Области применения титана

Преимущество применения титана и его сплавов в военно-морской и авиастроительной практике. Коррозионная стойкость, физические, химические и механические свойства рассматриваемого металла. Аппаратурно-технологические способы добычи титановой руды.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 19.07.2014
Размер файла 139,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РЕФЕРАТ

по химии твердых материалов

ОБЛАСТИ ПРИМЕНЕНИЯ ТИТАНА

Введение

При существующих высоких ценах на титан его применяют преимущественно для производства военного оборудования, где главная роль принадлежит не стоимости, а техническим характеристикам.

Тем не менее известны случаи использования уникальных свойств титана для гражданских нужд. По мере снижения цен на титан и роста его производства применение этого металла в военных и гражданских целях будет все больше расширяться.

Авиация. Малый удельный вес и высокая прочность (особенно при повышенных температурах) титана и его сплавов делают их весьма ценными авиационными материалами.

В области самолетостроения и производства авиационных двигателей титан все больше вытесняет алюминий и нержавеющую сталь. С повышением температуры алюминий быстро утрачивает свою прочность. С другой стороны, титан обладает явным преимуществом в отношении прочности при температуре до 430°С, а повышенные температуры такого порядка возникают при больших скоростях благодаря аэродинамическому нагреванию. Преимущество замены стали титаном в авиации заключается в снижении веса без потери прочности. Общее снижение веса с повышением показателей при повышенных температурах позволяет увеличить полезную нагрузку, дальность действия и маневренность самолетов.

Этим объясняются усилия, направленные на расширение применения титана в самолетостроении при производстве двигателей, постройке фюзеляжей, изготовлении обшивки и даже крепежных деталей.

При постройке реактивных двигателей титан применяется преимущественно для изготовления лопаток компрессора, дисков турбины и многих других штампованных деталей.

Здесь титан вытесняет нержавеющую и термически обрабатываемую легированную стали. Экономия в весе двигателя в один килограмм позволяет сберегать до 10 кг. в общем весе самолета благодаря облегчению фюзеляжа. В дальнейшем намечено применять листовой титан для изготовления кожухов камер сгорания двигателя.

В конструкции самолета титан находит широкое применение для деталей фюзеляжа, работающих при повышенных температурах. Листовой титан применяется для изготовления всевозможных кожухов, защитных оболочек кабелей и направляющих для снарядов.

Из листов легированного титана изготовляются различные элементы жесткости, шпангоуты фюзеляжа, нервюры и т. д.

Кожухи, закрылки, защитные оболочки для кабелей и направляющие для снарядов изготовляются из нелегированного титана.

Легированный титан применяется для изготовления каркаса фюзеляжа, шпангоутов, трубопроводов и противопожарных перегородок.

Титан получает все большее применение при постройке самолетов F-86 и F-100. В будущем из титана будут делать створки шасси, трубопроводы гидросистем, выхлопные патрубки и сопла, лонжероны, закрылки, откидные стойки и т. д.

Титан можно применять для изготовления броневых плит, лопастей пропеллера и снарядных ящиков.

В настоящее время титан применяется в конструкции самолетов военной авиации Дуглас Х-3 для обшивки, Рипаблик F-84F, Кертисс-Райт J-65 и Боинг В-52.

Применяется титан и при постройке гражданских самолетов DC-7. Фирма «Дуглас» заменой алюминиевых сплавов и нержавеющей стали титаном при изготовлении мотогондолы и противопожарных перегородок уже добилась экономии в весе конструкции самолета около 90 кг.

В настоящее время вес титановых деталей в этом самолете составляет 2%, причем эту цифру предусматривается довести до 20% общего веса самолета. Применение титана позволяет уменьшить вес геликоптеров. Листовой титан используется для полов и дверей. Значительное снижение веса геликоптера (около 30 кг.) было достигнуто в результате замены легированной стали титаном для обшивки лопастей его несущих винтов.

Военно-морской флот. Коррозионная стойкость титана и его сплавов делает их весьма ценным материалом на море. Военно-морское министерство США обстоятельно исследует коррозионную стойкость титана против воздействия дымовых газов, пара, масла и морской воды. Почти такое же значение в военно-морском деле имеет и высокое значение удельной прочности титана.

Малый удельный вес металла в сочетании с коррозионной стойкостью повышает маневренность и дальность действия кораблей, а также снижает расходы по уходу за материальной частью и ее ремонту.

