Гетероциклические соединения. Алкалоиды

Исследование биологического значения циклических соединений. Изучение важнейших представителей пятичленных гетероциклов с несколькими гетероатомами. Описания гетероциклов с конденсированной системой ядер. Обзор факторов, влияющих на накопление алкалоидов.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 11.05.2014
Размер файла 55,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Карагандинский Государственный Медицинский Университет

Кафедра фармацевтических дисциплин с курсом химии

Реферат

Тема: Гетероциклические соединения. Алкалоиды.

Караганда 2013г

Содержание

Введение

1. Классификация

1.1 Пятичленные гетероциклы с одним гетероатомом

1.2 Пятичленные гетероциклы с двумя гетероатомами

1.3 Шестичленные гетероциклы с одним гетероатомом

1.4 Шестичленные гетероциклы с двумя гетероатомами

2. Гетероциклы с конденсированной системой ядер

3. Алкалоиды

Список использованной литературы

Введение

«Гетерос» - по-гречески разный. Это циклические соединения, в кольца которых, кроме углеродных атомов входят атомы других элементов, например, азота, серы, кислорода (N,S,O) и др. они называются гетероатомами.

Эти соединения имеют большое биологическое значение, они распространены в природе в виде витаминов, алкалоидов, пигментов и других составных частей животных и растительных клеток, участвуют в построении аминокислот, входящих в состав белков; они входят в состав нуклеотидов, нуклеиновых кислот.

1. Классификация

1.1 Пятичленные гетероциклы с одним гетероатомом

Важнейшими представителями являются следующие: Фуран, Тиофен, Пиррол.

Все эти соединения в своем составе имеют по четыре углеродных атома и один гетероатом. У этих соединений имеются две двойные связи, между которыми имеется одинарная связь (это напоминает диеновые углеводороды с сопряженной системой двойных связей). Однако, в химическом отношении ионии больше напоминают ароматические соединения. Каждый углеродный атом у них затрагивает 3 электрона на образование обычных у-свзей, то есть связей, образованных гибридизированными электронными облаками, а один электрон образует Р - электронное облако (в виде правильной восьмерки).

У гетероатома на образование у-связей израсходовано два электрона, а еще два электрона образуют Р-электронные облака. В результате видим, то в ядре имеется 6 Р - электронных облаков, которые взаимно перекрываясь, образуют сплошное Р - электронное облако, как и в бензоле. Поэтому они и напоминают по свойствам ароматические соединения, особенно ярко они выражены у тиофена. Как и у ароматических соединений, у них прочное ядро - при обычных химических реакциях не разрывается. И более характерными для них являются реакции замещения атомов водорода.

Фуран. Получение. Наиболее доступным производным фурана является фурфурол. Его получают из растительных отходов, содержащих пентозаны, обработкой их разбавленной серной кислотой с последующей перегонкой с водяным паром.

Свойства. Фуран проявляет ацидофобные свойства. При действии концентрированной серной кислоты он полимеризуются. Разбавленные кислоты вызывают гидролитическое расщепление кольца с образованием 1,4-дикарбонильных соединений.

Тиофен содержится в каменноугольной смоле и является спутником коксохимического бензола (присутствует в количестве 0,5%). По ряду физических и химических свойств тиофен очень близок к бензолу: температура кипения тиофена 84оС, бензола 80оС; запах чистого тиофена напоминает запах бензола, очень близка их склонность к реакциям нуклеофильного замещения. Тиофен - наиболе аромаатический из пятичленных гетероциклов.

Получение

В промышленности тиофен производят по реакции ацетилена с сероводородом при 400оС или из н-бутана и серы в газовой фазе:

Свойства. Тиофен, в отличие от фурана и пиррола, не дает с обычными кислотами тиониевых солей и, следовательно, в кислой среде не утрачивает ароматических свойств. Он не обладает ацидофобностью.

Тиофен легко вступает в характерные для ароматических соединений реакции электрофильного замещения. Механизм этих реакций аналогичен механизму соответствующих реакций фурана:

Пиррольное кольцо входит в структуру многих важных природных соединений, таких как гемин, хлорофил и др.

