурам кипения алканов (С):
СН4 метан (т. пл. = - 182.5, т. кип. = - 164.0)
СН3-СН3 этан (т. пл. = - 183.3, т. кип. = - 88.6)
СН3-СН2-СН3 пропан (т. пл. = - 189.7, т. кип. = - 42.1)
СН3-СН2-СН2-СН3 бутан (т. пл. = - 138.4, т.кип = - 0.5)
СН3-СН2-СН2-СН2-СН3 пентан (т. пл. = - 129.7, т. кип. = + 36.1)
СН3(СН2)4СН3 гексан (т. пл. = - 95, т. кип. = + 69)
СН3(СН2)5СН3 гептан (т. кип. = - 90.5, т. кип. = + 98.4)
СН3(СН2)6СН3 октан (т. кип. = - 56.8, т. кип. = + 125.7)
Начиная с бутана, алканы существуют в нескольких изомерных структурах, т.к. наличие в молекуле более чем трех атомов углерода открывает возможность для существования разветвленных цепей. Это явление называется структурной изомерией. Бутан имеет 2 изомера, пентан - три, гептан - 9, декан - 75 изомеров. Наиболее распространенные из разветвленных алканов имеют устоявшиеся названия, тогда как для остальных нужно применять номенклатуру IUPAC. Физические свойства разветвленных алканов зачастую отличаются от свойств их линейных изомеров. Особенно это касается температуры плавления, которая сильно зависит от симметрии молекулы:
Строение алканов
Все атомы углерода в молекулах алканов имеют sp3-гибридизацию, оси орбиталей направлены к углам тетраэдра, валентный угол равен 109,5о. Длины связей С-С составляют 154 пм, С-Н - 109 пм.
Молекула метана представляет собой правильный тетраэдр, в молекуле этана два тетраэдрических метила связаны между собой вершинами. -Связь позволяет структурным фрагментам вращаться вокруг ее оси, поэтому этан может существовать в виде двух конформаций: заторможенной и заслоненной. Заторможенная коформация на 15 кДж/моль выгоднее заслоненной.
Способы получения алканов
В промышленности предельные углеводороды получают из нефти фракционированием или крекингом. Перегонка позволяет выделить алканы, изначально присутствующие в нефти, при крекиге происходит разрыв С-С связей, в результате чего образуются углеводороды меньшей молекулярной массы, чем исходные. Низшие гомологи алканов зачастую получают из природного газа. Лабораторные способы можно разделить на три группы:
образование алкана с сохранением углеродного скелета исходной молекулы
1. гидрирование непредельных углеводородов
2. восстановление йодалканов
алкан органический химический
3. восстановление карбонильных соединений (реакции Кижнера-Вольфа и Клемменсена)
4. гидролиз (сольволиз) реактивов Гриньяра
реакции, протекающие с укорочением углеродной цепи
получение алканов с более длинной цепью, чем исходные соединения
1. взаимодействие галогеналканов с металлическим натрием или калием (реакция Вюрца)
2. электролиз солей карбоновых кислот (реакция Кольбе)
3. взимодействие диалкиллитийкупратов или других металлорганических соединений с активными алкилгалогенидами
Химические свойства
Алканы имеют низкую химическую активность. Это объясняется тем, что единичные связи C-H и C-C относительно прочны и их сложно разрушить. Поскольку углеродные связи неполярны, а связи С-Н малополярны, оба вида связей малополяризуемы и относятся к у-виду, их разрыв наиболее вероятен по гомолитическому механизму, то есть с образованием радикалов.
Реакции радикального замещения
Галогенирование:
Галогенирование алканов протекает по радикальному механизму. Для инициирования реакции необходимо смесь алкана и галогена облучить УФ-излучением или нагреть.
Хлорирование метана не останавливается на стадии получения метилхлорида (если взяты эквимолярные количества хлора и метана), а приводит к образованию всех возможных продуктов замещения, от хлорметана дотетрахлорметана. Хлорирование других алканов приводит к смеси продуктов замещения водорода у разных атомов углерода. Соотношение продуктов хлорирования зависит от температуры. Скорость хлорирования первичных, вторичных и третичных атомов зависит от температуры, при низкой температуре скорость убывает в ряду: третичный, вторичный, первичный. При повышении температуры разница между скоростями уменьшается до тех пор, пока не становится одинаковой. Кроме кинетического фактора на распределение продуктов хлорирования оказывает влияние статистический фактор: вероятность атаки хлором третичного атома углерода в 3 раза меньше, чем первичного, и в 2 раза меньше, чем вторичного. Таким образом, хлорирование алканов является нестереоселективной реакцией, исключая случаи, когда возможен только один продукт монохлорирования.
