Сапонины, как группа безазотистых природных соединений: классификация, обнаружение. Методы анализа

Характеристика сапонинов – природных, органических вещества стероидной или тритерпеноидной природы. Рассмотрение области применения лекарственного сырья, получаемого из сапонино-содержащих растений. Изучение методов количественного определения сапонинов.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 13.10.2014
Размер файла 162,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный медицинский университет» Министерства здравоохранения Российской Федерации.

Кафедра фармацевтической химии.

Курсовая работа

Сапонины, как группа безазотистых природных соединений: классификация, обнаружение. Методы анализа

Выполнил: студент 4 курса ФФ гр.3003

Чепчигашева М.Г.

Проверил: старший преподаватель

фармацевтической химии

Авдеева Е.Ю.

Томск 2014

Содержание

Введение

1. Обзор литературы

1.1. История обнаружения сапонинов

1.2.Сапонины: характеристика, классификация

1.3.Физико-химические свойства сапонинов

1.4. Область применения лекарственного сырья, получаемых из сапонино-содержащих растений

1.5. Распространение в природе

2.Анализ лекарственного растительного сырья

2.1. Методы качественного анализ сырья, содержащего сапонины

2.2. Методы количественного определения сапонинов в лекарственном растительном сырье

Заключение

Список литературы

Введение

Свое названия сапонины получили от латинского «sapo», что в переводе означает мыло, поскольку у них есть способность пениться. т.е. понижать поверхностное натяжение жидкостей Сапонины встречаются как в растительном, так и в животном мире. Растения содержат сапонины в корнях на примере солодки голой, синюхи, первоцвета, диоскореи, в листьях наперстянки и в цветках коровяка, в растворённом состоянии в клеточном соке. Среди животного мира на сапонины богаты пиявки, пчёлы и очковые змеи. Сапонины принимают участие в биохимических процессах в растениях:

- в малых концентрациях они ускоряют прорастание семян, рост и развитие растений, а в больших, наоборот, тормозят. Таким образом, сапонины играют роль гормонов роста растений;

- сапонины оказывают влияние на проницаемость растительных клеток, что связано с их поверхностной активностью.

Усиливают секрецию бронхиальных желез, возбуждают кашлевой центр - используются как отхаркивающие средства. Как адаптогенные средства (женьшень, аралия). Регулируют водно-солевой и минеральный обмен (солодка). Усиливают деятельность гормонов, ферментов за счет эмульгирующего действия. Оказывают противовоспалительное действие (солодка). Стероидные сапонины за рубежом являются источником синтеза кортикостероидов (гормональный препарат кортизона), также применяются при атеросклерозе (поражение артерий, сопровождающееся накоплением на их внутренней поверхности жировых веществ в виде желтоватых бляшек, что уменьшает просветы артерий). Многие сапонины используют как мочегонные и слабительные средства.

1. Обзор литеоатуры

1.1 История обнаружения сапонинов

Еще в древности заметили, что водные экстракты некоторых растений дают при встряхивании обильную пену. Эти наблюдения нашли свое отражение в названиях- мыльнянка лекарственная (Saponaria officinalis L.), мыльный корень (Saponaria officinalis, s. rubra L.--красный M. к.), мыльное дерево (Sapindus saponaria)[1].

Термин «Сапонины» от латинского sapo (мыло) ввел в 1819 году Гмелин (L.F. Gmelin),, выделив так называемое мыльное вещество из мыльного корня. Этим термином он предложил обозначать поверхностно-активные вещества растительного происхождения. Однако есть версия, что термин «сапонины» предложен Мэлоном также в 1819 году для вещества, выделенного еще в 1814 году Шрайдером из мыльнянки[1].

Однако сапонины выделялись и ранее. Например, в 1732 году Боргааве описан метод выделения из шафрана ( Crocus sativus) ряда соединений, обладающих свойствами сапонинов[1].

Практическая ценность сапонинов, оказывающихся действующими веществами многих растений народной медицины, стимулировала изучение их химических свойств[1].

В 1887 году Российский ученый Р.Коберт предложил считать сапонины отдельным классом природных соединений, и лишь в 1913 году появились первые сведения о том,что сапонины представляют собой соединения тритерпенового и стероидного рядов,на основе чего и дана их первая классификация[1].

Однако в настоящее время имеется немало примеров, когда, например, сапонины женьшеня, астрагала шерстистоцветкового, не вписываются в данную схему. По мнению доктора фармацевтических наук, профессора Куркина В.А, сапонины, в зависимости от строения агликона (сапогенина), целесообразно делить не на две, как это принято сегодня, а на три группы[1].

