Ректификационная установка непрерывного действия для разделения смеси метанол-вода
Ректификация как процесс разделения бинарных или многокомпонентных паров, а также жидких смесей на чистые компоненты или их смеси. Применяемое в данном процессе технологическое оборудование и инструменты. Уравнения баланса ректификационной колонны.
Рубрика | Химия |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 28.08.2014 |
Размер файла | 433,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Курсовой проект
Ректификационная установка непрерывного действия для разделения смеси метанол-вода
Введение
Ректификация - один из самых распространенных технологических процессов в химической, нефтяной и других отраслях промышленности. Ректификация - процесс разделения бинарных или многокомпонентных паров, а также жидких смесей на чистые компоненты или их смеси.
Для разделения смесей используют ректификационные установки, представляющие собой ряд ступеней контакта, соединенный в противоточный разделительный каскад. Наиболее простое конструкционное оформление противоточного каскада достигается при движении жидкости.
В нефтяной, химической, нефтехимической и газовой промышленности распространены тарельчатые колонны.
Современные ректификационные аппараты должны обладать высокими разделительными способностями и производительностью, характеризоваться достаточной надежностью и гибкостью в работе, обеспечивать низкие эксплуатационные расходы, иметь небольшую массу и, наконец, быть конструкционно-простыми и несложными в изготовлении. Последние требования не менее важны, чем первые, поскольку они не только определяют капитальные затраты, но и в значительной мере влияют на себестоимость продукции, монтаж, ремонт, контроль, испытание и безопасную эксплуатацию оборудования.
Особое значение имеет надежность работы ректификационных аппаратов, установок, производящих сырье для нефтехимической промышленности. Ректификационные колонны должны отвечать требованиям государственных стандартов.
В качестве контактных устройств применяют различные типы тарелок. В данной установке используется ситчатая тарелка.
Расчет аппаратов выполняется с целью определения технологического режима процесса, основных размеров аппарата и его внутренних устройств, обеспечивающих заданную четкость разделения исходного сырья при заданной производительности. Технологический режим определяется рабочим давлением в аппарате, температурами всех внешних потоков, удельного расхода тепла и холода. Основными размерами аппарата являются его диаметр и высота.
В данной установке производится разделение бинарной смеси метанол - вода.
1. Описание технологической схемы
Рис. 1. Принципиальная схема ректификационной установки
1 - колонна, 2 - подогреватель исходной смеси, 3 - гребенка, 4 - кипятильник, 5 - конденсатор, 6,7 - холодильники, 8 - 10 - сборники;
/ - исходная смесь, // - дистиллят, III - кубовая жидкость, IV - пар, V - флегма, VI - теплоноситель, VII - охлаждающий агент
Принципиальная схема процесса непрерывной ректификации бинарных смесей показана на рис. Исходная смесь 1 подогревается в подогревателе 2 (предпочтительно до температуры кипения или близкой к ней) и через гребенку 3 (обеспечивающую возможность варьирования места подачи) подается в ректификационную колонну 1, внутри которой размещены контактные устройства (тарелки, насадка). Источником парового потока является кипятильник 4, источником жидкого потока - конденсатор 5. В схеме предусмотрены холодильники 6 и 7 продуктов, отбираемых сверху (поток II) и снизу (поток III), а также емкости исходной смеси и продуктов 8 - Принята следующая терминология основных потоков и узлов ректификационной установки:
· поток носит естественное название - исходная смесь;
· поток II именуют дистиллятом (или дистиллятом);
· поток III называют кубовым остатком (или кубовой жидкостью);
· восходящий паровой поток IV так и называют: поток пара (иногда просто «пар»);
· нисходящий жидкостной поток V (в том числе - возвращаемый сверху в колонну на орошение) именуют флегмой (иногда просто «жидкостью»).
Тарелку, находящуюся в сечении подачи исходной смеси в колонну 7, называют тарелкой питания.
Часть колонны, находящаяся выше тарелки питания (на выходе из нее получается «крепкий» НКК), носит название укрепляющей части колонны (иногда - укрепляющей колонны).
