Теоретические основы прогрессивных трехногий

Изучение дифракционных методов исследования веществ: рентгенографии и электронографии. Микробиологическая борьба с вредителями. Особенности применения пестицидов, их состав и свойства. Расчет изменения скорости реакции при условии повышения температуры.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 24.09.2014
Размер файла 29,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Файл не выбран
РћР±Р·РѕСЂ

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА

РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГОУ ВПО «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ

УНИВЕРСИТЕТ ИМЕНИ К.Д. ГЛИНКИ»

Факультет агрохимии, почвоведения и экологии

кафедра агроэкологии

Контрольная работа

по теме: «Теоретические основы прогрессивных трехногий»

(Химия. Биотехнология)

Воронеж 2011

1. Дифракционные методы исследования веществ. Рентгенография. Электронография

Дифракция - явление волновое, оно наблюдается при распространении волн различной природы: дифракция света, звуковых волн, волн на поверхности жидкости и т.д. Дифракция при рассеянии частиц, с точки зрения классической физики, невозможна.

Квантовая механика устранила абсолютную грань между волной и частицей. Основным положением квантовой механики, описывающей поведение микрообъектов, является корпускулярно-волновой дуализм, т. е. двойственная природа микрочастиц. Так, поведение электронов в одних явлениях может быть описано на основе представлений о частицах, в других же, особенно в явлениях дифракции, - только на основе представления о волнах. Идея "волн материи" была высказана французским физиком Л. де Бройлем в 1924 и вскоре получила подтверждение в опытах по дифракции частиц. пестицид рентгенография дифракционный реакция

Согласно квантовой механике, свободное движение частицы с массой m и импульсом

р = mV

(где V - скорость частицы) можно представить как плоскую монохроматическую волну y0 (волну де Бройля) с длиной волны

l = h / p (1)

распространяющуюся в том же направлении (например, в направлении оси х), в котором движется частица. Здесь h - постоянная Планка. Зависимость y0 от координаты х задаётся формулой

y0 ~ cos (k0x) (2)

где k0 = |k0| = 2p/l - так называемое волновое число, а волновой вектор направлен в сторону распространения волны, или вдоль движения частицы.

Таким образом, волновой вектор монохроматической волны, связанной со свободно движущейся микрочастицей, пропорционален её импульсу или обратно пропорционален длине волны.

При взаимодействии частицы с некоторым объектом - с кристаллом, молекулой и тому подобное - её энергия меняется: к ней добавляется потенциальная энергия этого взаимодействия, что приводит к изменению движения частицы. Соответственно меняется характер распространения связанной с частицей волны, причём это происходит согласно принципам, общим для всех волновых явлений. Поэтому основные геометрические закономерности дифракции частиц ничем не отличаются от закономерностей дифракции любых волн. Общим условием дифракции волн любой природы является соизмеримость длины падающей волны l с расстоянием d между рассеивающими центрами: l Ј d.

Кристаллы обладают высокой степенью упорядоченности. Атомы в них располагаются в трёхмерно-периодической кристаллической решётке, т. е. образуют пространственную дифракционную решётку для соответствующих длин волн. Дифракция волн на такой решётке происходит в результате рассеяния на системах параллельных кристаллографических плоскостей, на которых в строгом порядке расположены рассеивающие центры.

При более высоких ускоряющих электрических напряжениях (десятках кв) электроны приобретают достаточную кинетическую энергию, чтобы проникать сквозь тонкие плёнки вещества Тогда возникает так называемая дифракция быстрых электронов на прохождение.

Для лёгких атомов и молекул (Н, H2, Не) и температур в сотни градусов Кельвина длина волны l также составляет около 1 А . Дифрагирующие атомы или молекулы практически не проникают в глубь кристалла; поэтому можно считать, что их дифракция происходит при рассеянии от поверхности кристалла, т. е. как на плоской дифракционной решётке.

Выпущенный из сосуда и сформированный с помощью диафрагм молекулярный или атомный пучок направляют на кристалл и тем, или иным способом фиксируют "отражённые" дифракционные пучки.

Позже наблюдалась дифракция протонов, а также дифракция нейтронов, получившая широкое распространение как один из методов исследования структуры вещества. Так было доказано экспериментально, что волновые свойства присущи всем без исключения микрочастицам.

В широком смысле слова дифракционное рассеяние всегда имеет место при упругом рассеянии различных элементарных частиц атомами и атомными ядрами, а также друг другом. С другой стороны, представление о корпускулярно-волновом дуализме материи укрепилось при анализе явлений, всегда считавшихся типично волновыми, например дифракции рентгеновских лучей - коротких электромагнитных волн с длиной волны l " 0,5-5 Е . В то же время начальный и рассеянный пучки рентгеновских лучей можно рассматривать и регистрировать как поток частиц - фотонов, определяя с помощью счётчиков фотонов число фотонов рентгеновского излучения в этих пучках.