Получение Пиррол содержится в каменноугольной смоле и костном масле. В лаборатории его можно получать сухой перегонкой аммонийной соли слизевой кислоты или перегонкой сукцинимида с цинковой пылью:

Свойства. Пиррол представляет собой бесцветную темнеющую на воздухе жидкость с т. кип. 131оС. Характерной для соединений ряда пиррола является их способность окрашивать в красный цвет смоченную в соляной кислоте сосновую лучину. Отсюда и название “пиррол” [“красное масло”].

Кислотно-основные свойства:

Пиррол, как и фуран, проявляет ацидофобные свойства. При действии кислот он протонируется и полимеризуется. Пиррол является слабым основанием и одновременно очень слабой кислотой, более слабой, чем фенол. Он реагирует с КОН при сплавлении:

1.2 Пятичленные гетероциклы с двумя гетероатомами

К ним относятся : Имидазол, Тиазол

1.Имидазол:

ХИМИЧЕСКИЕ СВОЙСТВА ИМИДАЗОЛА:

Имидазол - более сильное основание, чем пиррол. Амфотерность приводит к тому, что его участие в той или иной реакции зависит от среды: в кислой среде кольцо заряжается положительно, в щелочной - отрицательно.

Реакции электрофильного замещения протекают либо по атомам азота, либо по атомам углерода, но наиболее предпочтителен первый вариант.

Такой механизм реакции требует наименьшие энергетические затраты.

Производные имидазола могут вступать в реакцию с галоидным алкилом с образованием солей:

Однако помимо реакций электрофильного замещения молекула имидазола может вступать и в реакции нуклеофильного замещения:

Для имидазола возможны и специфические реакции: металлирование и карбоксилирование:

Имидазол также может вступать в конденсацию с альдегидами:

ФЕНИЛМИМДАЗОЛИЛЭТИЛЕН.

К простейшим производным имидазола относят:

1) 2-нитороимидазол. Это белое кристаллическое вещество, растворяющееся в воде и органических растворителях. Является очень сильным антибиотиком, однако из-за своей токсичности в настоящее время в медицине не применяется.

2) Мерказолил или 1-метил-2-меркаптоимидазол. Другое название этого вещества - тиамазол. Это белый или желтоватый кристаллический порошок со слабым специфическим запахом и горьким вкусом. Является синтетическим антитиреоидным средством, то есть вызывает уменьшение синтеза тироксина в щитовидной железе, благодаря чему оказывает специфическое лечебное действие при её гиперфункции. Применяют при диффузном токсическом зобе.

К более сложным производным имидазола относятся:

1) Нафтизин или 2-(б-нафтилметил)-имидазолина нитрат. Другое название вещества - санорин. Это белый с желтоватым оттенком кристаллический порошок, трудно растворим в воде. Нафтизин - прекрасное сосудосуживающее средство, поэтому его в основном применяют при острых ринитах, при воспалении гайморовых пазух, для остановки носовых кровотечениях, при аллергических конъюнктивитах.

2) Галазолин или 2-(4-третбутил-2,6-диметилбензил)-имидазолина хлорид. Другое название - отривин или ксилометазолин. По своему действию близок к нафтизину. Применяется при ринитах, ларингитах, синуситах, воспалениях гайморовой пазухи, сенном насморке и других заболеваниях полости носа и горла.

3) Клофелин или 2-(2,6-дихлорфениламино)-имидазолина гидрохлорид. Другие названия: Гемитон, Катапресан. Это белый кристаллический порошок, растворимый в воде. Клофелин является хорошим б-адреноблокирующим средством, поэтому его назначают в качестве антигипертензивного средства при различных формах гипертонии, а в глазной практике - для лечения глаукомы. 4) Фентоламин или 2-[N-пара-толил-N-(мета-оксифенил)-аминометил]-имидзолина гидрохлорид. Это белый или кремовый порошок, мало растворимый в воде. Фентоламин как и клофелин относится к группе б-адреноблокаторов, то есть блокирует адренорецепторы., поэтому его применяют при расстройствах периферического кровообращения (болезнь Рейно, акроцианоз и др.), при лечении трофических язв конечностей, пролежней, отморожений и т.д. Фентоламин усиливает секрецию инсулина, вследствие чего может быть полезен больным сахарным диабетом.

