Характеристика сложных белков

Классификация и характеристика сложных белков. Строение простетической группы нуклеопротеидов. Роль витаминов В1 и В2 в обмене веществ, их строение и пищевые источники. Механизм молочнокислого брожения, его промежуточные стадии и катализирующие ферменты.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 28.05.2014
Размер файла 68,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Вопросы

1. Классификация и характеристика сложных белков. Строение простетической группы нуклеопротеидов

2. Витамины В1 и В2, их строение, роль в обмене веществ. Пищевые источники этих витаминов. Какие коферменты содержат эти витамины?

3. Механизм молочнокислого брожения. Напишите промежуточные стадии с указанием ферментов, катализирующих эти превращения

1. Классификация и характеристика сложных белков. Строение простетической группы нуклеопротеидов

белок витамин молочнокислый брожение

Сложные белки (холобелки) состоят из апобелка и простетической (от греч. «prostheto» присоединенной) группы. Апобелок - белковая часть; простетическая группа - небелковая часть, она может быть прочно или слабо связана с апобелком. Сложные белки делятся на 6 основных классов: ФП, ХП, ГП, ЛП, МП, НП.

Фосфопротеиды - строение, представители, значение

ФП это сложные белки, обособленной простетической группы не имеют. Ее роль выполняют остатки фосфорной кислоты, связанные сложноэфирными связями с гидроксильными группами оксиаминокислот: сер, тре, тир.- формулу фрагмента ФП знать см. Материалы, С. 98, показать на табл.

ФП - это полноценные белки с большой молекулярной массой при нагревании не свертываются (термостабильны), в воде не растворимы, но хорошо растворимы в разбавленных растворах солей и щелочей. Имеют кислый характер (ИЭТ ~ 4,7) из-за остатков фосфорной кислоты, поэтому осаждаются кислотами. Это полноценные белки. Значение ФП - они служат пластическим материалом (источники незаменимых аминокислот и фосфора) и играют важную роль в росте организма, поэтому особенно нужны детям. Представители - казеиноген молока (фосфорной кислоты ~ 1%), вителлин, виттелинин и фосвитин - ФП яичного желтка (фосфорной кислоты ~ 10%), овальбумин - ФП яичного белка (10%), ихтуллин - в икре рыб (фосфорной кислоты более 10%). Казеиноген (от лат caseus - сыр) - основной белок молока, составляет около 80% от белков коровьего молока. Казеиноген получают из молока путем осаждения кислотой при рН 4,6 и температуре 20С. Казеиногены - это семейство различных однотипных белков, состоящих из 4 фракций - альфа, кси, бета и гамма. В коровьем молоке идентифицировано до 17 подфракций казеиногена. Из фракций казеиногена особое значение имеет кси казеиноген, с которым связаны процессы сычужного свертывания молока при производстве сыров.

Гликопротеиды - строение, представители, значение

ГП(мукопротеиды) (glycos - сладкий), или гликоконъюгаты - это сложные белки, содержащие в качестве простетической группы УГВ и их производные (D-галактозу, D-маннозу, D-глюкозу, L-фукозу, N-ацетилглюкозамин, N-ацетилгалактозу, сиаловую кислоту, арабинозу, нейраминовую кислоту, ксилозу) (гликановая фракция). Гликановая фракция ковалентно связана с неуглеводной частью (агликановой фракцией), которая может быть представлена белком, пептидом, аминокислотой, липидом. Углеводы прикреплены к неуглеводной части через О-гликозидную связь к гидроксигруппам сер, тре. Свойства ГП: высокая молекулярная масса, высокая вязкость, кислый характер, осаждение в кислой среде, термостабильность, устойчивы к действию ферментов за счет УГВ части. Свойства определяют биологическую роль. В природе ГП встречаются часто: в плазме крови, слюне, различных секретах, в межклеточном веществе, соединительной ткани, в мембранах. В основе классификации ГП лежит соотношение белковой и небелковой частей - показать на табл. или пленке и дать списать.