Применение титана в военно-морском деле включает изготовление выхлопных глушителей для дизельных двигателей подводных лодок, дисков измерительных приборов, тонкостенных труб для конденсаторов и теплообменников. По мнению специалистов, титан, как никакой другой металл, способен увеличить срок службы выхлопных глушителей на подводных лодках. Применительно к дискам измерительных приборов, работающих в условиях соприкосновения с соленой водой, бензином или маслом, титан обеспечит лучшую стойкость. Исследуется возможность применения титана для изготовления труб теплообменников, которые должны обладать коррозионной стойкостью в морской воде, омывающей трубы снаружи, и одновременно противостоять воздействию выхлопного конденсата, протекающего внутри них. Рассматривается возможность изготовления из титана антенн и узлов радиолокационных установок, от которых требуется стойкость к воздействию дымовых газов и морской воды. Титан может найти применение и для производства таких деталей, как клапаны, пропеллеры, детали турбин и т. д.

Артиллерия. По-видимому, наиболее крупным потенциальным потребителем титана может явиться артиллерия, где в настоящее время ведутся интенсивные исследования различных опытных образцов. Тем не менее в этой области стандартизовано производство лишь отдельных деталей и частей из титана. Весьма ограниченное использование титана в артиллерии при большом размахе исследований объясняется его высокой стоимостью.

Были исследованы различные детали артиллерийского оборудования с точки зрения возможности замены титаном обычных материалов при условии снижения цен на титан. Главное внимание уделялось деталям, для которых существенно снижение веса (детали, переносимые вручную и перевозимые по воздуху).

Опорная плита миномета, изготовленная из титана вместо стали. Путем такой замены и после некоторой переделки вместо стальной плиты из двух половинок общим весом 22 кг. удалось создать одну деталь весом 11 кг. Благодаря такой замене можно уменьшить число обслуживающего персонала с трех человек до двух. Рассматривается возможность применения титана для изготовления орудийных пламегасителей.

Проходят испытания изготовленные из титана орудийные станки, крестовины лафетов и цилиндры противооткатных приспособлений. Широкое применение титан может получить при производстве управляемых снарядов и ракет.

Проведенные первые исследования титана и его сплавов показали возможность изготовления из них броневых плит. Замена стальной брони (толщиной 12,7 мм.) титановой броней одинаковой снарядостойкости (толщиной 16 мм.) позволяет получить, по данным этих исследований, экономию в весе до 25%.

Сплавы титана повышенного качества позволяют надеяться на возможность замены стальных плит титановыми равной толщины, что дает экономию в весе до 44%.

Промышленное применение титана позволит обеспечить большую маневренность, увеличит дальность перевозки и долговечность орудия. Современный уровень развития воздушного транспорта делает очевидными преимущества легких броневиков и других машин из титана. Артиллерийское ведомство намерено снарядить в будущем пехоту касками, штыками, гранатометами и ручными огнеметами, сделанными из титана. Первое применение в артиллерии титановый сплав получил для изготовления поршня некоторых автоматических орудий.

Транспорт. Многие из тех выгод, которые сулит использование титана при производстве бронетанковой материальной части, относятся и к транспортным средствам. Замена конструкционных материалов, потребляемых в настоящее время предприятиями транспортного машиностроения, титаном должна привести к снижению расхода топлива, росту полезной грузоподъемности, повышению предела усталости деталей кривошипно-шатунных механизмов и т. п.

На железных дорогах исключительно важно снизить мертвый груз. Существенное уменьшение общего веса подвижного состава за счет применения титана позволит сэкономить в тяге, уменьшить габариты шеек и букс. Важное значение вес имеет и для прицепных автотранспортных средств. Здесь замена стали титаном при производстве осей и колес также позволила бы увеличить полезную грузоподъемность.

Все эти возможности можно было бы реализовать при снижении цены титана с 15 до 2-3 долларов за фунт титановых полуфабрикатов.

Химическая промышленность. При производстве оборудования для химической промышленности самое важное значение имеет коррозионная стойкость металла. Существенно также снизить вес и повысить прочность оборудования. Логически следует предположить, что титан мог бы дать ряд выгод при производстве из него оборудования для транспортировки кислот, щелочей и неорганических солей. Дополнительные возможности применения титана открываются в производстве такого оборудования, как баки, колонны, фильтры и всевозможные баллоны высокого давления.