Следует подчеркнуть, что волновые свойства присущи каждой частице в отдельности. Образование дифракционной картины при рассеянии частиц интерпретируется в квантовой механике следующим образом. Прошедший через кристалл электрон в результате взаимодействия с кристаллической решёткой образца отклоняется от своего первоначального движения и попадает в некоторую точку фотопластинки, установленной за кристаллом для регистрации электронов. Войдя в фотографическую эмульсию, электрон проявляет себя как частица и вызывает фотохимическую реакцию. На первый взгляд попадание электрона в ту или иную точку пластинки носит совершенно произвольный характер. Но при длительной экспозиции постепенно возникает упорядоченная картина дифракционных максимумов и минимумов в распределении электронов, прошедших через кристалл.

Точно предсказать, в какое место фотопластинки попадёт данный электрон, нельзя, но можно указать вероятность его попадания после рассеяния в ту или иную точку пластинки. Эта вероятность определяется волновой функцией электрона y, точнее квадратом её модуля (т.к. н - комплексная функция) |y|2. Однако, поскольку вероятность при больших числах испытаний реализуется как достоверность, при многократном прохождении электрона через кристалл или, как это имеет место в реальных дифракционных экспериментах, при прохождении через образец пучка электронов, содержащего громадное количество частиц, величина |y|2 определяет уже распределение интенсивности в дифрагированных пучках. Таким образом, результирующая волновая функция электрона y, которую можно рассчитать, зная y0 и потенциальную энергию взаимодействия электрона с кристаллом, даёт полное описание дифракционного опыта в статистическом смысле.

Специфика дифракции различных частиц. Атомная амплитуда рассеяния. Вследствие общности геометрических принципов дифракции теория дифракции частиц многое заимствовала из развитой ранее теории дифракции рентгеновских лучей. Однако взаимодействие разного рода частиц - электронов, нейтронов, атомов и т.п. - с веществом имеет различную физическую природу. Поэтому при рассмотрении дифракции частиц на кристаллах, жидкостях и т.д. существенно знать, как рассеивает различные частицы изолированный атом вещества. Именно в рассеянии частиц отдельными атомами проявляется специфика дифракции различных частиц.

Дифракцию на любой системе атомов (молекуле, кристалле и т.п.) можно рассчитать, зная координаты их центров ri и атомные амплитуды fi для данного сорта частиц.

Наиболее ярко эффекты дифракции частиц выявляются при дифракции на кристаллах. Однако тепловое движение атомов в кристалле несколько изменяет условия дифракции, и интенсивность дифрагированных пучков с увеличением угла J в формуле (6) уменьшается. При дифракции частиц жидкостями, аморфными телами или молекулами газов, упорядоченность которых значительно ниже кристаллической, обычно наблюдается несколько размытых дифракционных максимумов.

Электронография (от электрон и ...графия), метод изучения структуры вещества, основанный на рассеянии ускоренных электронов исследуемым образцом. Применяется для изучения атомной структуры кристаллов, аморфных тел и жидкостей, молекул в газах и парах. Физическая основа Электронографии - дифракция электронов; при прохождении через вещество электроны, обладающие волновыми свойствами, взаимодействуют с атомами, в результате чего образуются отдельные дифрагированные пучки. Интенсивности и пространственное распределение этих пучков находятся в строгом соответствии с атомной структурой образца, размерами и ориентацией отдельных кристалликов и другими структурными параметрами. Рассеяние электронов в веществе определяется электростатическим потенциалом атомов, максимумы которого в кристалле отвечают положениям атомных ядер.

Электронографические исследования проводятся в специальных приборах - электронографах и электронных микроскопах; в условиях вакуума в них электроны ускоряются электрическим полем, фокусируются в узкий светосильный пучок, а образующиеся после прохождения через образец пучки либо фотографируются (электронограммы), либо регистрируются фотоэлектрическим устройством. В зависимости от величины электрического напряжения, ускоряющего электроны, различают дифракцию быстрых электронов (напряжение от 30-50 кэв до 1000 кэв и более) и дифракцию медленных электронов (напряжение от нескольких в до сотен в).

Электронография принадлежит к дифракционным структурным методам (наряду с рентгеновским структурным анализом и нейтронографией) и обладает рядом особенностей. Благодаря несравнимо более сильному взаимодействию электронов с веществом, а также возможности создания светосильного пучка в электронографе, экспозиция для получения электронограмм обычно составляет около секунды, что позволяет исследовать структурные превращения, кристаллизацию и так далее. С другой стороны, сильное взаимодействие электронов с веществом ограничивает допустимую толщину просвечиваемых образцов десятыми долями мкм (при напряжении 1000-2000 кэв максимальная толщина несколько мкм).