Истинные ГП. 80-90% белка и 10-20% простетическая группа. Своеобразие белковой части заключается в том, что 2/3 всех аминокислот составляют 4 аминокислоты: тре, про, сер, ала. Простетическая группа - нерегулярные УГВ: преобладают олигосахаридные участки, состоящие из ацетилгексозаминов, фукозы, арабинозы, ксилозы, галактозы и маннозы. В меньшей степени имеются нейтральные мукополисахариды, содержащие нейраминовую и сиаловую кислоты. Представители: иммуноглобулины, муцины, сиалопротеиды, некоторые гормоны (ФСГ, ТТГ), рецепторы к гормонам, некоторые ферменты (холинэстераза), белки, обуславливающие групповую принадлежность крови, протромбин, транспортные белки (транскортин, гаптоглобин, церулоплазмин) и др. Муцины (мукопротеины) - это белки слизи, слюны, секретов всех желез ЖКТ, дыхательных путей, МВС. Роль - защитная. В слизи рыб и земноводных они предохраняют от воздействия вредных внешних факторов. Белки, определяющие групповую принадлежность крови содержат 80-85% УГВ (манноза, фукоза, глюкоза, сиаловые кислоты). Важное значение в определении группы крови имеет строение конечных УГВ в молекулах этих белков. антигенная активность этих белков определяется следующей последовательностью углеводов на концах углеводной цепи: Д-галактоза-N-ацетилглюкозамин и Д-галактоза-N-ацетилгалактозамин. Группа крови зависит от тог, какой углевод присоединен к этому фрагменту. Установлено, что детерминантными сахарами являются L-фукоза для первой группы крови, альфа-N-ацетилгалактозамин для второй группы крови, альфа-D-галактоза для третьей группы крови. Белки-рецепторы в них УГВ выполняют узнающую роль. Транспортные белки: транскортин переносит КС, церулоплазмин транспортирует медь, гаптоглобин связывает гемоглобин, вышедший из разрушенных эритроцитов. Гликофорин - ГП мембран эритроцитов. Он состоит из одной ПП цепи, состоящей из 130 аминокислот, содержит до 60% УВД, представленных 16 олигосахаридными единицами. Гидрофильная часть гликофорина, богатая сахарами, обращенная наружу, содержит антигенные детерминанты, определяющую группу крови и участки, связывающие болезнетворные вирусы. Фибронектин - ГП плазматических мембран, состоит из 2 субъединиц, связанных дисульфидными мостиками. Предполагают, что фибронектин участвует в адгезии и миграции клеток.

Протеогликаны (мукоиды). Состоят из белка 5-10%, и простетической группы 90-95%. Их простетическая группа содержит УГВ регулярного (повторяющегося) строения и эти УГВ называются ГАГи, или кислые мукоПСХ. Они состоят из чередующихся дисахаридов, в составе которых имеются уроновые кислоты и ацетилгексозамины. Наиболее изучен протеогликан хряща - агрекан (хондромукоид). Также имеются другие протеогликаны - синдиканы, бетагликаны, сергликаны, перлеканы, верзиканы, декорины, бигликаны, фибромодулины. ГАГи, входящие в состав протеогликанов, отличаются друг от друга химической природой уроновых кислот, гексозаминов, степенью сульфатирования, мол.массой, свойствами. Представители ГАГов: гиалуроновая кислота, хондроитинсерная кислота, кератансульфат, дерматансульфат, гепарин, гепарансульфат. Общий план строения - уроновые кислоты (глюкуроновая, галактуроновая, идуроновая) + производные гексоз (глюкозамин, галактозамин, маннозамин) + серная и (или) уксусная кислоты. Например, гиалуроновая кислота состоит из чередующихся пар глюкуроновой кислоты и ацетилглюкозамина; хондроитинсерная кислота состоит из глюкуроновой кислоты и сульфированного ацетилгалактозамина; гепарин состоит из сульфированной глюкуроновой кислоты и ацетилглюкозаминсульфата - показать на табл. формулы знать, см. Материалы, с. 34. ГАГи могут находиться не только в составе протеогликанов, но и в свободном виде и выполнять важную биологическую роль в организме: 1) являясь кислыми соединениями, они обладают свойствами анионов. Благодаря этому ГАГи участвуют в переносе, связывании и распределении катионов по органам и тканям, играют важную роль в оссификации. 2) участвуют в распределении воды в тканях, обеспечивая проницаемость мембран для воды и растворенных в ней веществ. 3) участвуют в регуляции процессов диффузии. Гиалуроновая кислота - основная роль в связывании воды, а также а) активирует митоз, б) склеивающее вещество между клетками, в) бактерицидное действие, г) смазка суставных поверхностей. ХСК. Различают ХСК А (роговица глаза и хрусталик), В (кожа, клапаны сердца, легкие, аорта, сухожилия), С (хрящи и сухожилия), D (хрящи акулы). Роль ХСК - а) участвует в фибриллогенезе и оссификации, б) ингибирует митоз, в) обуславливают прочность и упругость соединительной ткани. Гепарин - а) антикоагулянт, т.е. препятствует свертыванию крови. Он связывается с IX и XI факторами свертывания крови, а также взаимодействует с антитромбином III. Связывание с антитромбином усиливает действие последнего на тромбин; б) ингибирует митоз, в) антиатерогенное действие, т.к. специфически связывается с ЛПЛ и вызывает высвобождение этого фермента в кровь; г) связывает токсины, д) ингибирует гиалуронидазу, т.е. антивоспалительное действие