Применение трубопроводов из титана способно повысить коэффициент полезного действия нагревательных змеевиков в лабораторных автоклавах и теплообменниках. О применимости титана для производства баллонов, в которых длительно хранятся газы и жидкости под давлением, свидетельствует применяемая при микроанализе продуктов сгорания вместо более тяжелой трубки из стекла (показана в верхней части снимка). Благодаря малой толщине стенок и незначительному удельному весу эта трубка может взвешиваться на более чувствительных аналитических весах меньших размеров. Здесь сочетание легкости и коррозионной стойкости позволяет повысить точность химического анализа.

Прочие области применения. Применение титана целесообразно в пищевой, нефтяной и электротехнической промышленности, а также для изготовления хирургических инструментов и в самой хирургии.

Столы для подготовки пищи, пропарочные столы, изготовленные из титана, по качествам превосходят стальные изделия.

В нефте- и газобурильной областях серьезное значение имеет борьба с коррозией, поэтому применение титана позволит реже заменять корродирующие штанги оборудования. В каталитическом производстве и для изготовления нефтепроводов желательно применять титан, сохраняющий механические свойства при высокой температуре и обладающий хорошей коррозионной устойчивостью.

В электропромышленности титан можно применить для бронирования кабелей благодаря хорошей удельной прочности, высокому электрическому сопротивлению и немагнитным свойствам.

В различных отраслях промышленности начинают применять крепежные детали той или иной формы, изготовленные из титана.

Дальнейшее расширение применения титана возможно для изготовления хирургических инструментов главным образом благодаря его коррозионной стойкости. Инструменты из титана в этом отношении превосходят обычные хирургические инструменты при многократном кипячении или обработке в автоклаве.

В области хирургии титан оказался лучше виталлиума и нержавеющих сталей. Присутствие титана в организме вполне допустимо. Пластинка и винты из титана для крепления костей находились в организме животного несколько месяцев, причем имело место прорастание кости в нитки резьбы винтов и в отверстие пластинки.

Преимущество титана заключается также в том, что на пластине образуется мышечная ткань.

1. Добыча титановой руды

На первых порах титановые рудники создавались для нужд производства красителей. Использование в последнее время титана в качестве конструкционного металла привело к расширению добычи титановых руд и освоению многих новых месторождений.

В прежние времена титан являлся побочным продуктом и во многих случаях даже служил препятствием, например, при добыче железной руды. В наше время рудники эксплуатируются исключительно для получения титана как главного продукта.

Добыча титановой руды осуществляется сравнительно просто и не требует сложных операций и специального горного оборудования. Если титановые минералы находятся в песчаных месторождениях, то их собирают землесосными снарядами, перекачивают в баржи и доставляют на обогатительную установку.

Если же они встречаются в горных породах, то никакого специального горного оборудования для их добычи не требуется. Руду приходится измельчать до 20 меш., чтобы обеспечить эффективное разделение минеральных компонентов.

Затем для отделения ильменита от всех посторонних материалов применяют влажную магнитную сепарацию малой интенсивности.

После этого остаточный ильменит обогащают при помощи гидравлических классификаторов и столов.

Дальнейшее обогащение осуществляется методом сухой магнитной сепарации высокой интенсивности.

Получающаяся двуокись титана ТiO2 взаимодействует с нагретым хлором в присутствии угля, в результате чего образуется четыреххлористый титан.

2. Физико-химические и механические свойства губчатого и пластичного титана

Губчатый титан представляет собой пористый кристаллический конгломерат с чрезвычайно развитой поверхностью пор. Активная удельная поверхность губки в зависимости от крупности кусков изменяется от 100 до 400 м/кг. Имея большую удельную поверхность пор, губчатый титан способен адсорбировать из воздуха газы и, прежде всего, пары воды. Влагонасыщение губки зависит от её температуры и условий хранения: продолжительности, относительной влажности воздуха, температуры. Насыпная масса губки зависит от способа комплектации товарной партии.У кричной (т. е., основной части блока губки, не соприкасающейся со стенками реактора) фракции -70 +12 мм. насыпная масса изменяется от 930 до 1050 кг/м и составляет в среднем 960 кг/м. Боковая губка характеризуется большей пористостью и меньшей насыпной массой (600-650 кг/м). Более мелкая губка фракции -12 +2 мм. (кричная часть) и -12 +5 мм. (боковая часть) имеет насыпную массу 900-1050 кг/м, а в среднем 990 кг/м.