5) Метиамид или 1-метил-2-[2-(5-метилимидазол-4-лил)-метилтиоэтил]мочевина. Является первым из известных Н2-блокатор, предложенный в качестве лекарственного препарата. Однако он не нашёл применения в связи с большим числом побочных явлений (агранулоцитз и др.)

6) Этимизол или бис-(метиламид)-1-этилимидазол-4,5-дикарбоновой кислоты. Это белый кристаллический порошок, мало растворимый в воде. Оказывает стимулирующее влияние на дыхательный центр и относится к группе дыхательных аналептиков, активизирует адренокортикотропную функцию гипофиза, что приводит к повышению уровня глюкокортикостероидов в крови, улучшает краткосрочную память, способствует повышению умственной работоспособности. Применяют при отравлении наркотиками, после хирургического наркоза, и др.

7) Миконазол или 1-[2,4-дихлор-в-(2,4,-дихлорбензолокси)-фенэтил]-имидазол. Другое название - альбистат, гонофит, дерманистат. Применяют при поражении кожи и ногтей дерматофитами и грибками, сопровождающихся воспалениями. Эффективен при микозах с суперинфекцией грамположительными бактериями.

8) Мазиндол или 5-(4-хлорфенил)-2,5,-дигидро-3Н-имидазол-[2,1-а]-изоиндол-5-ол. Другое название - теренак, теронак. Обладает анорексигенным и антидепрессивным действием, так как является эффективным б-адреноблокатором. Применяют в комплексной терапии ожирения.

ПОЛУЧЕНИЕ ТИАЗОЛА

Химия тиазола хорошо изучена и методы синтеза тиазола и его производных тщательно разработаны. Общий способ их получения является взаимодействие б-галогензамещённых альдегидов и кетонов с амидами тиокислот:

СТРОЕНИЕ ТИАЗОЛА

Тиазол - гетероцикл с хорошо выраженными ароматическими свойствами. Тиазол устойчивее имидазола в энергетическом отношении, о чём говорит число резонансных структур:

Молекулярная диаграмма тиазола:

На основании этого можно сделать вывод о распределении электронной плотности. Положительный заряд на атоме серы говорит о наличии экранирующего эффекта в электронной оболочки атома и сильной делокализации его внешних электронов. Отрицательный заряд на атоме азота и положительный - на атоме серы согласуются с экспериментальными фактами: электрофильность атома возможна по атому серы, по атому азота не идёт; нуклеофильное замещение легче всего идёт по второму атому углерода из-за повышенной электронной плотности.

ХИМИЧЕСКИЕ СВОЙСТВА ТИАЗОЛА:

Тиазол - слабое основание, но он образует устойчивые соли:

Реакции нитрования, сульфирования и галогенирования протекают с трудом. Но нитрование в положении 5 идёт легче при наличии в положении 2 аминогруппы. Тиазол может окисляться пероксидами с образованием N-оксидов: НЕКОНДЕНСИРОВАННЫЕ ПРОИЗВОДНЫЕ ТИАЗОЛА:

Среди неконденсированных производных выделяют как лекарственные препараты, так и биологически активные вещества, такие как витамин В1.

1)Норсульфазол или 2-(пара-аминобензолсульфамидо)-тиазол. Другое название - амидотиазол, асептоцил, азосептал и др. Это белый или слегка желтоватый кристаллический порошок без запаха, мало растворим в воде. Эффективен при инфекциях, вызванных гемолитическим стрептококком, пневмококком, гонококком, кишечной палочкой. Применяют при пневмонии, церебральном менингите, сепсисах и др.

2) Тиамин (витамин B1) или 4-метил-5-в-оскиэтил-N-(2-метил-4-амино-5-метилпиримидил)-тиазолий хлорида гидрохлорид. Это белый кристаллический порошок, имеющий слабый запах дрожжей, легко растворим в воде. Применяют как специфическое средство для предупреждения и лечения гипо- и авитаминоза B1. В некоторых случаях применяют для лечения неврита, радикулита, невралгии, периферического паралича, при язве желудка и 12-перстной кишки, при атонии кишечника, заболевании печени, при дистрофии миокарда, дерматозах. Суточная доза - около 2 мг.