Хромопротеиды - строение, представители, значение.

ХП это окрашенные белки (chroma - краска). Молекулы состоят из простого белка и простетической группы, окрашенной обычно за счет металла или витамина. Среди ХП различают дыхательные белки и дыхательные ферменты, которые образуют подгруппу гемопротеидов. Кроме гемопротеидов в группу ХП входят пигменты (родопсин, меланин), магний-порфирины (хлорофилл), желтые ферменты - флавиновые ферменты (выполняют роль дыхательных ферментов).

К дыхательным белкам относятся гемоглобин (Нb) - красный пигмент крови и миоглобин (Мgb) - красный пигмент мышц.

Гемоглобин состоит из простого белка типа гистонов - глобина и 4-х гемов (простетическая группа). Глобин состоит из 2-х п/п альфа цепей (по 141 аминокислоте в каждой) и 2-х бета-цепей (по 146 аминокислот в каждой). Видовая специфичность гемоглобина обусловлена особенностями аминокислотного состава глобина. Например, в глобине человека нет иле. Глобин, соединяясь с гемом, превращает малорастворимую и инертную структуру в хорошо растворимую и активную форму, способную связывать кислород. В свою очередь гемы придают устойчивость большим молекулам глобина.

Гем - производное порфирина, состоит из 4-х пиррольных колец, связанных в циклическую структуру метиновыми мостиками. Порфин с заместителями у бета-углерода называется порфирином. Различные порфирины различаются друг от друга характером заместителей. Гемы гемоглобина у 1,3,5,8 атомов углерода содержат СН3 группу (метил), у 2,4 - винильные радикалы, у 6,7 - остатки пропионовых кислот. Соединяясь с ионом железа, порфирин образует гем. железо присоединяется к атомам азота II и IV колец ковалентными и к III и I колец нековалентными (координационными связями). Строение всех 4-х гемов идентичное - показать на табл или пленке и дать списать. Каждый гем соединен с одной п/п цепью (альфа или бета) двумя координационными связями иона железа с имидазольными кольцами гистидинов. Одна из этих связей постоянна, а другая разрывается, когда к гемоглобину присоединяется кислород.

В 1957 году биохимики Д.Кендрью и М.Перутц получили Нобелевскую премию за расшифровку строения молекулы гемоглобина.

Во время развития организма гемоглобин претерпевает определенные изменения: на ранних стадиях у эмбриона содержится эмбриональный гемоглобин Е, который после 3-4 месяцев развития заменяется фетальным F, содержащим 2 альфа и 2 гамма цепи. Кровь новорожденного содержит 80% фетального гемоглобина, но к концу первого года жизни он почти полностью заменяется на гемоглобин А. В крови взрослого человека все же присутствует 1,5% фетального гемоглобина. Он имеет большее сродство к кислороду, чем гемоглобин взрослого организма - гемоглобин А и обеспечивает снабжение плода кислородом при меньшем его парциальном давлении. В дополнение к основному гемоглобину взрослого человека А1, имеется гемоглобин А2, молекула которого состоит из 2 альфа цепей и 2 сигма цепей. На долю гемоглобина А2 приходится 2,5% от всего гемоглобина.

Роль гемоглобина. Гемоглобин - основной белок эритроцитов. В 1-ом эритроците содержится 340 млн молекул гемоглобина, каждая из которых состоит из 103 атомов С, Н, О, N, S и 4 атомов железа. Основная роль - перенос кислорода от легких к тканям (оксигенация - показать на доске) и углекислого газа от тканей к легким. Гемоглобин образует буферные системы, которые участвуют в поддержании КОС. При распаде гемоглобина образуются пигменты кала, мочи и желчи. Гемоглобин участвует в обезвреживании оксида азота, который может присоединяться к нему и образовывать нитрозгемоглобин.