Электронография позволила изучать атомные структуры огромного числа веществ, существующих лишь в мелкокристаллическом состоянии. Она обладает также преимуществом перед рентгеновским структурным анализом в определении положения лёгких атомов в присутствии тяжёлых (методам нейтронографии доступны такие исследования, но лишь для кристаллов значительно больших размеров, чем для исследуемых в электронографии).

Вид получаемых электронограмм зависит от характера исследуемых объектов. Электронограммы от плёнок, состоящих из кристалликов с достаточно точной взаимной ориентацией или тонких монокристаллических пластинок, образованы точками или пятнами (рефлексами) с правильным взаимным расположением. При частичной ориентации кристалликов в плёнках по определённому закону (текстуры) получаются отражения в виде дуг. Электронограммы от образцов, состоящих из беспорядочно расположенных кристалликов, образованы аналогично дебаеграммам равномерно зачернёнными окружностями, а при съёмке на движущуюся фотопластинку (кинематическая съёмка) - параллельными линиями. Перечисленные типы электронограмм получаются в результате упругого, преимущественно однократного, рассеяния (без обмена энергией с кристаллом). При многократном неупругом рассеянии возникают вторичные дифракционные картины от дифрагированных пучков. Подобные электронограммы называются кикучи-электронограммами (по имени получившего их впервые японского физика). Электронограммы от молекул газа содержат небольшое число диффузных ореолов.

В основе определения элементарной ячейки кристаллической структуры и её симметрии лежит измерение расположения рефлексов на электронограммах. Межплоскостное расстояние d в кристалле определяется из соотношения:

d = Ll/r,

где L - расстояние от рассеивающего образца до фотопластинки, l - дебройлевская длина волны электрона, определяемая его энергией, r - расстояние от рефлекса до центрального пятна, создаваемого нерассеянными электронами. Методы расчёта атомной структуры кристаллов в электронографии аналогичны применяемым в рентгеновском структурном анализе (изменяются лишь некоторые коэффициенты). Измерение интенсивностей рефлексов позволяет определить структурные амплитуды |Fhkl|. Распределение электростатического потенциала j(x, у, z) кристалла представляется в виде ряда Фурье. Максимальные значения j(x, у, z) соответствуют положениям атомов внутри элементарной ячейки кристалла. Таким образом, расчёт значений j(x, у, z), который обычно осуществляется ЭВМ, позволяет установить координаты х, у, z атомов, расстояния между ними и другие характеристики.

Методами электронографии были определены многие неизвестные атомные структуры, уточнены и дополнены рентгеноструктурные данные для большого числа веществ, в том числе множество цепных и циклических углеводородов, в которых впервые были локализованы атомы водорода, молекулы нитрилов переходных металлов (Fe, Cr, Ni, W), обширный класс окислов ниобия, ванадия и тантала с локализацией атомов N и О соответственно, а также 2- и 3-компонентных полупроводниковых соединений, глинистых минералов и слоистых структур. При помощи электронографии можно также изучать строение дефектных структур. В комплексе с электронной микроскопией электронография позволяет изучать степень совершенства структуры тонких кристаллических плёнок, используемых в различных областях современной техники. Для процессов эпитаксии существенным является контроль степени совершенства поверхности подложки до нанесения плёнок, который выполняется с помощью кикучи-электронограмм: даже незначительные нарушения её структуры приводят к размытию кикучи-линий.

Интенсивность каждой точки этих электронограмм определяется как молекулой в целом, так и входящими в неё атомами. Для структурных исследований важна молекулярная составляющая, атомную же составляющую рассматривают как фон и измеряют отношение молекулярной интенсивности к общей интенсивности в каждой точке электронограммы. Эти данные позволяют определять структуры молекул с числом атомов до 10-20, а также характер их тепловых колебаний в широком интервале температур. Таким путём изучено строение многих органических молекул, структуры молекул галогенидов, окислов и других соединений. Аналогичным методом проводят анализ атомной структуры ближнего порядка (см. Дальний порядок и ближний порядок) в аморфных телах, стеклах и жидкостях.

Рентгеновское излучение, невидимое излучение, способное проникать, хотя и в разной степени, во все вещества. Представляет собой электромагнитное излучение с длиной волны порядка 10-8 см.

Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это его свойство имеет важное значение для медицины, промышленности и научных исследований. Проходя сквозь исследуемый объект и падая затем на фотопленку, рентгеновское излучение изображает на ней его внутреннюю структуру. Поскольку проникающая способность рентгеновского излучения различна для разных материалов, менее прозрачные для него части объекта дают более светлые участки на фотоснимке, чем те, через которые излучение проникает хорошо. Так, костные ткани менее прозрачны для рентгеновского излучения, чем ткани, из которых состоит кожа и внутренние органы. Поэтому на рентгенограмме кости обозначатся, как более светлые участки и более прозрачное для излучения место перелома может быть достаточно легко обнаружено. Рентгеновская съемка используется также в стоматологии для обнаружения кариеса и абсцессов в корнях зубов, а также в промышленности для обнаружения трещин в литье, пластмассах и резинах.

Рентгеновское излучение используется в химии для анализа соединений и в физике для исследования структуры кристаллов. Пучок рентгеновского излучения, проходя через химическое соединение, вызывает характерное вторичное излучение, спектроскопический анализ которого позволяет химику установить состав соединения. При падении на кристаллическое вещество пучок рентгеновских лучей рассеивается атомами кристалла, давая четкую правильную картину пятен и полос на фотопластинке, позволяющую установить внутреннюю структуру кристалла.

Применение рентгеновского излучения при лечении рака основано на том, что оно убивает раковые клетки. Однако оно может оказать нежелательное влияние и на нормальные клетки. Поэтому при таком использовании рентгеновского излучения должна соблюдаться крайняя осторожность.

Рентгеновское излучение было открыто немецким физиком В.Рентгеном (1845-1923). Его имя увековечено и в некоторых других физических терминах, связанных с этим излучением: рентгеном называется международная единица дозы ионизирующего излучения; снимок, сделанный в рентгеновском аппарате, называется рентгенограммой; область радиологической медицины, в которой используются рентгеновские лучи для диагностики и лечения заболеваний, называется рентгенологией.

2. Микробиологическая борьба с вредителями

При огромном ассортименте выпускаемых химических препаратов большое значение имеет их классификация. Общее название всех препаратов, применяемых для защиты от вредных организмов -- пестициды.

Пестициды (от лат. pestis - яд и caedo - убиваю), химические средства, используемые для борьбы с вредителями и болезнями растений, сорняками, вредителями зерна и зерно - продуктов, древесины, изделий из хлопка, шерсти, кожи, с эктопаразитами домашних животных, а также с переносчиками опасных заболеваний человека и животных. В группу пестицидов включают также дефолианты и десиканты, облегчающие механизированную уборку урожая некоторых культур, регуляторы роста растений (ауксины, гиббереллины, ретарданты), добавки к краскам против обрастания морских судов ракушками.

Пестициды относятся к различным классам органических и неорганических соединений. Большинство представляет собой органические вещества, получаемые синтетическим путём. Среди них важное место принадлежит хлорорганические и фосфорорганические пестицидам, производным карбаминовой кислоты, пестицидам растительного происхождения, триазинам, производным мочевины. Из неорганических веществ важны соединения меди, серы и др. Пестициды - основа химического метода защиты растений, являющегося пока самым эффективным в борьбе с вредителями, болезнями и сорняками; способствуют значительному сокращению потерь в сельском и лесном хозяйстве, деревообрабатывающей промышленности. Затраты на их применение окупаются в 5-12 раз.

Пестициды делят на следующие основные классы (в зависимости от того, против каких вредных организмов используют): акарициды - вещества для борьбы с клещами; антифидинги - вещества, отпугивающие насекомых от растений, которыми они питаются; инсектициды - средства, уничтожающие вредных насекомых; гербициды - препараты для борьбы с нежелательной растительностью; зооциды - яды, уничтожающие вредных позвоночных (вещества для борьбы с грызунами называются родентицидами, а только с крысами -- ратицидами); бактерициды, вирусоциды, фунгициды - средства для борьбы с возбудителями бактериальных, вирусных и грибных болезней растений; нематоциды - препараты, убивающие круглых червей - возбудителей нематодных болезней растений; моллюскоциды - вещества, уничтожающие вредных моллюсков (яды для борьбы с голыми слизнями называются лимацидами). К пестицидам также относят протравители семян, репелленты, средства, отпугивающие вредных насекомых, клещей, млекопитающих и птиц, аттрактанты - вещества для привлечения членистоногих с тем, чтобы их затем уничтожить или выявить локализацию или начало лета вредителей, хемостерилизаторы - препараты, которые не убивают насекомых, грызунов, клещей, но вызывают у них бесплодие.