3) Фталазол или 2-(пара-фталаминобензосульфамидо)-тиазол. Это белый с желтоватым оттенком порошок, нерастворимый в воде. Применяют при дизентерии, колитах, гарстроэнтеритах, при оперативных вмешательствах на кишечнике, для предупреждения гнойных осложнений.

КОНДЕНСИРОВАННЫЕ ПРОИЗВОДНЫЕ ТИАЗОЛА

1) 2-меркаптобензтиазол. Это светло-жёлтые моноклинные иглы, растворим в воде. Ингибирует полифенолоксидазу путём образованием хелатных комплексов с медью. Используется с цистеином или меркаптоэтанолом при выделении митохондрий.

2) Амиказол или 2-диметиламино-6-диэтидаминоэтокси-бензтиазола дигидрохлорид. Другое название - астерол, ателор, димазол. Это белый или слегка желтоватый кристаллический порошок, легко растворимый в воде, гигроскопичен. Является противогрибковым препаратом, эффективным в отношении дерматофитов и дрожжеподобных грибов рода Кандида. Применяют при эпидермофите стоп и других грибковых поражениях гладкой кожи. 3) Дитиазанин или 3-этил-2-[5-(3"-этил-2-бензотиазолинилиден)-1,3-пентадиенил]-бензотиазолий йодил. Другое название - делвес, нетоцид, телмецид. Относится к группе красителей (синий цианиновый). Применяется для лечения трихоцефализа, стронгилоидоза.

1.3 Шестичленные гетероциклы с одним гетероатомом

Органические циклические соединения, имеющие как минимум один шестичленный цикл, в состав которого входит как минимум один гетероатом.

Пиридин:

Пиридин C5H5N - простейший шестичленный ароматический гетероцикл с одним атомом азота. Его можно рассматривать как аналог бензола, в котором одна группа СН заменена на атом азота.

Пиридин-N-оксид и его производные

1.б-пиколин (2-метилпиридин)

2.в-пиколин (3-метилпиридин)

3.г-пиколин (4-метилпиридин)

4.2-оксипиридин

5.4-оксипиридин

6.Пиридоксин

7.Пиколиновая кислота

8.Никотиновая кислота

9.Изоникотиновая кислота

10.Хинолин

11.Оксин

12.Кинуреновая кислота

13.Изохинолин

14.Акридин

15.Пиперидин

16.Индолизин

Физические свойства. Пиридин -- бесцветная жидкость, немного легче воды, с характерным неприятным запахом; с водой смешивается в любых отношениях.

Получение. Пиридин выделяют из каменноугольной смолы, в которой его содержание 0,08%. В лабораторных условиях пиридин можно синтезировать из синильной кислоты и ацетилена.

2HC?CH + HC?N  C5H5N.

б-пиран:

1.б-хромен

2.Кумарин

3.Эскулетин[1]

4.Псорален

5.Дикумарол

6.Варфарин

а- и у-Пираны представляют собой неустойчивые соединения. В отличие от аиупирана, их оксопроизводные являются довольно устойчивыми ароматическими соединениями. а-Пирон -- бесцветная жидкость с запахом свежего сена, перон -- бесцветное кристаллическое вещество.

В молекулах а- и у-пиронов неподеленная пара электронов циклического атома кислорода находится в сопряжении с л-электронам и двойной связи оксогруппы. Делокализацию электронной плотности в их молекулах можно представить в виде резонансных структур. у-Пирон проявляет слабые основные свойства и при взаимодействии с минеральными кислотами и алкил галогенидами образует соли пиридия. Пиридиевый катион содержит замкнутую л-систему из шести электронов и обладает ароматическим характером, у-Пирон не вступает в характерные для альдегидов и кетонов реакции (образования оксимов, гидразонов).

1.4 Шестичленные гетероциклы с двумя гетероатомами

1.Витамин B1 (тиамин, аневрин)

2.Барбитуровая кислота (2,4,6-триоксипиримидин)

3.5,5-диэтилбарбитуровая кислота

4.Хиназолин

5.Пурин

6.Мочевая кислота (2,6,8-триоксипурин)

7.Ксантин (2,6-диоксипурин)

8.Теофиллин (1,3-диметилксантин)

9.Теобромин (3,7-диметилксантин)

10.Кофеин (1,3,7-триметилксантин)

11.Аденин (6-аминопурин)

12.Гуанин (2-амино-6-оксипурин)

Ароматические шестичленные гетероциклические соединения, содержащие в своей структуре в качестве гетероатомов два атома азота, называются диазинами

2. Гетероциклы с конденсированной системой ядер

Сюда относятся следующие соединения:

1. Индол. Ядро индола состоит из ароматического ядра, сконденсированного с пиррольным ядром.