Молекула миоглобина состоит из 1-го гема и 1-ой п/п цепи (из 153 аминокислот). Гем миоглобина такой же как у гемоглобина. Роль миоглобина - транспорт кислорода от оксигемоглобина к ферментам дыхательной цепи в клетке - показать на доске реакцию.

Содержится, в основном, в цитоплазме мышечных клеток. Также служит в качестве депо кислорода. Миоглобина больше в натренированных мышцах - у диких животных, особенно у ныряющих - кашалота, тюленей (например, у зайца больше, чем у кролика). Миоглобин специфический белок мышц, поэтому его появление вы сыворотке крови говорит о поражении мышечной ткани (заболевания мышц, инфаркт миокарда).

Дыхательные ферменты. Это биологические катализаторы, ускоряющие ход ОВР в клетках и тканях. это сложные белки, среди них различают гемсодержащие (Цх, каталаза, пероксидазы) и негемовые (флавиновые ферменты). У первых простетической группой являются гемы различного строения, а у вторых - производные витамина В2 (рибофлавина).

К группе ХП относятся также белки-пигменты, которые состоят из продукта окисления тирозина - меланина и простого белка. Это пигменты коричневого и черного цвета, содержатся в волосах, коже, сетчатке глаз. От их количества зависит окраска этих органов.

Металлопротеиды - строение, представители, роль

МП - это сложные белки, содержащие в молекуле металлы, но в отличие от ХП здесь металлы свободны и выполняют роль простетической группы. Связь между белком и ионами металлов может быть прочной и непрочной у различных МП.

Представители:

а) ферритин

этот белок содержит 20% трехвалентного (окисленного) железа и выполняет роль депо железа в организме. Белок откладывается в печени и селезенке. Ферритин имеет оболочку (апоферритин) и ядро молекулы, в котром накапливаются до 4500 атомов железа в форме гидроксилфосфата. Железо связано прочной связью с азотом белковой части. Некоторая часть ферритина находится в плазме крови. Определение ферритина в плазме крови позволяет более точно оценить запасы железа. Единственной причиной снижения концентрации ферритина в плазме является уменьшение запасов железа. Концентрация ниже 20 мкг/л указывает на истощение, а ниже 12 мкг/л на полное отсутствие запасов железа. Однако ферритин является острофазовым белком и пациентов с дефицитом железа на фоне острого заболевания концентрация ферритина в плазме может быть в пределах нормы. У пациентов с анемией и хроническим заболеванием концентрация ферритина в плазме укажет на то, имеется ли одновременно дефицит железа и хватит ли его запасов для встраивания в гемоглобин при возросших потребностях, если основное заболевание может быть вылечено. Концентрация ферритина в плазме повышается при избытке железа, например, при гемахроматозе, но может также быть повышена у больных с заболеваниями печени и некоторыми типами рака, что связано с высвобождением белка из тканей. Таким образом, повышение концентрации ферритина следует интерпретировать с осторожностью, но нормальная концентрация говорит об отсутствии перегрузки железом;

Б) трансферрин

Этот белок содержит около 0,13% железа и выполняет роль переносчика железа (главным образом в составе бета-глобулинов), которое в молекуле связано непрочно с ОН-группой тирозина. Каждая молекула трансферрина связывает два иона двухвалентного железа. Атом металла связывается с трансферрином только в присутствии бикарбонатов, которые необходимы для образования комплекса железо-трансферрин. В норме трансферрин насыщен железом примерно на одну треть. Как и все транспортные белки синтезируется в печени, а также в молочной железе, лимфоидной ткани, яичках и яичниках;

В) лактоферрин

Находится в молоке, бронхиальном секрете, цитоплазме нейтрофилов. В кислой среде сродство лактоферрина к железу более высокое, чем трансферрина; в этой связи в очагах воспаления и тканевого ацидоза железо может находиться в малорастворимых комплексах и поэтому не транспортироваться в кровь. Это объясняет снижение содержания железа в сыворотке крови в условиях воспаления (железо также транспортируется гаптоглобином, гемопексином, альбуминами)