1.2 Сапонины: характеристика, классификация

Сапонины (от латинского sapo (род. падеж saponis-мыло) - природные, органические вещества стероидной или тритерпеноидной природы, обладающие высокой поверхностной и, как правило, гемолитической активностью, а также токсичностью по отношению к холоднокровным животным. Широко распространены в природе, встречаются в различных частях растений -- листьях, стеблях, корнях, цветах, плодах. Содержат агликон (сапогенин) и углеводную часть[1].

В зависимости от химической природы агликона сапонины делят на три группы:

1. Стероидные сапонины.

2. Стероидные гликоалкалоиды.

3. Тритерпеновые сапонины.

Характеристика групп сапонинов

Стероидные алкалоиды представляют собой стероидные соединения, в которых сочетаются свойства как алкалоидов, так и стероидных сапонинов. Подобно сапонинам, гидролизуются на сахар и агликон, обладают поверхносной и гемолитической активностью. Стероидные алкалоиды - это гликозиды, в которых агликонами являются азотсодержащие стероидные соединения с 27 углеродными атомами, представляющие собой производные циклопентанпергидрофенантрена. По строению они аналоги стероидных сапонинов и отличаются от них содержанием в агликоне (сапогенине) атома азота в пятом или шестом (Е, F) кольце. Благодаря наличию атома азота в агликоне обладают основными свойствами. Стероидные алкалоиды широко распространены в растениях семейства пасленовых, у различных видов паслена, особенно дольчатого, содержащего стероидные гликоалкалоиды. Близкие стероидные гликоалкалоиды найдены в ботве картофеля, помидоров, баклажанов, красного перца, в паслене черном и паслене сладко-горьком. Эти травы при переработке могут дать агликон соласодин и другие стероиды, пригодные для синтеза кортизона. Стероидные алкалоиды характерны также для рода чемерицы. Стероидные алкалоиды, подобно стероидным сапонинам, обладают поверхностно-активными и гемолитическими свойствами и образуют молекулярные соединения с холестерином и близкими стеринами[2].

Некоторые стероидные алкалоиды обладают гипотензивным, спазмолитическим, бронхорасширяющим, противовоспалительным, противогрибковым действием.

Стероидные алкалоиды могут быть нескольких типов.

Оба вида дико произрастают в Австралии, Новой Зеландии и субтропической зоне. В умеренной зоне культивируются как однолетники.

Часто различают четыре группы стероидных алкалоидов, которые выделяют из растений родов паслен (Solanum), чемерица (Veratrum), голаррена (Holarrhena), фунтумиа (Funtumia), самшит (Buxus). Наибольшее значение имеют алкалоиды чемерицы и паслена. Первые иногда делят на две группы в зависимости от числа атомов кислорода в их молекулах. Алкалоиды одной группы содержат 1-4 атома О и обычно присутствуют в растениях в виде свободных аминов или моно-D-гликозидов. Типичный представитель этого класса стероидных алкалоидов - иервин[2].

Молекулы алкалоидов второй группы содержат 7-9 атомов кислорода и находятся в растениях в виде сложных эфиров. Примерами могут служить протовератрины А (R = Н) и В (R = ОН), используемые в фармакологии.

При внутривенном введении они вызывают брадикардию и снижают кровяное давление. Основные недостатки их как лекарственных средств - небольшая разница между терапевтическими и токсическими дозами и наличие побочных эффектов[2].

Алкалоиды паслена представляют интерес как потенциальные источники стероидов. Некоторые из них проявляют фунгистатическую активность. Внутри этой группы различают алкалоида типа томатидина из диких томатов (Solanum lycoperisicum)

и алкалоиды типа соланидина (VI), выделенные из нескольких растений рода паслен.

Томатидин и соланидин получены также синтетически. Биогенетические предшественники стероидных алкалоидов - уксусная и мевалоновая кислоты. Гликозиды соланидина токсичны[2].

Стероидные сапонины являются производными циклопентапергидрофенантрена, относятся к С27-стеролам, которые в положении С1617 имеют спиростановую (I) или фуростановую (II) группу.

I) Диосгенин (спиростановый тип)

II) Диосгенин (фуростановый тип)

Агликоны (сапогенины) всегда имеют гидроксигруппу у С3, иногда у С1, С2, С5, С12. У многих в положении С56 имеется двоная связь.

Наличие в стероидных сапогенинах спирокеталъных группировок указывает на их тесную генетическую связь со стеринами. По-видимому, "скваленовая" гипотеза применима и в отношении биогенеза стероидных сапогенинов.