2. Скатол - производная индола. Скатол и индол содержатся в организме животных. Образуются при гниении , при пищеварении и обладают неприятным запахом, при их окислении образуется индоксил и скатоксил

3. Пурин - состоит из конденсированных гетероциклов: пиримидина и имидазола. Пурин это слабое основание, устойчивое к действию окислителей, хорошо растворимое в воде.

Сам пурин биологического значения не имеет, имеют окси и аминопроизводные урина, так называемые пуриновые основания. Они входят в состав нуклеотидов и нуклеиновых кислот.

Пуриновые основания:

1. Аденин - 6 -аминопурин

2. Гуанин - 2 - амино- 6- оксипурин

3. Гипоксантин - 6 - оксипурин - проводит окисление аденина

4. Ксантин - 2,6 -диоксипурин - проводит окисление гуанина.

5. Мочевая кислота - 2,6,8 -триоксипурин

Мочевая кислота является конечным продуктом обмена пуриновых оснований в живых организмах и выводится из организма с мочой. В почве мочевая кислота разлагается с образованием NH3. У животных и человека при нарушении обмена веществ мочевая кислота откладывается в суставах и возникает болезнь подагра. Пуриновые основания также существуют в двух формах: енольная и кетонная, то есть обладают кето-енольной таутомерией

3. Алкалоиды

Алкалоиды - это природные азотсодержащие органические соединения основного характера, имеющие сложный состав и обладающие сильным специфическим действием. Большинство их относится к соединениям с гетероциклическим атомом азота в кольце, реже азот находится в боковой цепи. Синтезируются преимущественно растениями.

В переводе термин "алкалоид" (от араб. "alkali" - щелочь и греч. "eidos" - подобный) означает щелочноподобный. Подобно щелочам, алкалоиды образуют с кислотами соли.

Распространение.

В растительном мире распределены неравномерно. В низших растениях их мало. Встречаются в семействе плауновых (плаун-баранец). У злаков и осоковых растений встречаются редко. Наиболее богаты алкалоидами растения семейств маковых, пасленовых, лилейных, мареновых, сельдерейных, амариллисовых, бобовых, лютиковых. В растениях алкалоиды находятся в клеточном соке в растворенном виде. Содержание колеблется от тысячных долей процента до нескольких процентов, а в коре хинного дерева от 15 до 20%.

У некоторых растений алкалоиды содержатся во всех органах (красавка обыкновенная и кавказская), у большинства они преобладают в каком-либо одном органе. Часто у одного растения в разных органах имеется различное число алкалоидов, некоторые органы могут быть безалкалоидными, например) мак опийный во всех органах, кроме семян, содержит алкалоиды. Обычно в растении встречается несколько алкалоидов: в опии, например, 26 алкалоидов, в корнях раувольфии - 35. Редко присутствует в растении один алкалоид.

Факторы, влияющие на накопление алкалоидов.

Обычно богаты алкалоидами растения влажного тропического климата. Теплая погода способствует повышению содержания в растениях алкалоидов, холодная - тормозит, а при заморозках алкалоиды в растении не накапливаются. Например, на Кавказе надземную часть чемерицы после заморозков животные поедают без последующего отравления, а в Средней Азии после заморозков верблюды поедают анабазис. Содержание алкалоидов меняется даже в течение суток. У лобелии одутлой количество их в ночное время на 40% больше, чем в полдень (Г. К. Крейер). Надрезы коробочек опийного мака в вечерние часы дают больший выход опия и содержание в нем алкалоидов выше. Исследования В. С. Соколова показали преимущества сборов солянки Рихтера ранним утром и ночью. Небезразличен для содержания алкалоидов и высотный фактор.