Используемые в данное время пестициды имеют, как правило, комплексное действие. Например, протравители семян содержат одновременно фунгицид, бактерицид, инсектицид и т.д. Использование таких пестицидов позволяет сократить затраты труда на обработку. В некоторых случаях пестициды объединяют в группы в зависимости от фазы развития вредного организма, против которого они применяются. Например, овициды -- яды, убивающие яйца насекомых, клещей, ларвициды -- уничтожающие личинок и т.д.

По способу проникновения в организм вредителей различают кишечные пестициды, проникающие через ротовые органы и кишечник, контактные - при контакте ядов с поверхностью тела вредителей, то есть через кожные покровы, фумигантные, попадающие в организм в парообразном или газообразном состоянии через дыхательные пути, и системные, легко проникающие в ткани растений или животных и поражающие вредителей, питающихся соком растений или животных. В зависимости от скорости разложения в почве пестициды разделяют на шесть групп; с периодом распада более 18 месяцев (хлорорганические препараты, соединения селена), около 18 (триазиновые гербициды, пиклорам, диурон и некоторые др.), около 12 (производные галоидбензойных кислот и некоторые амиды кислот), до 6 (нитрилы кислот, производные арилоксиуксусных кислот, трефлан и его аналоги, нитрофенолы и др.), до 3 (производные арилкарбаминовых, алкилкарбаминовых кислот, некоторые производные мочевины и гетероциклические соединения), менее 3 месяцев (органические соединения фосфора и др.). В сельском хозяйстве предпочтительней использовать вещества, разлагающиеся за вегетационный период, на аэродромах и в борьбе с зарастанием дорог -- с большей продолжительностью действия.

По токсичности для человека и теплокровных животных пестициды разделяют на 4 группы:

1) сильнодействующие,

2) высокотоксичные,

3) среднетоксичные

4) малотоксичные.

ЛД50 (наименьшая доза вещества, вызывающая смертность 50% подопытных животных) для пестицидов этих групп равна соответственно до 50, 50-200, 200-1000 и свыше 1000 мг/кг. Такое деление носит условный характер, так как токсичность пестицидов для человека и животных зависит не только от абсолютного значения смертельных доз препаратов, но и его свойств: возможности отдалённых последствий влияния пестицидов при систематическом воздействии на организм (примером служит дефолиант Оранж, который имеет значительное генетическое влияние); способности его накапливаться в организме и окружающей среде; стойкости во внешней среде; бластомогенных свойств (способность вызывать опухоли), мутагенных (влияющих на наследственность), эмбриотоксичных (влияющих на развитие плода), тератогенных (вызывающих уродства), аллергенных (обусловливающих извращённую повышенную чувствительность организма к пестицидам) и т.п.

Для уменьшения возможной опасности разработаны следующие требования к современным пестицидам:

1) низкая острая токсичность для человека, полезных животных и других объектов окружающей среды;

2) отсутствие отрицательных эффектов при длительном воздействии малых доз, в том числе мутагенного, канцерогенного и тератогенного действия (тератогенный - повреждающий зародыш);

3) низкая персистентность (низкая устойчивость в окружающей среде со временем разложения не более одного вегетационного периода).

Кроме того, рекомендуемые препараты должны обладать следующими свойствами:

1) высокая эффективность в борьбе с вредными организмами;

2) экономическая целесообразность использования;

3) доступность сырья и производства.

Механизм действия различных классов Пестициды весьма различен и изучен ещё недостаточно. Например, органические соединения фосфора и эфиры алкилкарбаминовых кислот ингибируют фермент холинэстеразу членистоногих, производные тиомочевины блокируют окислительно-восстановительные процессы в организме насекомых. В зависимости от свойств пестицида и его назначения для обработки одного гектара требуется 0,2-40 кг (чаще 0,5-2 кг) пестицида в пересчёте на активное вещество. Чтобы равномерно распределить такое небольшое количество вещества по обрабатываемой площади, их применяют в соответствующей препаративной форме. В препаративную форму, кроме самого пестицида, входят вспомогательные вещества, разбавители и эмульгаторы. Наиболее часто их используют в виде:

1. Смачивающиеся порошки, которые при разведении водой дают устойчивую суспензию. Они содержат действующее вещество, наполнитель, детергент и иногда некоторые вспомогательные вещества в зависимости от активности препарата. Содержание действующего вещества может колебаться от 1 до 90%.

2. Концентраты эмульсий, которые с водой образуют устойчивую эмульсию. Концентрат эмульсии содержит действующее вещество, растворитель, детергент и вспомогательное вещество. Содержание действующего вещества в зависимости от активности соединений может колебаться от 1 до 90%.

3. Дусты для опыливания. Они содержат наполнитель, действующее вещество и вспомогательные вещества, содержание действующего вещества в дустах может колебаться от 1 до 20%.