Стероидные сапонины типичны для представителей семейств лилейных, амариллисовых, диоскорейных, норичниковых; они обнаружены также в растениях других семейств: бобовых, парнолистниковых, лютиковых, пасленовых. Они нетоксичны для теплокровных, но убивают холоднокровных, например рыб. Последнее свойство использовалось первобытными народами при рыбной ловле. Стероидные сапонины имеют важное значение как дешевые исходные продукты для синтеза стероидных гормонов[2].

Тритерпеновые сапонины являются производными изопрена - (С5Н8)6. В зависимости от количества сконденсированных колец делят на 2 группы: пентациклические и тетрациклические.

Пентациклические сапонины в свою очередь подразделяются на несколько групп:

а) группа a-амирина (урсана) - I

б) группа b-амирина (олеанана) - II

в) группа лупеола - III и др.

I C28- COOH (урсоловая кислота)

II С28-СООН (олеаноловая кислота)

К группе a-амирина относятся сапонины почечного чая; b-амирина - сапонины солодок, каштана конского, сенеги, синюхи голубой, аралии маньчжурской.Пентациклические чаще всего имеют гидроксигруппу в положениях С3, С16, С21, С22, С24; карбоксильную группу у С28, С29 (глицирризиновая кислота), карбонильную - у С3, С11 и др. группы. Гидроксигруппы могут быть этерифицированы органическими кислотами. Двойная связь чаще всего находится в положении С1213.

Тетрациклические делят на две группы:

а) группа даммарана (1) и циклоартрана (II).

I C3, С12 - ОН = протопанаксдиол, С3, С6, С12 - ОН = протопанакстриол

К группе даммарана относятся сапонины женьшеня (панаксозиды), а к группе циклоартрана - астрагала шерстистоцветкового (дазиантогенин).

Углеводные компоненты, представленные D-глюкозой, D-ксилозой, L-рамнозой, L-арабинозой, уроновыми кислотами и др., могут присоединяться к агликону в разных положениях: по гидроксигруппе (О-гликозидная связь), а также карбоксильной группе (ацильная связь), образуя прямые (солодки) или разветвленные цепи (диоскорея, каштан конский, сенега и др.)[2].

1.3 Физико-химические свойства сапонинов

Физические свойства

Сапонины -- бесцветные или желтоватые аморфные вещества без характерной температуры плавления (обычно с разложением). Оптически активны. Гликозиды растворимы в воде и спиртах, нерастворимы в органических растворителях; свободные сапогенины, наоборот, не растворяются в воде и хорошо растворимы в органических растворителях. В кристаллическом виде получены представители, которые имели в своем составе не более 4 моносахаридных остатков. С увеличением количества моносахаридов повышается растворимость сапонинов в воде и других полярных растворителях. Сапонины с 1--4 моносахаридными остатками в воде растворяются плохо[3].

Специфическим свойством сапонинов является их способность снижать поверхностное натяжение жидкостей (воды) и давать при встряхивании стойкую обильную пену.

Агликоны сапонинов (Сапогенины), как правило, являются кристаллическими веществами с чёткой температурой плавления, и в отличие от сапонинов, не обладают гемолитической активностью и не токсичны для рыб[3].

Химические свойства

Химические свойства сапонинов обусловлены структурой агликона, наличием отдельных функциональных групп, а также присутствием гликозидной связи[3].

Сапонины делят на нейтральные (стероидные и тетрациклические тритерпеновые) и кислые (пентациклические тритерпеновые) соединения. Их кислотностьобусловлена наличием карбоксильных (-СООН) групп в структуре агликона и присутствием уроновых кислот в углеводной цепи. Гидроксильные группы могут быть ацилированы уксусной, пропионовой, ангеликовой и др. кислотами.

Кислые сапонины образуют соли, растворимые с одновалентными и нерастворимые с двухвалентными и многовалентными металлами. При взаимодействии с кислотными реагентами (SbCl3, SbCl5, FеСl3, конц. H2SO4) образуют окрашенные продукты[3].

Сапонины гидролизуются под влиянием ферментов и кислот. Производные с О-ацилгликозидными связями гидролизуются под воздействием щелочей].

Многие сапонины образуют молекулярные комплексы с белками, липидами, стеринами, танинами [3].

1.4 Область применения лекарственного сырья, получаемого из сапонино-содержащих растений

Сапонины имеют достаточно широкую сферу применения в медицине при производстве лекарственных препаратов, которая зависит от вида сапонинов.

Например, стероидные сапонины являются исходными продуктами для синтеза стероидных гормонов.