Плотность губчатого титана составляет 800-3500 кг/м и также зависит от способа комплектации партии.

Теплопроводность губки очень низка (в 13 раз меньше, чем у пластичного титана) и составляет 1,26 Вт/(м*С). Плохая теплопроводность губки значительно затрудняет ее обработку резанием.

Свойства пластичного титана. По внешнему виду титан похож на сталь;он обрабатывается резанием, пластичен, трудно полируется и долго сохраняет блеск. На воздухе металл благодаря оксидно-нитридной пленке устойчив до 430°С. Высока коррозионная стойкость титана в воде, в том числе и в морской. Титан существует в двух кристаллических модификациях - низкотемпературной (до 882,5°С) и высокотемпературной (выше 882,5°С), титан имеет гексагональную плотноупакованную (г. п.) решетку, - титан - объемно-центрированную кубическую (о. ц. к.) решетку. Атомная масса титана 47,9, плотность 4510 кг/м, температура плавления ~ 1670°С, температура кипения 3260°С, теплота плавления 437 Дж/кг, удельная теплоемкость (в интервале 0-100°С) 678 Дж/(кг*С), теплопроводность (в интервале 0-200°С) 213,6 Вт/(м*С), температурный коэффициент линейного расширения (в интервале 290-570°С) 8,2 10°С, удельное электросопротивление (при 20°С) 4210 Ом*м, магнитная проницаемость 1,00005 Г/м (титан парамагнитен, т. е., он способствует усилению окружающего его внешнего магнитного поля). Твердость по Бринеллю НВ 90-130. Титан является хорошим геттером, т. е., обладает способностью активно поглощать газы, в особенности кислород, азот и водород. Примеси кислорода и азота снижают пластические свойства титана, а водород делает титан хрупким. Хлор и другие галогены взаимодействуют с титаном при низких температурах (100-200°С) с образованием лёгколетучих галогенидов титана. Титан обладает высокой коррозионной стойкостью во многих средах. В холодной и кипящей воде металл не коррозирует. Он практически стоек против действия азотной кислоты любой концентрации на холоде и при нагревании вследствие образования защитной окисной пленки. В разбавленной серной кислоте (до 5% H2SO4) при комнатной температуре титан стоек, в других условиях H2SO4 разрушает титан. Подобное действие на титан оказывает соляная кислота, которая начинает реагировать с ним при концентрации HCl более 10% и температура выше 25°С. В растворах щелочей (концентрации до 20%) на холоде и при нагревании титан стоек. Титан не коррозирует в среде расплавов некоторых соединений. Высокая коррозионная стойкость титана обусловливает широкое применение его в химико-металлургических производствах.

3. Способы получения титана

Помимо магнийтермического способа получения титана в аппаратах периодического действия, широкого применяемого в мировой практике, существуют и другие. Важным является производство титана натриетермическим способом, используемым за рубежом, в частности в Англии. Этот способ обоснован на следующей экзотермической (т. е., проходящей с выделением тепла) реакции:

TiCl4 (Г) + 4Na (Ж) = Ti (ТВ) + 4NaCl (Ж) + Q

Натриетермический способ имеет определенные преимущества перед магнийтермическим:

- легкость транспортировки натрия вследствие низкой (98°С) температуры его плавления;

- высокая скорость реакции восстановления и прохождение ее со 100%-ным коэффициентом использования натрия;

- отсутствие сложного и энергоемкого передела вакуумной дистилляции;

- возможность ведения непрерывного процесса и др.

Вместе с тем этому методу свойственны существенные недостатки. Натрий - очень высокоактивное вещество: на воздухе он быстро окисляется, а с водой реагирует со взрывом.