4. Гранулы с различной величиной частиц, содержащие действующее вещество, наполнитель, вспомогательные вещества. Величина гранул может колебаться в широких пределах в зависимости от назначения, содержание действующего вещества - от 1 до 10%.

Растворимые в воде препараты выпускаются как в твердом виде (порошок, таблетки), так и в виде водных растворов. В некоторых случаях такие препараты содержат растворимый в воде наполнитель, а также некоторые неорганические добавки типа силикагеля, легко суспендирующиеся в воде. Таблетки или гранулы содержат действующее вещество и нерастворимый в воде, но легко суспендирующийся в воде наполнитель.

5. Растворы в органических растворителях.

6. Для борьбы с грызунами используют в качестве наполнителей пищевые продукты.

Существуют и другие формы применения: аэрозоли, суспендирующиеся в воде грануляты.

При завышенных, по сравнению с официально рекомендуемыми, дозах или концентрациях пестицидов, несоответствующих способах и сроках их применения, без учёта погодных условий они могут вызывать ожог растений, снижение жизнеспособности пыльцы, гибель пестиков и значительно снижают урожай. Растения могут загрязняться пестицидами, приобретать неприятный запах и вкус (например, при использовании гексахлорана), а также накапливать пестициды на поверхности в виде ядовитых остатков, опасных для человека и животных. При систематическом применении их нередко возникает приобретённая устойчивость вредных организмов к пестицидам. Чтобы избежать выведения устойчивых рас вредителей к определённым пестицидам, необходимо иметь широкий ассортимент препаратов одного назначения и проводить плановое чередование их использования. Также для обработки полей используют смеси различных пестицидов, что не позволяет вырабатываться иммунитету у вредителей.

Влияние пестицидов на биоценозы сложно и многообразно. Оно не полностью выяснено и на данное время. Особенно значительные нарушения биоценозов отмечаются при систематическом применении стойких высокотоксичных пестицидов (главным образом инсектицидов, акарицидов). Из-за уничтожения пестицидами паразитических и хищных членистоногих нередко наблюдается массовое размножение других вредных видов насекомых и клещей. Например, массовое размножение красного плодового клеща при обработке плодовых ДДТ, отмеченное в ряде стран, в том числе и в СССР, объясняют гибелью хищных клещей тифлодромид, а кровяной тли (после применения этого же препарата) - уничтожением паразита тли - афелинуса.

Нередко можно наблюдать при неправильном использовании пестицидов отрицательное действие их на человека, а также на пчёл, шмелей и других насекомых - опылителей, на рыб (при попадании в водоёмы), птиц, диких зверей, домашних животных, а также на природу в целом. Для предупреждения возможного вредного влияния пестициды на человека и животный мир необходимо при их применении учитывать действие не только на определённого вредителя, но и на биогеоценозы и предвидеть конечные результаты проводимых мероприятий. Важно строго соблюдать контроль за остаточными количествами пестицидов в пищевых продуктах, правила по хранению, транспортировке и применению.

Применение пестицидов регламентируется во всех странах соответствующими законами, целью этого служит недопущение к обороту высокотоксичных, опасных для человека препаратов, которые недостаточно эффективны и неприемлемы по гигиене труда и гигиене питания. В связи с большим значением пестицидов для народного хозяйства их производство непрерывно возрастает. Мировое производство пестицидов составляет около 2000 тыс. т. Уменьшение масштабов применения пестицидов, учитывая побочные эффекты от их использования, возможно по мере их замены биологическими средствами.

Большинство пестицидов поступает в организм человека через органы дыхания, кожу, желудочно-кишечный тракт. Особенно опасны отравления пестицидами при обработке помещений и посевного материала. Хлорорганические пестициды обладают общим токсическим действием на организм; они обычно поражают внутренние органы (печень, почки) и нервную систему. Признаки отравления мало специфичны: общая слабость, головокружение, тошнота, раздражение слизистых оболочек глаз и дыхательных путей. Большинство фосфорорганических пестицидов легко проникает в организм через кожу и обладает выраженным антихолинэстеразным действием. Признаки острого отравления ими специфичны: слюнотечение, сужение зрачков, мышечные подёргивания, судороги. При остром отравлении ртутьорганическими пестицидами наблюдаются повышенное выделение слюны, металлический вкус во рту, тошнота, иногда - рвота, понос со слизью, головные боли, обморочное состояние. Все виды работ с пестицидами проводятся с обязательным использованием средств индивидуальной защиты (спецодежды, спецобуви, респиратора, противогаза, защитных очков и т.д.). К работам с пестицидами не допускаются лица с медицинскими противопоказаниями, подростки до 18 лет, беременные и кормящие женщины. Продолжительность рабочего дня не должна превышать 6 часов, при контакте с сильнодействующими пестицидами не более 4 часов.