На основании растительного сырья, полученного из корневищ диоскореи изготавливают препарат диоспонин (Diosponinum), представляющий собой сухой очищенный экстракт корневищ диоскореи, содержит не менее 30% суммы растворимых в воде стероидных сапонинов. Выпускается в виде таблеток по 0,1 г препарата (список Б). Предложен для применения при атеросклерозе как гипохолестеринемическое средство. [4]

Корневища заманихи высокой используются для приготовления настойки, которая применяется аналогично настойке женьшеня, но имеет более слабое действие.

Тритерпеновые сапонины (и растения их содержащие), благодаря широкому спектру фармакологического действия, применяются для лечения самых различных заболеваний. Все лекарства, содержащие тритерпеновые сапонины, применяются, как правило, перорально, поскольку в этом случае их гемолитическая активность не проявляется. Полагают, что в присутствии сапонинов другие лекарственные вещества легче всасываются. Эмульгирующие свойства сапонинов широко используются для стабилизации разных дисперсных систем (эмульсий, суспензий) [4].

Так, из солодкового корня вырабатываются экстракты (густой и сухой) и ряд других галеновых препаратов (сироп, эликсир и др.). Используется также сам корень (очищенный) в резаном виде в многочисленных сборах и в испорошкованном виде - а сложных порошках и таблетках. Препараты солодки длительное время применялись как классическое отхаркивающее и мягчительное средство при катаральных заболеваниях дыхательных путей, как слабительное при хронических запорах и как средство, корригирующее вкус многих лекарств. Эмульгирующие свойства экстракта (из-за глицирризиновой кислоты) широко использовались при приготовлении по многим прописям пилюль и микстур.

Основным лечебным препаратом солодки, уже освоенным промышленностью, является препарат глицирам, представляющий собой моноаммонийную соль глицирриновой кислоты. Глицирам применяется при бронхиальной астме, гипофункции коры надпочечников, обусловленной длительной глюкокортикоидной терапией, экземе и аллергических дерматитах и других заболеваний, при которых показаны препараты коры надпочечников, а также для устранения «синдрома отмены» при прекращении лечения глюкокортикоидами или с целью снижения дозы последних[4].

Эффективным лечебным препаратом оказался также глициренат-натриевая соль глицирретиновой кислоты при лечении трихомонадных кольпитов.

Интересные перспективы открылись также в связи с возможным использованием травы солодки (обоих видов) для наработки сапонино-флавоидных препаратов и препарата, обладающего эстрогенным свойством.

Корни истода применяются в форме водных отваров в качестве отхаркивающего средства при хронических бронхитах[4].

Корни синюхи также используются в качестве отхаркивающего средства при острых и хронических бронхитах обычно в виде отвара, но имеются и препараты (сухой экстракт и сумма сапонинов в таблетках).

Из корневища первоцвета весеннего приготавливают новогаленовый препарат примулен, а также водный отвар. Это эффективные отхаркивающие средства, особенно при бронхитах. Они более эффективны, чем препараты сенеги (ранее применяемые импортные препараты).

Листья первоцвета включают в состав поливитаминных сборов или применяют сами по себе в виде водного настоя[4].

Траву полевого хвоща применяют в качестве мочегонного средства при отеках на почве недостаточного кровообращения, а также при воспалительных процессах мочевого пузыря и мочевыводящих путей, при плевритах с большим количеством экссудата. Используют так же, как и кровоостанавливающее средство, при геморроидальных и маточных кровотечениях. Может применяться в виде настоя или Жидкого экстракта. Рекомендуется при некоторых формах туберкулеза, связанного с нарушением силикатного обмена.

Корни патринии обладают седативным свойством более сильным, чем у валерианы. Применяется в виде настойки (1: 5 на 70% спирте). Большинство видов патринии по химическому составу близки между собой и издавна известны как народные лекарственные растения[4].

Аралия маньчжурская по лечебному действию очень близка к женьшеню. Оказывает благоприятное действие на больных в астеническом состоянии, с астеноипохондрическим синдромом при шизофрении, лиц, страдающих импотенцией на фоне неврастении и психастении. Препарат - настойка (1 : 5 на 70% спирте). Разрешена к применению также настойка из корней аралии Шмидта (Aralia Schmidtii), произрастающей на о. Сахалине.

Учитывая выраженное стимулирующее влияние настойки аралии на нервную систему ее назначают только по врачебному предписанию и не рекомендуют применять при наличии бессонницы и повышенной нервной возбудимости.