Установлено, что для каждого вида имеются свои оптимальные высоты. У крестовника плосколистного наибольшее количество алкалоидов накапливается на высоте 1800-2000 м над уровнем моря (крестовник встречается в горах на высоте до 2500 м), после чего содержание алкалоидов снижается. Такое явление наблюдается у хинного дерева, красавки, эфедры.

Важным фактором служат почвенные условия. Например, солянка Рихтера, растущая на песках, дает около 1% алкалоидов, а выросшая на глинистой почве содержит лишь их следы. У культивируемых растений отмечается повышение содержания алкалоидов при внесении азотсодержащих удобрений. Имеет значение и внутривидовая (индивидуальная) изменчивость. Наблюдается значительная разница в содержании алкалоидов у растений одного вида, растущих в одинаковых условиях, зависящая от индивидуальных свойств растений.

Колебания в содержании алкалоидов выявляются также при сушке и хранении сырья. При замедленной сушке нестойкие алкалоиды разлагаются. Содержание алкалоидов снижается также при хранении сырья в сырых помещениях.

Биологическая роль алкалоидов.

Окончательно не выяснена. С. Ю. Юнусов (1948) считает, что алкалоиды при дыхании растений окисляются в пероксид, который переходит в оксид алкалоида, а освобождающийся при этом активированный кислород используется растением для дальнейшего фотосинтеза. Алкалоиды подземных частей, по-видимому, регулируют рост и обмен веществ.

Классификация.

В фармакогнозии принята химическая классификация сырья, содержащего алкалоиды, разработанная акад. А. П. Ореховым. В основу классификации положено деление на группы в зависимости от строения углеродного скелета. Из них некоторые группы встречаются редко.

гетероцикл ядро пятичленный алкалоид

Список использованной литературы

1. Березов Т.Т. , Коровкин Б.Ф. Биологическая химия. Под ред. Дебова С.С. / М., «Медицина», 1990.

2. Николаев А.Я. Биохимия. / М., «Высшая школа», 1989.

3. Строев Е.А. Биологическая химия. / М., «Высшая школа», 1986.

4. Бышевский А.Ш.. Терсенев О.А. Биохимия для врача. /Екатеринбург, 1994.

5. Кушманова О.Д., Ивченко Г.М. Руководство к лабораторным занятиям по биологической химии. / М., «Медицина», 1983.

6.http://www.fito.nnov.ru/

7. http://www.kazedu.kz/

Размещено на Allbest.ru

...

Подобные документы

  • Общие сведения, распространение и значимость гетероциклических органических соединений. Особенности строения гетероциклов, их классификация и номенклатура. Шестичленные гетероциклы - азины и их аналоги. Взаимопревращение пятичленных гетероциклов.

    контрольная работа [1,2 M], добавлен 05.08.2013

  • Изучение строение гетероциклов с конденсированной системой ядер: индол, скатол, пурин и пуриновые основания. Особенности структуры нуклеозидов и нуклеотидов. Строение АТФ и нуклеиновых кислот. Биологическая роль ДНК и РНК, их химическая структура.

    реферат [45,6 K], добавлен 22.06.2010

  • Классификация гетероциклических соединений с пятичленными циклами; их существование в природе. Изучение методов синтеза моноядерных насыщенных и конденсированных пятичленных гетероциклов с одним и с двумя гетероатомами. Описание получения индазола.

    курсовая работа [1,3 M], добавлен 24.02.2015

  • Описание общего строения, свойств и функций гетероциклических соединений и их воздействия на организм человека на примере алкалоидов. Сравнительная характеристика представителей группы алкалоидов, их биосинтез, применение и распространение в природе.

    презентация [2,5 M], добавлен 22.09.2016

  • Характеристика алкалоидов как класса органических соединений, история открытия их отдельных представителей. Механизм образования алкалоидов, биосинтез некоторых гетероциклических оснований. Пути выделения алкалоидов в растениях и установление структуры.

    презентация [143,5 K], добавлен 13.11.2014

  • Строение и классификация алкалоидов. Сведения об алкалоидоносных растениях и семейства, содержащие алкалоидоносные виды. Факторы, влияющие на накопление алкалоидов, их применение в медицине. Физиологическая и биологическая роль алкалоидов в растениях.