Г) гемосидерин

Молекула гемосидерина образуется в результате частичного разрушения ферритина. Роль гемосидерина изучена не достаточно. Это водонерастворимый комплекс, содержащий также УГВ и нуклеотиды. Содержится в РЭС печени и селезенки;

Д) церулоплазмин

Иначе этот белок называется феррооксидазой. По химической природе это ГП, в составе которого находится 6-8 атомов двухвалентной меди. Этот белок находится в крови, спинномозговой и синовиальной жидкости. Роль этого белка в транспорте меди, также обладает ферментативной активностью (подробно см. типы окисления, АОС);

Е) железосерные белки - находятся в комплексе с флавопротеидами и цитохромом b в цепи биологического окисления и выполняют роль дополнительных компонентов в процессе окисления;

Ж) металлотионеины - находятся в печени, почках и кишечнике. Выполняют антитоксическую роль (обезвреживание тяжелых металлов).

К МП относят ряд ферментов, для которых металл является «мостиком» между белковой и небелковой частями, или непосредственно участвует в выполнении каталитической функции. Например, карбоангидраза и карбоксипептидаза содержат цинк; купрум-фермент и цитохромоксидаза содержат медь; глутатионпероксидаза содержит селен; митохондриальная супероксиддисмутаза содержит марганец, а цитозольная форма этого фермента содержит медь или цинк

Липопротеиды - понятие о строении сывороточных и мембранных ЛП, значение

- на обычной лекции - читают по учебнику, только понятие.

ЛП - это сложные комплексы, включающие в себя большие количества непрочно связанных между собой молекул различных представителей липидов (ФЛ, ХСН, ТАГ, СЖК, СФЛ). Различают свободные (ЛП крови) и структурные ЛП (в составе мембран, ЭПР, органоидов). Свободные (сывороточные) ЛП построены по типу мицелл, т.е. имеют гидрофобное ядро, содержащее ХСН и ТАГи. Ядро окружено гидрофильной оболочкой из белков и ФЛ. Различают альфа-ЛП (ЛПВП), бета-ЛП (ЛПНП), пребета-ЛП (ЛПОНП), которые отличаются разным содержанием липидов и белка. ЛП - это транспортная форма липидов, в которых липиды становятся легко растворимыми в воде и легко переносятся кровью. Структурные ЛП построены иначе: внутри - белок, снаружи - липиды. Их функция тесно связана с метаболизмом клетки.

Нуклеопротеиды - строение, представители, значение

НП впервые обнаружены в ядрах клеток, поэтому получили свое название (nucleus - ядро). Они также обнаружены в цитоплазме и различных органеллах (рибосомы, митохондрии). НП имеют очень большую массу (млн и даже млрд Da), свойства кислые за счет большого количества фосфорной кислоты, растворимы в воде и растворах щелочей, осаждаются в кислотах. НП состоят из простого белка и НК. В различных НП количество НК колеблется от 40-65%, например, в рибосомах про- и эукариот. В вирусных НП количество НК колеблется от 2-5%. В зависимости от вида НК НП бывают ДНП (содержат ДНК) и РНП (содержат РНК). Белковый компонент неоднороден, он состоит из большого количества основных белков типа гистонов (у высших животных и человека) или протаминов (у рыб и низших животных), а также все НП содержат альбумины и глобулины. Гистоны защищают ДНК и регулируют функции генов, а негистоновые белки, как правило, обладают свойствами ферментов.

НК - это полинуклеотид, состоящий из мононуклеотидов. МНД состоит из фосфорной кислоты и нуклеозида. Нуклеотиды могут выполнять коферментную функцию (Лелюар). Нуклеозид состоит из азотистого основания (пуринового - аденин, гуанин; пиримидинового - цитозин, урацил, тимин) и пентозы (рибозы или дезоксирибозы) - показать на пленке или табл и дать списать.

Роль НП: принимают непосредственное участие в синтезе всех белков клеток и тканей, обуславливают специфичность их строения и свойств, участвуют в передаче наследственных признаков при делении клеток.

2. Витамины В1 и В2, их строение, роль в обмене веществ. Пищевые источники этих витаминов. Какие коферменты содержат эти витамины?

Водорастворимые витамины

1.Витамин B1 (тиамин). Структура витамина включает пиримидиновое и тиазоловое кольца, соединённые метановым мостиком.