Часть колонны, находящаяся ниже тарелки питания (в ней НКК отгоняется из жидкости, исчерпывается), носит название отгонной (реже - исчерпывающей) части колонны (иногда - отгонной или исчерпывающей колонны).
Генератор пара называют кипятильником, источник флегмы (чаще всего - и дистиллята) - конденсатором.
2. Материальный баланс
ректификация технологический баланс колонна
Составляем уравнения материального баланса ректификационной колонны непрерывного действия.
F = 255 моль/с
Относительный мольный расход питания
Равновесные данные системы метанол - вода при р = 1,013 105 Па
Минимальное флегмовое число
Рабочее флегмовое число
Построение рабочих линий ректификационной колонны:
Рабочую линию укрепляющей и отгонной частей колонны удобно строить по двум точкам.
Уравнения рабочих линий
- верхней (укрепляющей) части колонны
- нижней (отгонной) части колонны
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
3. Определение скорости пара и диаметра колонны
Тарельчатые колонны составляют основную группу массообменных аппаратов. Они представляют собой вертикальный цилиндр, на высоте которого расположены специальные контактные устройства - тарелки. В этих колоннах жидкости меньшей плотности последовательно барботируются через слой жидкости на тарелках, расположенных на определенном расстоянии друг от друга. Жидкость непрерывно перетекает с верхних тарелок на нижние, отделенные друг от друга свободным пространством, где пар или легкая жидкость отделяется от уносимых ими частиц более тяжелой фазы. В тарельчатых колоннах происходит ступенчатый контакт фаз. Снизу вверх по колонне движутся пары, поступающие в нижнюю часть аппарата из кипятильника, который находится вне колонны. С помощью кипятильника создается восходящий поток пара. Пары проходят через слой жидкости. В результате взаимодействия между жидкостью и паром, имеющим более высокую температуру, жидкость частично испаряется, причем в пар переходит преимущественно НКК. Испарение жидкости на тарелке происходит за счет тепла конденсации пара. Из пара конденсируется и переходит в жидкость преимущественно ВКК. Его содержание в поступающем на тарелку паре выше равновесного с составом жидкости на тарелке. Пар представляет собой на выходе из кипятильника ВКК и по мере движения вверх все больше обогащается НКК, который переходит в паровую фазу на пути пара из кипятильника до верха колонны. Пары конденсируются в дефлегматоре, охлаждаемом водой и получаемая жидкость разделяется в разделителе на дистиллят и флегму, которая направляется на верхнюю тарелку колонны. На некотором расстоянии от верха колонны к жидкости из дефлегматора присоединяется исходная смесь, которая поступает на питающую тарелку колонны. Для того чтобы уменьшить тепловую нагрузку кипятильника, исходную смесь нагревают в подогревателе, до температуры кипения жидкости на тарелке питания. Тарелка питания делит колонну на две части, имеющие различное назначение. В верхней части должно быть обеспечено возможно большее укрепление паров, т.е. обогащение их НКК с тем, чтобы в дефлегматор направлялись пары, близкие по составу к НКК. Поэтому данная часть колонны называется укрепляющей. В нижней части необходимо в максимальной степени удалить из жидкости НКК, т.е. исчерпать жидкость для того, чтобы в кипятильник стекала жидкость, близкая по составу к ВКК. Эта часть колонны называется отгонной. В дефлегматоре могут быть сконденсированы все пары, поступающие из колонны, либо только часть их, соответствующая количеству возвращаемой в колонну флегмы. В первом случае, часть конденсата остающаяся после отделения флегмы (дистиллят) охлаждается в холодильнике и направляется в сборник дистиллята. Во втором случае, несконденсированные в дефлегматоре пары одновременно конденсируются и охлаждаются в холодильнике, который при таком варианте работы служит конденсатором - холодильником дистиллята. Жидкость, выходящая из низа колонны, близкая по составу к ВКК также делится на две части. Одна часть направляется в кипятильник, а другая - кубовый остаток, после охлаждения водой в холодильнике, направляется в сборник кубового остатка. Диаметр колонны по условиям верха и низа
4. Диаметр колонны по условиям верха и низа
Температура t и скорость пара п изменяются по высоте колонны. Поэтому диаметр колонны dк рассчитывают для ряда сечений колонны (в нашем случае для укрепляющей и отгонной частей). Если при расчете величины dк получаются близкими, то колонну делают одного диаметра (ориентируясь на большее значение dк). Если различие в значениях dк велико, то в этом случае укрепляющая часть колонны имеет один диаметр, а отгонная другой.