Стоит отметить, что галогенирование происходит тем легче, чем длиннее углеродная цепь н-алкана. В этом же направлении уменьшается энергия ионизации молекулы вещества, то есть, алкан легче становится доноромэлектрона.
Галогенирование - это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атомы галогенируются в последнюю очередь). Галогенирование алканов проходит поэтапно - за один этап замещается не более одного атома водорода:
1. CH4 + Cl2 > CH3Cl (хлорметан) + HCl
2. CH3Cl + Cl2 > CH2Cl2 (дихлорметан) + HCl
3. CH2Cl2 + Cl2 > CHCl3 (трихлорметан) + HCl
4. CHCl3 + Cl2 > CCl4 (тетрахлорметан) + HCl.
Под действием света молекула хлора распадается на радикалы, затем они атакуют молекулы алкана, забирая у них атом водорода, в результате этого образуются метильные радикалы ·СН3, которые сталкиваются с молекулами хлора, разрушая их и образуя новые радикалы.
Бромирование алканов отличается от хлорирования более высокой стереоселективностью из-за большей разницы в скоростях бромирования третичных, вторичных и первичных атомов углерода при низких температурах.
Иодирование алканов иодом не происходит, получение иодидов прямым иодированием осуществить нельзя.
С фтором и хлором реакция может протекать со взрывом, в таких случаях галоген разбавляют азотом или подходящим растворителем.
Сульфохлорирование (реакция Рида):
При облучении УФ-излучением алканы реагируют со смесью SO2 и Cl2, После того, как с уходом хлороводорода образуется алкильный радикал, присоединяется диоксид серы. Образовавшийся сложный радикал стабилизируется захватом атома хлора с разрушением очередной молекулы последнего.
Инициирование цепного процесса:
Развитие цепного процесса:
Образовавшиеся сульфонилхлориды широко применяются в производстве ПАВ.
Нитрование:
Алканы реагируют с 10% раствором азотной кислоты или оксидом азота NO2 в газовой фазе при температуре 140°C и небольшом давлении с образованием нитропроизводных.
RH + HNO3 > RNO2 + H2O.
Все имеющиеся данные указывают на свободнорадикальный механизм. В результате реакции образуются смеси продуктов.
Реакции окисления:
· Горение
Основным химическим свойством предельных углеводородов, определяющих их использование в качестве топлива, является реакция горения. Пример:
CH4 + 2O2 > CO2 + 2H2O + Q.
Значение Q достигает 46 000 - 50 000 кДж/кг.
В случае нехватки кислорода вместо углекислого газа получается угарный газ или уголь (в зависимости от концентрации кислорода).
В общем виде реакцию горения алканов можно записать следующим образом:
СnН2n+2 +(1,5n+0,5) O2 > nCO2 + (n+1) H2O.
· Каталитическое окисление
Могут образовываться спирты, альдегиды, карбоновые кислоты.
При мягком окислении СН4 в присутствии катализатора кислородом при 200°C) могут образоваться:
· метанол: 2СН4 + О2 > 2СН3ОН;
· формальдегид: СН4 + О2 > СН2О + Н2O;
· муравьиная кислота: 2СН4 + 3О2 > 2НСООН + 2Н2O.
Окисление также может осуществляться воздухом. Процесс проводится в жидкой или газообразной фазе. В промышленности так получают высшие жирные спирты и соответствующие кислоты.
Ниже представлена реакция окисления алканов диметилдиоксираном:
Механизм реакций получения кислот путём каталитического окисления и расщепления алканов показан ниже на примере получения из бутана уксусной кислоты:
Термические превращения алканов:
· Разложение
Реакции разложения происходят лишь под влиянием больших температур. Повышение температуры приводит к разрыву углеродной связи и образованию свободных радикалов.
Примеры:
CH4 > C + 2H2 (t > 1000°C).
C2H6 > 2C + 3H2.
Крекинг
При нагревании выше 500°C алканы подвергаются пиролитическому разложению с образованием сложной смеси продуктов, состав и соотношение которых зависят от температуры и времени реакции. При пиролизепроисходит расщепление углерод-углеродных связей с образованием алкильных радикалов.