Всё это требует соблюдения специальных мер безопасности. Отрицательными сторонами метода также являются высокая экзотермичность процесса восстановления, большой объем восстановителя и продуктов реакции, что приводит к необходимости применения громоздкой аппаратуры. Из других способов производства титана известны восстановление двуокиси титана кальцием по реакции:

TiО2 + 2Са = Ti + 2СаО

Гидридом кальция по реакции:

TiО2 + 2СаО + 2Н2

Интересен йодный метод, с помощью которого может быть получен высокочистый титан:

TiJ4 = Ti + 2J2

Все эти способы применяются ограниченно и по своим масштабам значительно уступают магние- и натриетермическому способам. Весьма перспективным является электролитический способ получения титана. Главное его преимущество - отсутствие металлического восстановителя. Достигнуты значительные успехи по разработке и совершенствованию этого метода. Идея метода уже используется в промышленной практике при электролитическом рафинировании титана (например, некачественного губчатого титана, отходов плавки титана и его сплавов).

В этом процессе анодом служит загрязненный титан, погруженный в расплав электролита. Последний содержит хлориды щелочных металлов и низшие хлориды титана (TiCl2, TiCl3). При электролизе, проходящем при 800-850°С, титан переходит в электролит и осаждается на катоде. Катодный осадок после гидрометаллургической обработки, просеивания служит отличным сырьем для порошковой металлургии.

4. Применение титана

Титан применяют в виде губки и порошка. Губчатый титан, имеющий развитую поверхность, в небольших количествах используют для очистки и осушки различных газов. В последние годы ускоренными темпами развивается новая отрасль в промышленности - порошковая металлургия, в том числе порошковая металлургия титана. Изделия из высокопористых титановых порошков обладают всеми свойствами компактного титана: малой плотностью, высокой прочностью, высокой коррозионной стойкостью. Их получают прокаткой или прессованием с последующим спеканием. Эффективность от применения 1 тонны титановых фильтрующих элементов, используемых в химической, пищевой и других отраслях промышленности, составляет несколько десятков тысяч рублей. Пластичность титана и его сплавы по сравнению с другими конструкционными металлами обладают более высокой удельной прочностью и исключительной коррозийной стойкостью в атмосферных условиях и агрессивных средах. Титан стоек в воде, в том числе и морской. Это ценное свойство металла широко используется в судостроении. Существенное значение имеют такие свойства титана, как высокая температура плавления, малый коэффициент термического расширения, стойкость против эрозии и кавитации, немагнитность, биологическая инертность. Хорошая растворимость многих элементов, образования химических соединений с переменной растворимостью позволяет на основе титана получать сплавы с разнообразной структурой и свойствами. Легированием и последующей термообработкой временное сопротивление сплава титана можно повысить до 1500 МПа и более, что характерно только для специальных сталей. Удельная прочность титановых сплавов высока, и это позволяет снизить массу конструкций. Преимущества титановых сплавов перед специальными сталями, алюминиевыми и магниевыми сплавами сохраняются при температурах до 400-500 и даже 600°С, когда алюминиевые и магниевые сплавы вообще не применимы. При 300-350°С титановые сплавы прочнее алюминиевых в 10 раз. Эти уникальные свойства титана и его сплавов привлекли внимание конструкторов самолетов, ракет, подводных лодок, различных химических аппаратов и на длительный период определили главное применение проката из титана в этих отраслях. Показательны в этом отношении данные по структуре потребления проката из титана и его сплавов в США по годам, приведенные ниже:

Эти данные показывают, что доля титана, используемого в промышленности, увеличивается, и сферы его применения расширяются. Титан и его сплавы подвергают различным видам механической, термической и химико-термической обработки.

Они хорошо свариваются автоматической сваркой в защитной среде инертных газов, электрошлаковой и контактной сваркой. Всё это способствует применению его в судостроении, химическом и нефтяном машиностроении, металлургии, химической, нефтехимической, целлюлозно-бумажной, пищевой промышленности.

Из титана и его сплавов в СССР серийно изготавливают теплообменные и колонные аппараты, детали электролизеров, фильтры, емкости, насосы, вентиляторы и газоходы, арматуру и трубопроводы. Известно применение титана в прикладной электрохимии для изготовления гальванических ванн, анодов и других изделий.

На Березниковском титано-магниевом комбинате изготовлена и работает 120-метровая титановая труба массой 200 т. Подобная труба из железобетона имела бы массу 4500 т. Медицинские инструменты, изготовленные из титановых сплавов, на 20-30% легче инструментов из нержавеющей стали, обладают высокой коррозионной стойкостью, более долговечны и удобны в работе. Титан хорошо вживается в организм человека, и этим пользуются врачи-травматологи.