Диаметр колонны по условиям верха находим по уравнению Менделеева - Клайперона плотность пара в укрепляющей части колонны.
Находим среднюю плотность жидкости в колонне. Для этого находим плотности метанола и воды по температуре в верху колонны (t2) и в кубе - испарителе (t0). Плотность жидкого метанола при температуре t2 = 64,90°С равна мет = 751,1 кг/м3 (см. [1] стр. 489, табл. IV).
Плотность воды при температуре t0 = 99,50C равна вод = 958,3 кг/м3 (см. [1] стр. 512, табл. XXXIX).
Принимаем среднюю плотность жидкости в колонне
Если ж >> n (что имеет место в данном случае) допустимую оптимальную скорость пара в колонне рассчитывают по формуле
,
где С - коэффициент, зависящий от конструкции тарелок, расстоянии между ними, рабочего давления в колонне, нагрузки колонны по жидкости и др.
Принимаем расстояние между тарелками h = 0,3 м, тогда С = 0,032 (см. [1], стр. 301, рис. 7-2).
Скорость пара в верхней части колонны
Диаметр укрепляющей части колонны вычисляем по формуле
,
где Pм - массовый поток пара.
Массовый поток пара Pм изменяется по высоте колонны, его значение определяется по мольному потоку пара P и значению молярной массы М паровой смеси:
Pм =P М2,
где P = D (R + l) = 0,0605 (1,257 + 1) = 0,136 кмоль/c
Мольный поток пара P постоянен по высоте колонны.
Тогда:
Pм =P М2 = 0,136 31,91 = 4,34 кг/c
Диаметр укрепляющей части колонны равен
.
Диаметр колонны по условиям низа
Находим плотность пара в отгонной части колонны
.
Скорость пара в отгонной части колонны
Массовый поток пара Pм в отгонной части колонны
Pм = P М0 = 0,136 18,06 = 2,46 кг/ c.
Тогда диаметр отгонной части колонны будет равен
Диаметр укрепляющей и отгонной частей колонны принимаем одинаковыми и равными dк = 2400 мм (см. [3] стр. 9-10).
5. Определение числа тарелок и высоты колонны
По способу работы массообменные тарелки делятся на ситчатые, колпачковые, провальные и струйно-направленные. Диапазон тарелок, применяемых в колонной аппаратуре, составляет 200-8000 мм - в соответствии с диаметрами колонн, для которых они предназначаются. Количество тарелок в колонне бывает обычно не менее 20 - 30, а в отдельных случаях доходит до 80 штук и более. Расстояние между тарелками зависит в основном от физико-химических свойств разделяемой смеси и бывает от 60 до 600 мм и более. Тарелки малых размеров выполняются цельными, тарелки больших размеров - большей частью составными (разборными) из отдельных секций, соединенных между собой болтами и другими крепежными приспособлениями. Тарелки характеризуются нагрузками по пару и жидкости, относительная величина которых, в зависимости от разделяемой смеси, может значительно отличаться друг от друга.
6. Определение числа тарелок
Для определения теоретического числа тарелок необходимо на диаграмме х - y построить рабочие линии укрепляющей и отгонной частей колонны так, как это показано на рисунке
В итоге получаем
Число теоретических тарелок
Число реальных тарелок рассчитывается по уравнению
где - средний КПД тарелок (КПД колонны), учитывающий реальные условия массообмена на тарелках. Для определения среднего КПД тарелок находим коэффициент относительной летучести разделяемых компонентов , равный отношению давлений насыщенных паров метанола и воды при средней температуре в колонне tср
и динамический коэффициент вязкости исходной смеси при температуре tср. Для последующего расчета необходимо найти значение средней температуры tср в колонне. Для этого находим средние концентрации жидкости и пара в укрепляющей и отгонной частях колонны.