Источники. Витамин В1 - первый витамин, выделенный в кристаллическом виде К. Функом в 1912 г. Он широко распространён в продуктах растительного происхождения (оболочка семян хлебных злаков и риса, горох, фасоль, соя и др.). В организмах животных витамин В1, содержится преимущественно в виде дифосфорного эфира тиамина (ТДФ); он образуется в печени, почках, мозге, сердечной мышце путём фосфорилирования тиамина при участии тиаминкиназы и АТФ.

Суточная потребность взрослого человека в среднем составляет 2-3 мг витамина В1. Но потребность в нём в очень большой степени зависит от состава и общей каяорийности пищи, интенсивности обмена веществ и интенсивности работы. Преобладание углеводов в пище повышает потребность организма в витамине; жиры, наоборот, резко уменьшают эту потребность.

Биологическая роль витамина В, определяется тем, что в виде ТДФ он входит в состав как минимум трёх ферментов и ферментных комплексов: в составе пируват- и ос-кетоглутаратдегидрогеназных комплексов он участвует в окислительном декарбоксилировании пирувата и ос-кетоглутарата; в составе транскетолазы ТДФ участвует в пентозофосфатном пути превращения углеводов.

Основной, наиболее характерный и специфический признак недостаточности витамина В1- полиневрит, в основе которого лежат дегенеративные изменения нервов. Вначале развивается болезненность вдоль нервных стволов, затем - потеря кожной чувствительности и наступает паралич (бери-бери). Второй важнейший признак заболевания - нарушение сердечной деятельности, что выражается в нарушении сердечного ритма, увеличении размеров сердца и в появлении болей в области сердца. К характерным признакам заболевания, связанного с недостаточностью витамина В1относят также нарушения секреторной и моторной функций ЖКТ; наблюдают снижение кислотности желудочного сока, потерю аппетита, атонию кишечника.

2. Витамин В2 (рибофлавин). В основе структуры витамина В2 лежит структура изоаллоксазина, соединённого со спиртом рибитолом.

Рибофлавин представляет собой кристаллы жёлтого цвета (от лат. flavos - жёлтый), слабо растворимые в воде.

Главные источники витамина В2 - печень, почки, яйца, молоко, дрожжи. Витамин содержится также в шпинате, пшенице, ржи. Частично человек получает витамин В2 как продукт жизнедеятельности кишечной микрофлоры.

Суточная потребность в витамине В2 взрослого человека составляет 1,8-2,6 мг.

Биологические функции. В слизистой оболочке кишечника после всасывания витамина происходит образование коферментов FMN и FAD по схеме:

Коферменты FAD и FMN входят в состав флавиновых ферментов, принимающих участие в окислительно-восстановительных реакциях.

Клинические проявления недостаточности рибофлавина выражаются в остановке роста у молодых организмов. Часто развиваются воспалительные процессы на слизистой оболочке ротовой полости, появляются длительно незаживающие трещины в углах рта, дерматит носогубной складки. Типично воспаление глаз: конъюнктивиты, васкуляризация роговицы, катаракта. Кроме того, при авитаминозе В2 развиваются общая мышечная слабость и слабость сердечной мышцы.

Среди коферментов витаминной природы можно назвать кокарбоксилазу (образуется из витамина В1), рибофлавинмононуклеотид (образуется из витамина В2)

3. Молочное брожение

Молочнокислое брожение -- процесс анаэробного окисления углеводов, конечным продуктом при котором выступает молочная кислота. Название получило по характерному продукту -- молочной кислоте. Для молочнокислых бактерий является основным путем катаболизма углеводов и основным источником энергии в виде АТФ. Также молочнокислое брожение происходит в тканях животных в отсутствие кислорода при больших нагрузках.

Виды брожения.

Различают т. н. гомоферментативное и гетероферментативное молочнокислое брожение, в зависимости от выделяющихся продуктов помимо молочной кислоты и их процентного соотношения. Отличие также заключается и в разных путях получения пирувата при деградации углеводов гомо- и гетероферментативными молочнокислыми бактериями.