Из корневищ элеутерококка вырабатывают жидкий экстракт, который оказывает все основные виды действия, свойственные препаратам женьшеня. Экстракт стимулирует физическую и умственную работоспособность человека - повышает сопротивляемость организма к неблагоприятным внешним действиям, полезен как общеукрепляющее средство после тяжёлых заболеваний и операций, понижает содержание сахара в крови.

Почечный чай в качестве лечебного средства заимствован из народной медицины малайцев (Индонезия). Внимание к этому растению возросло особенно после того, как в печати был опубликован феноменальный случай излечения на Яве в 1928 г. местными врачами европейца, страдавшего сложной, тяжело протекающей почечной болезнью, объявленной европейскими врачами неизлечимой. В 30-x годах почечный чай был включен уже в фармакопеи Голландии, Бельгии и Германии. В России разрешен к применению в 1950 г. в виде водного настоя. Применяется в качестве мочегонного средства при острых и хронических заболеваниях почек, сопровождающихся отеками, альбуминурией, азотемией, а также при мочекаменной болезни. Мочегонный эффект сопровождается усиленным выделением из организма мочевины, мочевой кислоты и хлоридов. Вызывает увеличение секреции желудочных желез и повышение количества свободной соляной кислоты[4].

Препараты женьшеня используют в качестве тонизирующих, адаптогенных и общеукрепляющих средств для лечения и профилактики различных заболеваний центральной нервной системы, повышения уровня работоспособности и сопротивляемости организма к стрессу, неблагоприятным воздействиям внешней среды. Его рекомендуют в период рековалесценции после тяжелых заболеваний, сложных хирургических вмешательств, затяжных осложнений различного происхождения, при хроническом физическом и психическом переутомлении.

Прием женьшеня эффективен при астенических и астенодепрессивных состояниях различной этиологии, при психастенических и истерических реакциях, сопровождающихся ступором, при различных неврозах, бессоннице и импотенции. У больных улучшается общее состояние, исчезают жалобы на вялость и быструю утомляемость, головную боль, улучшается аппетит, повышается общий тонус.

Фармакологи утверждают, что прием препаратов женьшеня сопровождается увеличением чувствительности мозга и к другим стимуляторам - кофеину, камфаре, пикротоксину, фенамину - эффект потенцирования. Именно в исследованиях с настойкой женьшеня установлена свойственная ряду аралиевых способность снижать эффективность некоторых наркотиков - барбитуратов, хлоралгидрата, этилового спирта. В Японии запатентован препарат, в который входят пантетин, женьшень и витамин Е и который в опытах на животных показал способность устранять индуцированные этанолом локомоторные нарушения[4].

Подтверждено, также в опытах на животных, широко распространенное представление о том, что препараты женьшеня повышают работоспособность и снижают утомляемость при больших физических и стрессовых нагрузках. Однако попытки связать благотворное действие женьшеня с какой-либо конкретной системой жизнедеятельности организма оказываются малопродуктивными, и при использовании различных концентраций препарата могут быть получены прямо противоположные результаты. Так, в малых дозах женьшень усиливает процессы возбуждения и ослабляет процессы торможения в коре стволовых клеток головного мозга, а в больших дозах, наоборот, усиливает процессы торможения. Небольшие дозы повышают уровень артериального давления, а высокие - понижают[4].

Сравнительно давно было распространено убеждение, что спиртовые экстракты женьшеня усиливают кровяное давление, а водные - снижают, что получило и экспериментальное подтверждение. Исследования последнего времени показывают, что такое дифференцированное действие вполне возможно вследствие разной растворимости в воде и спирте различных гинзенозидов. Так, наиболее эффективный в регуляции кровяного давления гинзенозид Rb1 хорошо растворим в воде, в то время как большинство других гинзенозидов растворимы только в спирте или хлороформе. Полиацетилены женьшеня также сильно различаются по растворимости, что может быть причиной вариаций гипогликемического действия разных препаратов женьшеня. Сухой корень американского женьшеня улучшал сон, а сырой, наоборот, оказывал стимулирующее действие, что вполне объяснимо испарением при высушивании летучей фракции, эфирные масла которой обладают возбуждающим действием.

Назначение сапонинов женьшеня вначале увеличивает активность гипофиза, что приводит к повышению уровень кортикотропина в плазме. Повышение уровня кортикотропина активирует функцию надпочечников и сопровождается усиленной секрецией коритикостерона надпочечниками. Различия в углеводной компоненте, свойственные разным гинзенозидам, в этом случае не имеют значения для их способности влиять на гипофиз. Роль сапогенина, напротив, велика, и другие близкие сапонины, например, сайкосапонин, лишены такой активность[4].