Средние концентрации жидкости:
в укрепляющей части колонны
в отгонной части колонны
Средние концентрации пара находим по уравнениям рабочих линий колонны:
в укрепляющей части колонны
в отгоночной части колонны
Средние температуры в обеих частях колонны находим по диаграмме
Средняя температура в колонне
При данной температуре мм рт. ст. (см. [1] стр. 538, рис. XIV), мм рт. ст. (см. [1] стр. 511, табл. XXXVIII), тогда
Динамический коэффициент вязкости метанола сП (см. [1] стр. 529, рис. V), динамический коэффициент вязкости воды сП (см. [1], стр. 491, табл. VI).
Динамический коэффициент вязкости исходной смеси равен
сП
Тогда
Откуда (см. [1], стр. 323, рис. 7-4)
Число реальных тарелок
Из них тарелок в верхней части колонны и 13 тарелок в нижней части.
Высота тарельчатой части
Нт = (n - 1) h = (20 - 1) 0,3 = 5,7 м
3.3. Высота колонны.
Н = Нт + Нс + Нк
где Нс = 1 м - высота сепарационной части,
Нк = 2,5 м - высота кубовой части колонны
Н = 5,7 + 1 + 2,5 = 9,2 м.
7. Гидравлический расчет тарелок
Принимаем следующие размеры ситчатой тарелки: диаметр отверстий
d0 = 4 мм высота сливной перегородки hп = 50 мм. Свободное сечение тарелки 11% от общей площади тарелки. Рассчитаем гидравлическое сопротивление тарелки в нижней и верхней части колонны по уравнению
где - сопротивление сухой тарелки,
- сопротивление, вызываемое силами поверхностного натяжения,
- сопротивление парожидкостного слоя на тарелке
8. Верхняя часть колонны
Гидравлическое сопротивление сухой тарелки
=
где - скорость пара в прорезях колпачка;
- коэффициент сопротивления, равный для ситчатых тарелок со свободным сечением 11 - 25% …1,45 (см. [1] стр. 27). Принимаем = 1,45.
- средняя плотность пара в верхней части колонны
=
где
- средняя мольная масса пара в верхней части колонны
=
Находим скорость пара в отверстиях тарелки . Для этого определяем скорость пара в верхней части колонны
.
Тогда
где Fсв = 10,7% - свободное сечение тарелки (см. [3] стр. 12).
Гидравлическое сопротивление сухой тарелки равно
Сопротивление, обусловленное силами поверхностного натяжения
где = 17,810-3 Н/м - поверхностное натяжение жидкости при (см. [1] стр. 527)
=17,8 Па
Статическое сопротивление слоя жидкости на тарелке
где = 0,5 - коэффициент аэрации жидкости (см. [5] стр. 26)
hж = hw + h0w - высота слоя жидкости на тарелке
hw = 0,05 м - высота сливной перегородки (см. [5] стр. 26)
h0w = 0,029 - величина подпора жидкости над сливной перегородкой
- плотность орошения через сливную перегородку
- часовой расход жидкости
средняя мольная масса жидкости.
м3/ч
В = 1,210 м - длина сливной перегородки (см. [4] стр. 609)
= м3/ч
h0w = 0,029 W2/3=0,029 6,922/3 = 0,105 м
hж = hw + h0w =
Тогда
Общее гидравлическое сопротивление тарелки в верхней части колонны
68,4+17,8+600=686 Па
8. Нижняя часть колонны
Гидравлическое сопротивление сухой тарелки
,
где - средняя плотность пара в нижней части колонны
,
где - средняя мольная масса пара в нижней части колонны.
Тогда
Находим скорость пара 0 в прорезях колпачка. Для этого определяем скорость пара в нижней части колонны.
.
Тогда
.