Гомоферментативное молочнокислое брожение

При гомоферментативном молочнокислом брожении углевод сначала окисляется до пирувата по гликолитическому пути, затем пируватвосстанавливается до молочной кислоты НАДН+Н (образовавшегося на стадиигликолиза при дегидрировании глицеральдегид-3-фосфата) при помощилактатдегидрогеназы. От стереоспецифичности лактатдегидрогеназы и наличия лактатрацемазы зависит, какой энантиомер молочной кислоты будет превалировать в продуктах- L-, D- молочная кислота или же DL-рацемат. Продуктом гомоферментативного молочнокислого брожения являетсямолочная кислота, которая составляет не менее 90 % всех продуктов брожения. Промежуточными продуктами являются: глюкозо-6-фосфат, фруктозо-6-фосфат, фруктозо-1,6-дифосфат,3-фосфоглицериновый альдегид, 1,3-дифосфоглицериновая кислота, пировиноградная кислота. Примеры гомоферментативных молочнокислых бактерий: Lactobacillus casei , L. acidophilus , Streptococcus lactis.

Гетероферментативное молочнокислое брожение

В отличие от гомоферментативного брожения, деградация глюкозы идет по пентозофосфатному пути, образующийся из ксилулозо-5-фосфата глицеральдегид-3-фосфат окисляется до молочной кислоты, а ацетилфосфат восстанавливается до этанола (некоторые гетероферментативные молочнокислые бактерии окисляют полученный этанол частично или полностью до ацетата). Таким образом, при гетероферментативном молочнокислом брожении образуется больше продуктов: молочная кислота, уксусная кислота, этанол, двуокись углерода. примеры гетероферментативных молочнокислых бактерий: L. fermentum, L. brevis, Leuconostoc mesenteroides, Oenococcus oeni .

Значение молочнокислого брожения для человека

Молочнокислое брожение используется для консервации продуктов питания (за счет ингибирования роста микроорганизмов молочной кислотой и понижения рН) с целью длительного сохранения (пример- квашение овощей, сырокопчение), приготовлении кисломолочных продуктов (кефира, ряженки, йогурта, сметаны), силосовании растительной массы, а также биотехнологического способа производства молочной кислоты.

Список литературы

Березов Т.Т., Коровкин Б.Ф. «Биологическая химия», 1998 - С. 78-94.

Полосухина Т.Я., Аблаев Н.Р. «Материалы к курсу биологической химии», 1977 - С.8-11, 13, 34.

Верболович П.А., Полосухина Т.Я., Каипова З.Н. и др. «Практикум по органической, физической и биологической химии», 1973 - лаб.раб.№№ 215, 218, 220-222

Верболович П.А., Аблаев Н.Р. «Лекции по отдельным разделам биохимии», 1985 - С.27-36.

Сеитов З.С. «Биохимия», 2000 - С. 124-134.

Зайчик А.Ш., Чурилов Л.П. «Основы патохимии»2000 - С.218-245.

В.Дж.Маршалл «Клиническая биохимия» 1999 - С. 296.

Размещено на Allbest.ru

...

Подобные документы

  • Общая характеристика, классификация, строение и синтез белков. Гидролиз белков с разбавленными кислотами, цветные реакции на белки. Значение белков в приготовлении пищи и пищевых продуктов. Потребность и усвояемость организма человека в белке.

    курсовая работа [29,7 K], добавлен 27.10.2010

  • Оценка сложившегося административно-территориального устройства России. Исследование белков. Классификация белков. Состав и строение. Химические и физические свойства. Химический синтез белков. Значение белков.

    реферат [537,6 K], добавлен 13.04.2003

  • Характеристика белков как высокомолекулярных соединений, их структура и образование, физико–химические свойства. Ферменты переваривания белков в пищеварительном тракте. Всасывание продуктов распада белков и использование аминокислот в тканях организма.

    реферат [66,2 K], добавлен 22.06.2010

  • Строение и общие свойства аминокислот, их классификация и химические реакции. Строение белковой молекулы. Физико-химические свойства белков. Выделение белков и установление их однородности. Химическая характеристика нуклеиновых кислот. Структура РНК.

    курс лекций [156,3 K], добавлен 24.12.2010

  • Общие пути обмена аминокислот. Значение и функции белков в организме. Нормы белка и его биологическая ценность. Источники и пути использования аминокислот. Азотистый баланс. Панкреатический сок. Переваривание сложных белков. Понятие трансаминирования.

    презентация [6,6 M], добавлен 05.10.2011

  • Строение и основные свойства белков, их роль в живой природе. Пространственное строение белков. Качественные реакции на белки. Образование сгустков крови при ее свертывании. Белковые компоненты крови. Процесс образования и свертывания казеина.