Сравнительно давно продемонстрирована способность экстрактов женьшеня и, в частности, его полисахаридов влиять на иммунный статус животного организма. Также установлено, что полисахаридные фракции, выделенные как из натурального корня женьшеня, так и из клеточной биомассы, получаемой в результате культуры ткани, обладают сходным иммуностимулирующим действием. Гликаны женьшеня, получившие название панаксанов A, B, C и D, участвуют в регуляции уровня сахара в крови, то есть обладают ценным при диабете гипогликемическим действием.

Из корня брионии белой приrотовляют настойку, входящую в состав комплексного препарата акофита (радикулина). Акофит применяют для лечения острых и хронических форм радикулитов, радикуломиозитов, люмбаго, плекситов, нейромиозитов. Препарат применяется внутрь[4].

1.5 Распространение в природе

Сапонины достоверно обнаружены в представителях примерно 40 семейств. Более широко распространены тритерпеновые сапонины. Чаще всего они встречаются у растений сем. Caryophyllaceae, Fabaceae (солодки, астрагал шерстистоцветковый), Araliaceae (женьшень, аралия маньчжурская), Hippocastanceae (каштан конский), Polygonaceae (сенега), Rosaceae (лапчатки прямостоячая, кровохлебка лекарственная), Asteraceae (календула лекарственная) и др. Стероидные сапонины чаще встречаются у растений сем. Dioscoreaceae (диоскореи), Agavaceae (агавы, юкки), Liliaceae (ландыш), Scrophulariaceae (наперстянки), Zygophyllaceae (якорцы стелющиеся) и др. Из 250 выделенных стероидных сапонинов около 170 соединений относятся к спиростановому типу. В растениях сапонины находятся в различных органах растений, чаще в подземных, в растворенном виде в клеточном соке. Агликоны тритерпеновых сапонинов (урсоловая, олеаноловая кислота) встречаются в кутикуле, перидерме. При сборе, сушке и хранении сырья нужно создать условия, препятствующие ферментативному гидролизу сапонинов. Надземные части собирают в сухую погоду, в небольшую по объему тару (лучше корзины, ящики с отверстиями) и быстро, через 2-3 часа (чтобы не произошло самосогревание сырья) доставляют к месту сушки. Сушка для большинства видов рекомендуется быстрая, в тонком слое, при температуре 50-700. Можно при этой температуре выдержать сырье 1-2 часа, а затем, после дезактивации ферментов, досушивать его при обычной температуре. Сырье хранится в сухом, прохладном месте по общему списку[5].

2. Анализ лекарственного растительного сырья

В растениях обычно содержится несколько близких по строению и свойствам гликозидов, разделение и идентификация которых до настоящего времени представляют собой сложную и не всегда разрешимую задачу.

Анализ сырья складывается из нескольких стадий: экстракция сапонинов из сырья, очистка полученного извлечения, разделение на индивидуальные компоненты. Экстрагируют сапонины из сырья обычно полярными растворителями: метанолом и этанолом различной концентрации, водой, 0,9%-ным раствором натрия хлорида. Иногда сырье перед экстракцией обрабатывают петролейным эфиром, четыреххлористым углеродом, диэтиловым эфиром для разрушения нерастворимых в полярных растворителях комплексов сапонинов со стеринами, белками, фенольными соединениями. Очистку полученных извлечений проводят различными способами, что зависит от структуры сапонинов. Полярные сапонины плохо растворимы в этиловом и метиловом спиртах, выпадают в осадок при охлаждении, длительном стоянии спиртового экстракта или при добавлении этанола. Гликозиды с небольшой углеводной цепочкой обычно плохо растворимы в воде и выпадают в осадок при разбавлении спиртовых экстрактов водой. Кислые тритерпеновые сапонины растворимы в водных растворах щелочей и выпадают в осадок при подкислении. Также из спиртовых растворов тритерпеновые сапонины можно осаждать диэтиловым эфиром, ацетоном, этилацетатом, иногда бутиловым и изоамиловым спиртами. Полученную сумму сапонинов очищают повторным переосаждением от полярных сопутствующих веществ: моно- и олигосахаридов, фенольных соединений, органических кислот и др[6].

Ряд методов основан на способности сапонинов образовывать нерастворимые в воде или водном спирте соли с гидроксидом бария или ацетатом свинца и комплексы с холестерином, танинами, белками. Затем эти соли или комплексы разлагают [6].

Эти методы позволяют получить более чистую сумму сапонинов.

2.1 Методы качественного анализ сырья, содержащего сапонины

Для обнаружения сапонинов в растительном сырье пользуются реакциями, основанными на трех основных свойствах: физических, биологических и химических.