Титановые емкости (бочки) для хранения и перевозки вина лучше дубовых и стальных: в них сохраняется аромат, цвет и вкус вин в течение многих лет и исключается появление металлического привкуса.

Титан используют как декоративный материал в архитектуре и монументальной скульптуре. Им облицован обелиск в ознаменование запуска первого искусственного спутника Земли, сооружений в Москве около ВДНХ, монумент "Штык" в Белоруссии, памятник к 100-летию организации Международного союза электросвязи в Женеве.

Из титана изготовлен вымпел, доставленный на Луну советской космической ракетой. Перечисление областей применения титана можно было бы продолжить, но в этом нет необходимости. По мере удешевления титана без сомнения будут появляться все новые и новые сферы потребления этого замечательного металла.

5. Аппаратурно-технологическая схема получения титана

Новые аппараты восстановления или находящиеся в эксплуатации, т. е., оборотные (с остатками конденсата), собирают на монтажном участке цеха, устанавливают на монтажную тележку и электровозом транспортируют на участок восстановления.

Здесь аппарат восстановления мостовым краном устанавливают в электропечь и на этой установке осуществляют монтажные работы (присоединение к реторте линий очищенного аргона, дегазированного TiCl4 вакуума, водоохлаждения, слива хлористого магния). Дальше последовательно проводят следующие технологические операции печного цикла:

- разогрев аппарата и расплавление конденсата, заливку магния;

- разогрев аппарата восстановления до температуры начала процесса;

- процесс восстановления - наиболее длительная и самая ответственная операция;

- демонтаж и извлечение реторты из печи.

Рафинированный жидкий магний на передел восстановления поступает из корпуса электролиза в вакуум - ковшах, транспортируемых электрокаром. Дальнейшее перемещение ковшей с магнием, заливаемым в аппарат восстановления, осуществляется мостовым краном. Магний в реактор восстановления сливают при подаче очищенного аргона в вакуум-ковш.

Очищенный TiCl4 на переделе восстановления проходит дегазацию и затем из напорного бака по трубопроводам самотеком через приборы расхода, называемые ротаметрами, подается на восстановление.

Четыреххлористый титан в напорном баке хранится под защитой очищенного аргона, избыточное давление которого стравливается через "дыхательный" бак и ловушку в атмосферу. Вакуумное оборудование передела восстановления состоит из масляных фильтров и золотниковых (плунжерных) вакуум-насосов. сплав химический металл

Аппарат восстановления охлаждается в печи холодным воздухом от вентилятора. Расход воздуха регулируется перекидными шиберами.

Для слива MgCl2 и транспортировки его в цех электролиза используют ковши, тележки и электрокар. При окончании процесса восстановления реторту с реакционной массой отсоединяют от всех коммуникаций, мостовым краном извлекают из печи, устанавливают на тележку и электровозом отправляют на передел вакуумной дистилляции.

Приложение

Размещено на Allbest.ru

...

Подобные документы

  • Общие представление о коррозии металлов. Поведение титана и его сплавов различных агрессивных средах. Влияние легирующих элементов в титане на коррозионную стойкость. Электрохимическая коррозия. Особенности взаимодействия титана с воздухом.

    реферат [171,9 K], добавлен 03.12.2006

  • История и свойства олова. Происхождение названия титана, его аллотропические модификации, химические и физические свойства. Основные характеристики, позволяющие использовать данный металл. Применение титана и его сплавов в отраслях промышленности.

    реферат [32,0 K], добавлен 27.05.2014

  • Общая характеристика титана как химического элемента IV группы периодической системы Д.И. Менделеева. Химические и физические свойства титана. История открытия титана У. Грегором в 1791 году. Основные свойства титана и его применение в промышленности.

    доклад [13,2 K], добавлен 27.04.2011

  • История открытия элемента и его нахождение в природе. Способы получения металлов из руд, содержащих их окислы. Восстановление двуокиси титана углем, водородом, кремнием, натрием и магнием. Физические и химические свойства. Применение титана в технике.

    реферат [69,5 K], добавлен 24.01.2011

  • Природные полиморфные модификации двуокиси титана, его физико-химические свойства и применение. Основы усовершенствования фотокатализа. Диоксид титана, легированный углеродом. Вещества, используемые в синтезе диоксида титана. Методика проведения синтеза.