В 1930-1950 гг. пиролиз высших алканов использовался в промышленности для получения сложной смеси алканов и алкенов, содержащих от пяти до десяти атомов углерода. Он получил название «термический крекинг». С помощью термического крекинга удавалось увеличить количество бензиновой фракции за счёт расщепления алканов, содержащихся в керосиновой фракции (10-15 атомов углерода в углеродном скелете) и фракции солярового масла (12-20 атомов углерода). Однако октановое число бензина, полученного при термическом крекинге, не превышает 65, что не удовлетворяет требованиям условий эксплуатации современных двигателей внутреннего сгорания.
В настоящее время термический крекинг полностью вытеснен в промышленности каталитическим крекингом, который проводят в газовой фазе при более низких температурах - 400-450°C и низком давлении -10-15 атм на алюмосиликатном катализаторе, который непрерывно регенерируется сжиганием образующегося на нём кокса в токе воздуха. При каталитическом крекинге в полученном бензине резко возрастает содержание алканов с разветвлённой структурой.
Для метана:
CH4 > С + 2H2 - при 1000°C.
Частичный крекинг:
2CH4 > C2H2 + 3H2 - при 1500°C.
Дегидрирование
Образование:
1) В углеродном скелете 2 (этан) или 3 (пропан) атома углерода - получение (терминальных) алкенов, так как других в данном случае не может получиться; выделение водорода:
Условия протекания: 400-600°C, катализаторы - Pt, Ni, Al2O3, Cr2O3.
а) CH3-CH3 > CH2=CH2 + H2 (этан > этен);
б) CH3-CH2-CH3 > CH2=CH-CH3 + H2 (пропан > пропен).
2) В углеродном скелете 4 (бутан, изобутан) или 5 (пентан, 2-метилбутан, неопентан) атомов углерода - получение алкадиенов; выделение водорода:
в) CH3-CH2-CH2-CH3 > CH2=CH-CH=CH2 + 2H2 (бутан > бутадиен - 1,3 - дегидрирование удалённых связей С-С).
в') CH3-CH2-CH2-CH3 > CH2=C=CH-CH3 + 2H2 (бутан > бутадиен - 1,2 - дегидрирование соседних связей С-С-С).
3) В углеродном скелете 6 (гексан) и более атомов углерода - получение бензола и его производных:
г) CH3-CH2-CH2-CH2CH2-CH2-CH2-CH3 (октан) > П.-ксилол, параллельно М.-ксилол, параллельно этилбензол + 4H2.
Конверсия метана
В присутствии никелевого катализатора протекает реакция:
CH4 + H2O > CO + 3H2.
Продукт этой реакции (смесь CO и H2) называется «синтез-газом».
Реакции электрофильного замещения
Изомеризация:
Под действием катализатора (например, AlCl3) происходит изомеризация алкана: например, бутан (C4H10), взаимодействуя с хлоридом алюминия (AlCl3), превращается из н-бутана в 2-метилпропан.
С марганцовокислым калием (KMnO4) и бромной водой (Br2) алканы не взаимодействуют.
Размещено на Allbest.ru
...Подобные документы
Общие представления о алканах и их строение, физические свойства. Содержание алканов в нефтях. Основные методики исследования алканов. Применение алканов в органической геохимии. Образование алканов, приемы их использования при исследовании нефтей.
реферат [255,5 K], добавлен 04.05.2012Особенности строения предельных углеводородов, их изомерия и номенклатура. Гомологический ряд алканов неразветвленное строения. Получение метана в лабораторных условиях, его физические и химические свойства. Области применения метана как природного газа.
презентация [113,5 K], добавлен 22.12.2013Понятие алканов (насыщенные углеводороды, парафины, алифатические соединения), их систематическая и рациональная номенклатура. Химические свойства алканов, реакции радикального замещения и окисления. Получение и восстановление непредельных углеводородов.
реферат [46,2 K], добавлен 11.01.2011Источники алканов в природе: природный газ, минеральное углеводородное сырье. Последовательность соединений алканов - гомологический ряд. Порядок соединения атомов и структурная изомерия алканов. Рост количества изомеров с ростом числа углеродных атомов.
презентация [500,4 K], добавлен 14.02.2011Гомологический ряд метана. Строение молекулы метана. Углы между всеми связями. Физические свойства алканов. Лабораторные способы получения. Получение из солей карбоновых кислот. Тип гибридизации атомов углерода в алканах. Структурная изомерия алканов.