    курсовая работа [266,1 K], добавлен 03.09.2014

  • Характеристика понятия и физических свойств алкалоидов; их классификация по ботаническому, фармакологическому, биогенетическому и химическому принципам. Распространение алкалоидов в растительном мире. Методы извлечения азотсодержащих соединений из сырья.

    реферат [67,2 K], добавлен 23.08.2013

  • Алкалоиды как природные азотсодержащие органические соединения основного характера, имеющие сложный состав и обладающие сильным специфическим действием. Начало химии алкалоидов, особенности их номенклатуры и классификация. Структурная формула морфина.

    презентация [1,7 M], добавлен 20.12.2014

  • Современное определение алкалоидов. Рассмотрение свойств разных классов токсичных и лекарственных природных соединений. Изучение особенностей распределения алкалоидов в природе. Ознакомление с правилами применения алкалоидов в современной медицине.

    реферат [128,8 K], добавлен 18.12.2015

  • Особенности синтеза природных соединений - алкалоидов азафеналенового ряда, которые продуцируются "божьими коровками". Методы полного синтеза алкалоидов пергидро- и декагидро- азафеналенового ряда. Метатезис как метод создания циклических структур.

    курсовая работа [2,8 M], добавлен 24.05.2012

  • Знакомство с химическим строением и свойствами алкалоидов маклейи мелкоплодной. Особенности свойств алкалоидов маклейи. Характеристика алкалоидов сангвинарина и хелеритрина. Способы подготовки сырья к экстракции. Описание технологических операций.

    лабораторная работа [18,9 K], добавлен 11.12.2009

  • Суть гетероциклических соединений с замкнутой цепью, содержащей, помимо атомов углерода, атомы других элементов. Реакционная способность, нуклеофильность, электрофильность. Реакционная способность заместителей и боковых цепей. Производство и применение.

    реферат [1,3 M], добавлен 27.09.2011

  • Понятие и сущность соединений. Описание и характеристика ароматических гетероциклических соединений. Получение и образование соединений. Реакции по атомному азоту, электрофильного замечания и нуклеинового замещения. Окисление и восстановление. Хинолин.

    лекция [289,7 K], добавлен 03.02.2009

  • Общая характеристика алкалоидов как специфических продуктов обмена растительной клетки. Их химико-физические свойства. Витамины пиримидинового ряда. Производные придина, пиперидина, тропана, хинолина, изохинолина, индола, пурина. Метод нейтрализации.

    презентация [2,0 M], добавлен 02.06.2014

  • Понятие гетероциклических соединений, их сущность и особенности, основные химические свойства и общая формула. Классификация гетероциклических соединений, разновидности, отличительные черты и способы получения. Реакции электрофильного замещения.

    реферат [250,5 K], добавлен 21.02.2009

  • Понятие гетероциклических соединений, их сущность и особенности, основные химические свойства и общая формула. Классификация гетероциклических соединений, разновидности, отличительные черты и способы получения. Реакции электрофильного замещения.

    реферат [248,9 K], добавлен 21.02.2009

  • Синтез и свойства N,S,О-содержащих макрогетероциклов на основе первичных и ароматических аминов с участием Sm-содержащих катализаторов. Гетероциклические соединения, их применение. Методы идентификации органических соединений ЯМР- и масс-спектроскопией.

    дипломная работа [767,1 K], добавлен 22.12.2014

  • Понятие гликозидов, их классификация и разновидности, значение и характер воздействия на организм, распространенность и основные функции. Биогенные амины и алкалоиды как антиалиментарные факторы. Характеристика основных алкалоидов - морфина и кофеина.

    контрольная работа [20,8 K], добавлен 19.09.2009

  • Характеристика гетероциклических соединений, их биологическое значение, распространение в природе, участие в построении аминокислот и классификация. Строение гемма крови и хлорофилла. Структура фурана, фурфурола, имидазола, тиазола, пирана, пиридина.

    реферат [41,5 K], добавлен 22.06.2010

  • Структура атомных и молекулярных спектров. Особенности и преимущества спектроскопии с преобразованием Фурье. Протонный магнитный резонанс. Спектроскопия ядерного магнитного резонанса ядер 13С. Идентификация органического соединения, расшифровка спектров.

    курсовая работа [2,5 M], добавлен 26.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.