Для качественных реакций готовят водное извлечение (1:10), нагревая измельченное растительное сырье на водяной бане в течение 10-15 минут. Настой после охлаждения фильтруют и проводят с ним необходимые реакции[7].

Реакция гемолиза. Готовят извлечение на изотоническом растворе натрия хлорида 1 : 30 настаиванием на кипящей водяной бане в течение 30 минут. К 2 мл извлечения добавляют 2 мл 2% взвеси дефибринированной крови. В присутствии сапонинов образуется прозрачный красный раствор ("лаковая кровь")[8].

Реакция пенообразования. Водное извлечение из сырья (1 : 10) встряхивают в пробирке в течение 15 сек. Не исчезающая в течение 15 мин пена говорит о возможном присутствии сапонинов.

Хроматография в тонком слое. Водное или спиртовое извлечение хроматографируют на силикагеле или алюминия оксиде в подходящей системе растворителей. Для нейтральных сапонинов чаще всего используют н-бутанол - уксусная кислота - вода, для кислых - н-бутанол - водный аммиак в различных соотношениях. Систему подбирают экспериментально. На хроматограммах сапонины обнароуживают, проявляя различными кислотными реагентами: конц. Кислота серная, уксусный ангидрид, 25% раствор фосфорномолибденовой кислоты, треххлористая сурьма и др., часто в сочетании с кобальта хлоридом, ванилином, пара-диметиламинобензальдегидом и др[8].

Тритерпеновые сапонины проявляются в виде красновато- или буроватофиолетовых пятен.

Стероидные сапонины при проявлении хроматограмм 1% раствором сурьмы треххлористой, конц. кислотой серной и уксусным ангидридом образуют желтые (спиростановые) пятна (реакция Санье). В настоящее время хроматографический метод дает наиболее достоверное представление о наличии сапонинов в сырье[8].

Реакция Лафона. К 2 мл спиртового извлечения добавляют 1 мл кислоты серной концентрированной, 1 мл этанола и 1 каплю 10 % раствора железа сульфата. В присутствии сапонинов образуется сине-зеленое окрашивание.

При добавлении к 2 мл водного извлечения 1 мл 10% раствора натрия нитрата и 1 капли кислоты серной концентрированной образуется кроваво-красное окрашивание.

При добавлении к 2 мл спиртового извлечения 1 % раствора холестерина образуется белый осадок[9].

2.2 Методы количественного определения сапонинов в лекарственном растительном сырье

Для количественного определения сапонинов в растительном сырье применяют методы, основанные на использовании биологических (гемолитический, рыбный индекс), физических (пенное число) и химических (содержание анализируемых веществ) свойств сапонинов

Весовой метод. Основан на осаждении сапонинов с последующим взвешиванием осадка

Иногда для сырья, содержащего сапонины (при научных исследованиях) определяют пенное число и гемолитический индекс.

Пенное число - наименьшая концентрация извлечения из 1 г сырья, при встряхивании которого в течение 15 сек образуется устойчивая в течение 15 мин пена. Основан на физических свойствах сапонинов[9].

3. Гемолитический индекс - наименьшая концентрация извлечения из 1 г сырья или раствора чистого сапонина, которая вызывает гемолиз эритроцитов, содержащихся в 1 мл 2 % раствора дефибринированной крови барана. Извлечение сапонинов и разведение проводят изотоническим раствором. Готовится серия разведений и определяется наименьшая концентрация. При работе с кровью других животных параллельно ставят контроль со стандартным сапонином (0,02 % раствор дигитонина). Результаты выражают соотношением массы сырья (1 г) и разведения. Например 1:5000, 1:20000 и т.д.

Эти методы не дают представления о количественном (%) содержании сапонинов, а свидетельствуют о поверхностной или гемолитической активности[9].

4. Методы определения рыбного индекса.

Рыбный индекс- наименьшая концентрация извлечения, при которой гибнут рыбы массой до 0,5г и длиной 3-4 см в течение 1 ч.

5. Фотоколориметрический метод. Основан на определении по окрашенным соединениям (определение суммы фуростаноловых гликозидов в сырье пажитника и диоскореи). Полученный при этом окрашенный комплекс (окраска от розовой до малиновой) имеет максимум поглощения при длине волны 518 нм.[9]

6. Титрометрический метод анализа-для сапонинов, имеющих свободную карбоксильную группу (сапонины солодки, аралии). При этом используют потенциометрическое титрование.