В настоящее время пестициды являются основными средствами защиты растений, животных и различных материалов от повреждений разнообразными организмами. Например, в России в 1992 году пришлось вести борьбу с саранчой на площади около 2 млн га, что потребовало использования военных самолетов, так как саранча за один день способна уничтожить растительность на огромных площадях. В 1995 году в Красноярском крае сибирским шелкопрядом было повреждено 600 тыс. га леса. Борьба с шелкопрядом велась с привлечением сил МЧС. Использование химических методов защиты от вредителей в нашей стране является основной. Но развивается и использование биопрепаратов. Учитывая большую работу, проводимую в области создания новых пестицидов и подбора ассортимента, можно надеяться, что будет уменьшаться вредное воздействие и увеличиваться избирательность действия пестицидов на различные живые организмы. Одним из серьезных недостатков современных препаратов, особенно инсектицидов, является приобретение нежелательными организмами резистентности (устойчивости) к применяемым препаратам, которая в настоящее время преодолевается использованием смесей пестицидов с различным механизмом действия. Использование биопрепаратов и природных врагов вредителей может привести к почти полному отказу от использования химических пестицидов, что уменьшит экологическую нагрузку на окружающую среду.

Задача

Во сколько раз измениться скорость реакции, если температуру процесса повысить с 140 0 С до 160 0 С. Температурный коэффициент равен 2.

При реакции температура повысилась с 140 0 С до 160 0 С, а температурный коэффициент равен 2, то можно решить задачу при помощи формулы

V2=V1*tтемпература на которую увел/умен

t=2 , температура увеличилась на 200 С

V2=V1*22 =4 раза

V2/V1 =4 раза

Список использованной литературы

1) Б.Н. Арзамасов, А.И. Крашенников, Ж.П. Пастухова, А.Г. Рахштадт. Научные основы материаловедения. -М., МВТУ, 2004

2) Вилков Л.В., Анашкин М.Г., Засорин Е.З. и др. Теоретические основы газовой электронографии. М.: Изд-во МГУ, 2007. 226 с.

3) М.М. Ганиев, В.Д. Недорезков. Химические средства защиты растений. М.: КолосС 2006

4) Г.С. Груздев. Химическая защита растений. М.: Агропромиздат, 2007

5) Лагунов А. Г. Пестициды в сельском хозяйстве. М.: Химия, 2008,342 с.

6) И.И. Новиков, Г.Б Строганов, А.И. Новиков. Металловедение, термообработка и рентгенография. - М., МИСиС, 2004

7) Николаев Ю. Н. Защита растений. М.: Сельское хозяйство, 2001, 244 с.

8) Пинскер З. Г., Дифракция электронов, М. - Л., 2005;

9) Фелленберг Г. Загрязнение природной среды. Введение в экологическую химию. Пер. с нем. М. : Мир, 2007, 232 с.

10) М.П. Шаскольская. Кристаллография. - М., Высшая школа, 2004

Размещено на Allbest.ru

...

Подобные документы

  • Понятие пестицидов. Их роль в борьбе с вредителями сельскохозяйственных растений. Роль пестицидов в загрязнении почв. Биотическое и абиотическое разложение этих веществ. Альтернативные методы борьбы с вредителями. Нетоксические вещества. Ризоплан.

    реферат [95,2 K], добавлен 24.06.2008

  • Ознакомление с понятием и предметом химической кинетики. Рассмотрение условий химической реакции. Определение скорости реакции как изменения концентрации реагирующих веществ в единицу времени. Изучение общего влияния природы веществ и температуры.

    презентация [923,5 K], добавлен 25.10.2014

  • Изменение скорости химической реакции при воздействии различных веществ. Изучение зависимости константы скорости автокаталитической реакции окисления щавелевой кислоты перманганатом калия от температуры. Определение энергии активации химической реакции.

    курсовая работа [270,9 K], добавлен 28.04.2015

  • Характеристика химического равновесия. Зависимость скорости химической реакции от концентрации реагирующих веществ, температуры, величины поверхности реагирующих веществ. Влияние концентрации реагирующих веществ и температуры на состояние равновесия.

    лабораторная работа [282,5 K], добавлен 08.10.2013

  • Влияние температуры на скорость химических процессов. Второй закон термодинамики, самопроизвольные процессы, свободная и связанная энергия. Зависимость скорости химической реакции от концентрации веществ. Пищевые пены: понятия, виды, состав и строение.