презентация [1,5 M], добавлен 08.10.2014Строение предельных углеводородов, их физические и химические свойства. Гомологический ряд метана. Изомерия и номенклатура предельных углеводородов. Декарбоксилирование натриевых солей карбоновых кислот. Выделение углеводородов из природного сырья.
презентация [46,7 K], добавлен 28.11.2011Предмет органической химии. Понятие о химических реакциях. Номенклатура органических соединений. Характеристика и способы получения алканов. Ковалентные химические связи в молекуле метана. Химические свойства галогеналканов. Структурная изомерия алкенов.
контрольная работа [1,4 M], добавлен 01.07.2013Сущность алканов (насыщенных углеводородов), их основные источники и сферы применения. Строение молекул метана, этана, пропана и бутана. Особенности промышленных и лабораторных методов синтеза алканов. Механизм галогенирования, горения и пиролиза.
курсовая работа [2,8 M], добавлен 19.04.2012Особенности строения предельных углеводородов. Номенклатура углеводородов ряда метана. Химические свойства предельных углеводородов, их применение. Структурные формулы циклопарафинов (циклоалканов), их изображение в виде правильных многоугольников.
контрольная работа [151,2 K], добавлен 24.09.2010Номенклатура, изомерия, классификация и физические свойства диеновых углеводородов и органических галогенидов. Способы получения и химические свойства. Сущность диенового синтеза. Натуральные и синтетические каучуки, их применение в строительстве.
контрольная работа [85,0 K], добавлен 27.02.2009Понятие аминоспиртов, их физические и химические свойства, качественные реакции. Гидроксикислоты и аминокислоты: сущность и строение, принципы получения. Многоосновные гидроксикислоты, сферы их практического применения, химическая структура и значение.
презентация [45,9 K], добавлен 17.06.2014Понятие гетероциклических соединений, их сущность и особенности, основные химические свойства и общая формула. Классификация гетероциклических соединений, разновидности, отличительные черты и способы получения. Реакции электрофильного замещения.
реферат [250,5 K], добавлен 21.02.2009Понятие гетероциклических соединений, их сущность и особенности, основные химические свойства и общая формула. Классификация гетероциклических соединений, разновидности, отличительные черты и способы получения. Реакции электрофильного замещения.
реферат [248,9 K], добавлен 21.02.2009Понятие, основные физические и химические свойства циклоалканов как насыщенных моноциклических углеводородов, алициклических соединений. Исследование примеров данных соединений: бензола, циклогексана: их схемы и элементы, применение и побочные действия.
презентация [158,7 K], добавлен 05.02.2014Металлоорганические соединения. Щелочные металлы первой подгруппы. Органические соединения лития, способы получения, химические свойства. Взаимодействие алкиллития с карбонильными соединениями. Элементы второй группы. Магнийорганические соединения.
реферат [99,3 K], добавлен 03.12.2008Нитросоединения - органические соединения, в молекуле которых содержится группа NO2, их строение и получение методом нитрования алканов (замещение водорода) и нуклеофильным замещением галогена. Cвойства алифатических нитросоединений и нитроаренов.
контрольная работа [23,2 K], добавлен 05.08.2013Галогенопроизводные углеводородов - органические соединения, образующиеся при замещении водорода в углеводородах на атомы галогенов. Строение и классификация, изомерия галогенопроизводных, физические и биологические свойства, взаимодействие металлов.
презентация [895,1 K], добавлен 18.02.2013Понятие и сущность процесса хлорирования углеводородов и других соединений, история открытия и развития учения о хлорировании. Методы получения хлорпроизводных углеводородов и применение их в промышленности. Характеристика и получение фтороалканов.
курсовая работа [77,9 K], добавлен 21.02.2009Строение молекул, физические свойства и применение альдегидов. Органические соединения, содержащие карбонильную группу. Формулы изомерных карбонильных соединений. Особенности применения формальдегида в промышленности, сельском хозяйстве, фармакологии.
презентация [145,0 K], добавлен 22.03.2014Получение, строение и разновидности полиэтилентерефталата - термопластика, наиболее распространённого представителя класса полиэфиров, который известен под разными фирменными названиями: полиэфир, лавсан или полиэстер. Физические и химические свойства.
реферат [137,0 K], добавлен 13.01.2011