    презентация [1,2 M], добавлен 01.10.2012

  • Свойства и строение ферментов - специфических белков, присутствующих во всех живых клетках и играющих роль биологических катализаторов. Их номенклатура и классы. Методы выделения ферментов из клеточного содержимого. Основные этапы цикла лимонной кислоты.

    презентация [221,2 K], добавлен 10.04.2013

  • Общий анализ взаимодействия поверхностно-активных веществ (ПАВ) с полимерами. Особенности дифильности белков. Относительная вязкость растворов желатина в зависимости от концентрации добавленного додецилсульфата натрия. Роль взаимодействий белков с ПАВ.

    реферат [709,8 K], добавлен 17.09.2009

  • Роль в живой природе. Состав и свойства белков. Классификация белков. Определение строения белков. Определение наличия белка. Идентификация белков и полипептидов. Синтез пептидов. Искусственное получение белка. Аминокислоты.

    реферат [16,2 K], добавлен 01.12.2006

  • Химический состав белков - органических высокомолекулярных азотистых соединений. Их классификация по химическим свойствам, форме молекулы, структуре. Изменения белкового состава при онтогенезе и болезнях. Наследственные и приобретенные типы протеинопатии.

    презентация [124,1 K], добавлен 24.10.2013

  • Ферменты - белки-катализаторы, регулирующие процессы жизнедеятельности и обмена веществ в организме. Строение ферментов, их специфичность к субстрату, селективность и эффективность, классификация. Структура и механизм действия ферментов; их применение.

    презентация [670,0 K], добавлен 12.11.2012

  • Реакции ионного обменного разложения веществ водой. Использование качественных реактивов на крахмал, на белок и на глюкозу. Гидролиз сложных эфиров, белков, аденозинтрифосфорной кислоты. Условия гидролиза органических веществ пищи в организме человека.

    разработка урока [206,5 K], добавлен 07.12.2013

  • Аминокислоты, входящие в состав пептидов и белков. Моноаминодикарбоновые кислоты и их амиды. Энантиомерия аминокислот, образование солей. Мезомерия и строение пептидной связи. Методы выделения и анализа белков. Электрофорез в полиакриламидном геле.

    презентация [351,2 K], добавлен 16.12.2013

  • Понятие биохимии и биосистемы. Структурно-химическая организация живой клетки и ее строение. Жизненно необходимые соединения, структура и химические реакции аминокислот. Уровни структурной организации белков, жиров и ферментов. Классификация витаминов.

    презентация [2,2 M], добавлен 17.12.2010

  • Строение и уровни укладки белковых молекул, конформация. Характеристика функций белков в организме: структурная, каталитическая, двигательная, транспортная, питательная, защитная, рецепторная, регуляторная. Строение, свойства, виды и реакции аминокислот.

    реферат [1,0 M], добавлен 11.03.2009

  • Строение и свойства белков. Различия в строении аминокислот. Пространственная организация белковой молекулы. Типы связей между аминокислотами в молекуле белка. Основные факторы, вызывающие денатурацию белков. Методы определения первичной структуры белка.

    реферат [354,6 K], добавлен 15.05.2010

  • Строение и классификация, свойства и значение белковых веществ (протеинов) как высокомолекулярных природных полимеров. Биологические функции белков: пластическая, транспортная, защитная, энергетическая, каталитическая, сократительная, регуляторная.

    реферат [1006,1 K], добавлен 27.06.2013

  • Изучение биохимической ценности молока и функций его белков. Анализ химических изменений белков молока при гидролизе. Аминокислотный, липидный, витаминный, углеводный, минеральный состав молока. Химические свойства казеина. Молоко в питании человека.

    курсовая работа [61,1 K], добавлен 28.12.2010

  • Строение РНК, ее синтез и роль в передаче наследственности. Формула незаменимых аминокислот; структура холестерина, его источники и функции в организме. Распад и всасывание углеводов в желудочно-кишечном тракте; ферменты. Витамин В3; строение жиров.

    контрольная работа [1,1 M], добавлен 01.06.2012

  • Определение белков и их составных частей – аминокислот. Структура и функции белков в организме. Роль в обеспечении воспроизводства основных структурных элементов органов и тканей, а также образовании таких веществ, как, например, ферментов и гормонов.

    курсовая работа [735,6 K], добавлен 16.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.