    контрольная работа [298,6 K], добавлен 16.05.2011

  • Зависимость изменения термодинамических величин от температуры. Метод Сато, Чермена Ван Кревелена, Андрена-Байра-Ватсона. Реакция радикальной сополимеризации. Определение температуры полураспада полиизопрена. Термодинамический анализ основной реакции.

    курсовая работа [1,8 M], добавлен 28.05.2012

  • Этанол и его свойства. Расчет изменения энтропии химической реакции. Основные способы получения этанола. Физические и химические свойства этилена. Расчет константы равновесия. Нахождение теплового эффекта реакции и определение возможности ее протекания.

    курсовая работа [106,7 K], добавлен 13.11.2009

  • Электрическая проводимость, равновесие в растворах электролитов. Электродвижущие силы, электродные потенциалы. Основы формальной кинетики. Зависимость скорости реакции от температуры. Фотохимические и сложные реакции, формы кинетического уравнения.

    методичка [224,3 K], добавлен 30.03.2011

  • Зависимость скорости PGH-синтазной реакции от концентрации гемина, кинетическое уравнение процесса. Константа Михаэлиса и величина предельной скорости реакции. Зависимость начальных скоростей реакции от концентраций субстрата при наличии ингибитора.

    курсовая работа [851,2 K], добавлен 13.11.2012

  • Реактор идеального вытеснения. Реактор полного смешения. Изменение скорости окисления SO. Расчет изменения температуры через адиабатический коэффициент. Вычисление равновесных концентраций веществ, константы равновесия. Вычисление парциальных давлений.

    курсовая работа [278,9 K], добавлен 20.11.2012

  • Скорость и стадии гетерогенной реакции. Принцип действия ферментов. Химическое равновесие, обратимость химических реакций. Растворы и их природа. Электролитическая диссоциация. Возникновение электродного потенциала. Гальванические элементы и электролиз.

    методичка [1,8 M], добавлен 26.12.2012

  • Рассмотрение превращения энергии (выделение, поглощение), тепловых эффектов, скорости протекания химических гомогенных и гетерогенных реакций. Определение зависимости скорости взаимодействия веществ (молекул, ионов) от их концентрации и температуры.

    реферат [26,7 K], добавлен 27.02.2010

  • Роль скорости химических реакций, образования и расходования компонентов. Кинетика химических реакций. Зависимость скорости реакции от концентрации исходных веществ. Скорость расходования исходных веществ и образования продуктов. Закон действующих масс.

    реферат [275,9 K], добавлен 26.10.2008

  • Основные понятия химической кинетики. Сущность закона действующих масс. Зависимость скорости химической реакции от концентрации веществ и температуры. Энергия активации, теория активных (эффективных) столкновений. Приближенное правило Вант-Гоффа.

    контрольная работа [41,1 K], добавлен 13.02.2015

  • Скорость химической реакции. Понятие про энергию активации. Факторы, влияющие на скорость химической реакции. Законы Бойля-Мариотта, Гей-Люссака, Шарля. Влияние температуры, давления и объема, природы реагирующих веществ на скорость химической реакции.

    курсовая работа [55,6 K], добавлен 29.10.2014

  • Изменение свободной энергии, сопровождающее химическую реакцию, связь с константой равновесия. Расчет теплового эффекта реакции. Классификации дисперсных систем по размерам дисперсных частиц, агрегатным состояниям дисперсной фазы и дисперсионной среды.

    контрольная работа [49,7 K], добавлен 25.07.2008

  • Методы построения кинетических моделей гомогенных химических реакций. Расчет изменения концентраций в ходе химической реакции. Сравнительный анализ численных методов Эйлера и Рунге-Кутта. Влияние температуры на выход продуктов и степень превращения.

    контрольная работа [242,5 K], добавлен 12.05.2015

  • Экспериментальное определение состояния равновесия в системах "оксианионы хрома (+6)–вода" и "роданид-анион–ионы железа" в зависимости от влияния различных факторов: увеличения концентрации исходных веществ и продуктов реакции, повышения температуры.

    лабораторная работа [23,0 K], добавлен 07.12.2010

  • Структура и химические свойства кетонов, стадии их енолизации и схема реакции нуклеофильного присоединения. Возможные побочные эффекты при синтезе диметилэтилкарбинола. Расчет количества исходных веществ, характеристики продуктов реакции и ход синтеза.

    курсовая работа [826,5 K], добавлен 09.06.2012

  • Тепловой эффект реакции при стандартных условиях. Зависимость скорости химической реакции от температуры. Температурный коэффициент. Осмос, осмотическое давление, осмотический коэффициент. Отличительные признаки дисперсных систем от истинных растворов.

    контрольная работа [49,7 K], добавлен 25.07.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.