    курсовая работа [665,5 K], добавлен 01.12.2014

  • История возникновения сплавов. Коррозионная стойкость, литейные свойства, жаропрочность и электрическое сопротивление сплавов. Основные свойства сплавов. Раствор одного металла в другом и механическая смесь металлов. Классификация и группы сплавов.

    презентация [189,8 K], добавлен 30.09.2011

  • Технология производства диоксида титана, области применения. Получение диоксида титана из сфенового концентрата. Сернокислотный метод производства диоксида титана из ильменита и титановых шлаков. Производство диоксида титана сульфатным и хлорный методом.

    курсовая работа [595,9 K], добавлен 11.10.2010

  • Общая характеристика химических элементов IV группы таблицы Менделеева, их нахождение в природе и соединения с другими неметаллами. Получение германия, олова и свинца. Физико-химические свойства металлов подгруппы титана. Сферы применения циркония.

    презентация [1,8 M], добавлен 23.04.2014

  • Титан как металл, элемент IV группы Периодической системы, его физические и химические свойства. Описание технологической схемы производства в металлургическом цехе. Восстановление тетрахлорида титана магнием. Расчет конструкционных размеров аппарата.

    курсовая работа [142,2 K], добавлен 14.11.2013

  • История открытия стронция. Нахождение в природе. Получение стронция алюминотермическим методом и его хранение. Физические свойства. Механические свойства. Атомные характеристики. Химические свойства. Технологические свойства. Области применения.

    реферат [19,2 K], добавлен 30.09.2008

  • Электронное строение и степени окисления олова. Нахождение элемента в природе и способ получения. Химические и физические свойства металла и его соединений. Оловянные кислоты. Влияние олова на здоровье человека. Область применения металла и его сплавов.

    курсовая работа [60,6 K], добавлен 24.05.2015

  • Нахождение металла в природе, характеристика его типичных минералов. Способы получения и области применения. Физические и химические свойства его аллотропных модификаций. Углерод - основной легирующий элемент. Описание синтеза оксидов железа (II) и (III).

    курсовая работа [71,0 K], добавлен 24.05.2015

  • Титан (Ti) - химический элемент с порядковым номером 22, легкий серебристо-белый металл: основные сведения: история открытия, свойства, достоинства и недостатки. Марки и химический состав титана и сплавов, аллотропические модификации; области применения.

    презентация [5,7 M], добавлен 13.05.2013

  • Понятие серебра как химического элемента, его физические и химические свойства. Методы добычи и получение данного металла. Использование серебра в искусстве. Серебро - постоянная составная часть растений и животных. Экономическое значение серебра.

    реферат [24,3 K], добавлен 07.10.2010

  • Висмут как элемент Периодической системы, его общая характеристика, основные физические, биологические и химические свойства. Сферы применения, распространенность данного металла в природе и пути добычи висмута. Идентификация и проверка на чистоту.

    курсовая работа [40,3 K], добавлен 25.04.2015

  • Использование солей натрия в Древнем Египте, химические способы добычи натрия. Линии щелочных металлов в видимой части спектра, физические и химические свойства щелочей. Взаимодействие соды с синтетической азотной кислотой и гигроскопичность солей натрия.

    реферат [3,6 M], добавлен 04.07.2012

  • Стереографические проекции элементов симметрии и рутильной модификации диоксида титана. Стандартная установка кристаллографических и кристаллофизических осей координат. Изображение заданной грани на сетке Вульфа. Расчет дифрактограммы диоксида титана.

    курсовая работа [1,9 M], добавлен 26.11.2014

  • Общие сведения о наноматериалах. Золь-гель метод синтеза наночастиц. Химические процессы, протекающие на основных стадиях золь-гель процесса. Изучение образования золя гидратированного диоксида титана при электролизе раствора четыреххлористого титана.

    курсовая работа [991,6 K], добавлен 20.10.2015

  • Структура, физические и химические свойства полиэтилена - термопластичного полимера. Сырье для его производства, области применения. Технология переработки и утилизация изделий из него. Способы полимеризации этилена при среднем, низком и высоком давлении.

    реферат [3,1 M], добавлен 01.03.2014

  • Физические и химические свойства меди - первого металла, который впервые стал использовать человек в древности за несколько тысячелетий до нашей эры. Значение меди для организма человека. Область ее применения, использование в народной медицине.

    презентация [5,0 M], добавлен 19.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.