Гидравлическое сопротивление сухой тарелки
Сопротивление, вызываемое силами поверхностного натяжения
где = 59,710-3 Н/м - поверхностное натяжение жидкости при
=59,7 Па
Статическое сопротивление слоя жидкости на тарелке
где
= 0,5
hж = hw + h0w
hw = 0,05 м
h0w = 0,029
м3/ч
В = 1,210 м
м3/ч
h0w = 0,029
hж = hw + h0w =
Тогда
Общее гидравлическое сопротивление тарелки в нижней части колонны
128+59,7+1362,5=1550 Па
Проверим, соблюдается ли при расстоянии между тарелками h = 0,3 м необходимое для нормальной работы тарелок условие
Для тарелок нижней части колонны, у которых гидравлическое сопротивление больше
= 1550/854,7 9,81=0,18
Следовательно, условие соблюдается.
9. Расчет и подбор штуцеров
Присоединение труб к химическим аппаратам бывает разъемное и неразъемное. Первое осуществляется с помощью фланцев или на резьбе, второе на сварке или пайке. Для разъемного присоединения труб, арматуры и измерительных приборов на аппаратуре обычно предусматривают штуцера (патрубки) фланцевые или резьбовые. Наиболее распространены фланцевые штуцера для присоединения труб, арматуры и приборов. Фланцевое соединение состоит из двух симметрично расположенных фланцев, уплотнительного соединения (прокладок), и крепежных элементов (болтов, шпилек, шайб или гаек). В сварной аппаратуре низкого давления фланцы обычно изготавливают из листового полосового или фасонного проката с последующей приваркой их к обечайке, к трубе и т.д. Наиболее технологичной формой изготовления фланцев является круглая форма.
Диаметры штуцеров колонны и теплообменной аппаратуры, а, следовательно, и диаметры технологических трубопроводов, определяют из уравнения расхода по допустимой скорости потоков в них.
Штуцер для подачи исходной смеси.
Скорость ввода исходной смеси принимаем равной = 1,5 м/с (см. [5], стр. 42), тогда диаметр штуцера будет равен
где
Подбираем щтуцер по [4]. стр. 659 табл. 27.3
Выбираем штуцер с Dу=50 мм на ру=1,0 МПа, Нт=155 мм, материал - сталь Х18Н10Т, исполнение I, ОСТ 26-1404-76 согласно [8], стр. 175.
Фланец подбираем по [4], стр. 549, табл. 21.9: Dу=40 мм, Dф=130 мм, Dб=100 мм, D1=80 мм, dб=М12, количество болтов z = 4, материал - сталь 3, исполнение I.
Штуцер для вывода пара из колонны.
Скорость вывода пара из колонны принимаем равной = 20 м/с (см. [5], стр. 42), тогда
где м3/с;
D=П (R+1) - поток пара
1,13 м3 при t2 = 64,50С
Выбираем штуцер с Dу=600 мм на Pу = 1,0 МПа, Нт=310 мм, материал - сталь Х18Н10Т, исполнение I, ОСТ 26-1404-76 согласно [8], стр. 175.
Фланец подбираем по [4], стр. 549, табл. 21.9: Dу=600 мм, Dф=635 мм, Dб=495 мм, D1=465 мм, dб=М30, количество болтов z = 16, материал - сталь 3, исполнение I.
Штуцер для вывода кубового остатка.
Скорость вывода кубового остатка принимаем равной = 0,5 м/с (см. [5], стр. 42), тогда
где
Выбираем штуцер с Dу=80 мм на ру=1,0 МПа, Нт=155 мм, материал - сталь Х18Н10Т, исполнение I, ОСТ 26-1404-76 согласно [8], стр. 175.
Фланец подбираем по [4], стр. 549, табл. 21.9: Dу=80 мм, Dф=185 мм, Dб=150 мм, D1=128 мм, dб=М16, количество болтов z=4, материал - сталь 3, исполнение I.
Штуцер для подачи флегмы в колонну
Скорость подачи флегмы в колонну принимаем равной = 0,5 м/с (см. [5], стр. 42), тогда
где
Выбираем штуцер с Dу=40 мм на ру=1,0 МПа, Нт=155 мм, материал - сталь Х18Н10Т, исполнение I, ОСТ 26-1404-76 согласно [8], стр. 175.
Фланец подбираем по [4], стр. 549, табл. 21.9: Dу=40 мм, Dф=130 мм, Dб=100 мм, D1=80 мм, dб=М12, количество болтов z = 4, материал - сталь 3, исполнение I.
Штуцер для подачи жидкости в кипятильник.
Расчет штуцеров для подсоединения кипятильника к колонне затруднен тем, что неизвестен расход циркулирующей жидкости. Поэтому диаметр штуцера можно принять равным соответствующим штуцерам на кипятильнике. В нашем случае диаметр условного прохода штуцера на кипятильнике Dу = 200 мм (см. [2], стр. 55, табл. 2.6). Тогда выбираем штуцер с Dу=200 мм на ру=1,0 МПа, Нт=190 мм, материал - сталь Х18Н10Т, исполнение I, ОСТ 26-1404-76 согласно [8], стр. 175.
Фланец подбираем по [4], стр. 549, табл. 21.9: Dу=200 мм, Dф=315 мм, Dб=280 мм, D1=258 мм, dб=М16, количество болтов z=8, материал - сталь 3, исполнение. 1
Литература
1) Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии, Л.: Химия, 1987.
2) Борисов Г.С., Брыков В.П., Дытнерский Ю.И. и др. Основные процессы и аппараты химической технологии: Пособие по проектированию, М.: Химия, 1991.
3) Колонные аппараты: Каталог, М.: Цинтихимнефтемаш, 1978.
4) Лащинский А.А., Толчинский А.Р. Основы конструирования и расчета химической аппаратуры: Приложение к справочнику, М.: Машиностроение, 1970.
5) Захаров М.К., Солопенков К.Н., Варфоломеев Б.Г. Методические указания к курсовому проектированию ректификационных установок непрерывного действия, М.: Полинор-М, 1995.
6) Мясоединков В.М. / Под ред. Б.Г. Варфоломеева Подбор и расчет конденсатоотводчиков, М.: МИТХТ, 1989.
Размещено на Allbest.ru
...Подобные документы
Ректификация - один из самых распространенных технологических процессов в химической, нефтяной отраслях промышленности. Ректификация - процесс разделения бинарных или многокомпонентных паров, а также жидких смесей на чистые компоненты или их смеси.
курсовая работа [211,9 K], добавлен 04.01.2009Ректификация - процесс разделения бинарных или многокомпонентных паровых и жидких смесей на практически чистые компоненты или смеси. Условия образования неравновесных потоков пара и жидкости, вступающих в контакт. Легколетучие и тяжелолетучие компоненты.
дипломная работа [148,8 K], добавлен 04.01.2009Ректификация — массообменный процесс разделения однородной смеси летучих компонентов. Свойства бинарной смеси. Расчет ректификационной колонны непрерывного действия для разделения бинарной смеси. Основная характеристика материального и теплового баланса.
курсовая работа [723,0 K], добавлен 02.05.2011Сущность процесса периодической ректификации бинарных смесей. Принципы работы непрерывно действующей ректификационной установки для разделения бинарных смесей. Расчет материального и теплового баланса. Определение скорости пара и диаметра колонны.
курсовая работа [605,8 K], добавлен 24.10.2011Разработка технологической схемы непрерывной ректификации для выделения метилового спирта из его смеси с водой. Проектирование тарельчатой ректификационной колонны. Подбор подогревательной исходной смеси по каталогу. Выбор тарелки, энтальпий, штуцеров.
курсовая работа [4,7 M], добавлен 24.10.2011Расчет ректификационной колонны непрерывного действия с ситчатыми тарелками для разделения смеси этанол-вода производительностью 5000 кг/час по исходной смеси. Материальный и тепловой баланс, размеры аппарата и нормализованные конструктивные элементы.
курсовая работа [3,0 M], добавлен 13.05.2011Принципиальная схема ректификационной установки. Технологический расчет ректификационной колонны непрерывного действия. Основные физико-химические и гидравлические свойства паровой и жидкой фаз для верха и низа колонны. Локальная эффективность контакта.
курсовая работа [457,8 K], добавлен 05.12.2010Характеристика технологического процесса ректификации; расчет установки для разделения смеси этанол-метанол производительностью 160 т/сут. Определение режима работы колонны, материальных потоков, теплового баланса; гидравлический расчет ситчатой тарелки.
курсовая работа [2,7 M], добавлен 17.12.2012Описание установки непрерывного действия для ректификации. Определение рабочего флегмового числа и диаметра колонны. Вычисление объемов пара и жидкости. Расчет кипятильника. Выбор насоса для выдачи исходной смеси на установку, анализ потерь напора.
курсовая работа [996,3 K], добавлен 26.11.2012Анализ результатов расчета ректификационной колоны непрерывного действия, предназначенной для разделения бинарной смеси метиловый спирт - этиловый спирт. Материальный баланс, расчет тепловой изоляции колонны, вспомогательного оборудования, кипятильника.
дипломная работа [260,6 K], добавлен 17.04.2011Схема ректификационной установки непрерывного действия. Перевод весовых концентраций в мольные. Проверка баланса. Определение числа теоретических тарелок в укрепляющей и отгонной колоннах. Определение числа действительных тарелок, диаметра колонны.
курсовая работа [33,0 K], добавлен 04.01.2009Разработка ректификационной установки для непрерывного разделения смеси: ацетон - уксусная кислота. Расчет диаметра, высоты, гидравлического сопротивления ректификационной колонны. Определение теплового баланса и расхода греющего пара, охлаждающей воды.
курсовая работа [1,3 M], добавлен 24.10.2011Непрерывно действующие ректификационные установки для разделения бинарных смесей. Определение средних физических величин пара и жидкости. Высота газожидкостного слоя. Скорость пара в свободном сечении тарелки. Расчет гидравлического сопротивления колонны.
курсовая работа [243,7 K], добавлен 24.10.2011- Расчет ректификационной колонны для разделения смеси хлороформ-бензол производительностью 13200 кг/ч
Общее описание процесса ректификации. Разработка ректификационной колонны для разделения смеси хлороформ-бензол. Технологический, гидравлический и тепловой расчет аппарата. Определение числа тарелок и высоты колонны, скорости пара и диаметра колонны.
курсовая работа [677,8 K], добавлен 30.10.2011 При разработке технологии большая роль принадлежит блоку разделения реакционной смеси. В производствах органического и нефтехимического синтеза применяются все известные методы разделения многокомпонентных смесей на чистые компоненты или фракции.
дипломная работа [118,3 K], добавлен 04.01.2009Выбор оптимального варианта оформления процесса ректификации смеси. Построение диаграмм для бинарной системы. Расчёт числа теоретических тарелок полной ректификационной колонны непрерывного действия для разделения смеси 2-метилгексан–2-метилгептан.
курсовая работа [145,2 K], добавлен 24.03.2014Схема ректификационной установки. Определение массовых и объемных расходов пара и жидкости вверху и внизу тарельчатой колонны. Гидравлическое сопротивление тарелок. Расчет теплообменных аппаратов: диаметра, изоляционного слоя и стенки корпуса колонны.
курсовая работа [986,3 K], добавлен 04.06.2015Основные допущения при построении рабочих линий. Система уравнений материального баланса ректификационной колонны. Определение минимального и оптимального флегмового числа, производимого методом итераций. Мольная доля легколетучего компонента в дистилляте
курсовая работа [2,7 M], добавлен 05.01.2016Общая характеристика установки ректификационной тарельчатой колонны с колпачковыми тарелками для разделения смеси бензол-толуол под атмосферным давлением. Технологический расчет данной ректификационной установки. Подробный расчёт теплообменников.
курсовая работа [1,0 M], добавлен 20.08.2011Суть и назначение ректификации - диффузионного процесса разделения жидких смесей взаимно растворимых компонентов, различающихся по температуре кипения. Расчет материального баланса. Определение скорости пара и диаметра колонны. Тепловой расчет установки.
контрольная работа [104,8 K], добавлен 24.10.2011