7.Спектрофотометрический метод анализа. Используется в случае сапонинов, поглощающих в УФ-области. Например, глицириновая кислота имеет максимум поглощения при длине волны 258 нм, что нашло отражение в методике количественного определения данного вещества в фармакопейной статье «Корни солодки» (ГФ СССР Х издания). Данный метод основан на осаждении глицирризиновой кислоты из кислого ацетонового извлечения 25% раствором аммиака с последующим спектрофотометрическим определением[9].

8. Высокоэффективная жидкостная хроматография (ВЭЖХ) является наиболее перспективным методом, с точки зрения качественного и количественного анализов, однако она пока не используется в отечественной НД на сырье. сапонины стероидный лекарственный

В настоящее время первые четыре метода практически не используется в НД для анализа сырья и большей мере актуальны при проведении поисковых исследований сырья, содержащего сапонины.

В действующей НД для определения подлинности сырья используют, как правило химические и физико-химические методы (чаще всего в ТСХ), а для количественного определения сапонинов-фотоколориметрический, спектрофотометрический и титрометрический методы анализа[9].

При выяснении структуры сапонинов

помимо традиционных методов (элементарный анализ, определение молекулярной массы) широко используются методы УФ-спектроскопии, ИК-спектроскопии, Ямр-спектроскопии.

ИК- спектроскопия при исследовании тритерпенов применяется для обнаружения и характеристики двойных связей, гидроксильных групп, О-ацильных группировок, карбонильных, карбоксильных, метильных групп.

По характерным полосам поглощения CH3-групп в области 1245-1392 см-1 отличают тетрациклические тритерпены от пентациклических групп альфа- и бета- амирина, а также последние друг от друга. По ИК спектрам продуктов окисления оксидом рутения (1У) предложен метод доказательства положения изолированной двойной связи в тритерпенах[9].

Строгое отнесение сапонинов к сткроидам может быть сделано на основании ИК спектров и их генинов: наличие полос поглощения при 852(866), 900 (900), 922(922), 987 (982) см-1 (спирокетальная группировка нормального и изо-(рядов) позволяет однозначно отнести сапонины к стероидному ряду.

В последнее время при исследовании структур пентациклических тритерпенов получила распространение масс-спектрометрия и методы ЯМР спектроскопии.

Установление строения углеводного остатка тритерпеновых и стероидных сапонинов осуществляется с помощью методов структурной химии олиго- и полисахаридов [9].

Сюда входит:

-определение качественного и количественного состава моносахаридов;

-установление последовательности моносахаридных остатков в углеводной цепи;

-определение положения гликозидных связей в моносахаридных остатках;

-определение размеров оксидных циклов моносахаридов;

-установление конфигурации гликозидных центров[9].

Заключение

Благодаря способности сапонинов образовывать обильную пену, они находят некоторое применение в качестве детергентов и пенообразующих агентов в огнетушителях. Эмульгирующие свойства сапонинов широко используются для стабилизации разных дисперсных систем (эмульсий, суспензий). Их используют при приготовлении халвы, кондитерских изделий, пива и шипучих напитков. Благодаря эмульгирующим свойствам сапонины оказывают моющее действие, но их отличает от мыл отсутствие щелочной реакции.

Сапонины производятся коммерчески как пищевые и диетические добавки. В терапевтической практике используются как отхаркивающие, мочегонные, тонизирующие, седативные средства, применяются как вспомогательные средства в вакцинах. При этом токсичность, связанная с комплексообразованием стерола (стерина), остаётся главной проблемой. Необходима большая осторожность в оценке терапевтической пользы при употреблении естественных продуктов, содержащих сапонин-разновидности.

Литература

1. Куркин В.А. Фармакогнозия: Учебник для студентов фармацевтических вузов (факультетов). - 2-е изд., перераб. и доп. - Самара: ООО «Офорт», ГОУ ВПО «СамГМУ Росздрава», 2007. - 528с.

2. Биологически активные вещества лекарственных растений/Георгиевский В.П., Комиссаренко II. Ф., Дмитрук С.Е.-- Новосибирск: Наука, Сиб, отделение, 1990,-- 333 с.

3. Муравьева Д. А., Самылина И. А., Яковлев Г. П., стр. 317.

4. Бурбелло А.Т. Аптечные препараты лекарственных растений. - М.: ОЛМА Медиа Групп, - 2009 - 192 с.

5. Лавренов В.К., Лавренова Г.В. Современная энциклопедия лекарственных растений. - М.: ОЛМА Медиа Групп, 2009. - 271 с.

6. 1. Куркин В.А. Фармакогнозия: Учебник для студентов фармацевтических вузов (факультетов). - 2-е изд., перераб. и доп. - Самара: ООО «Офорт», ГОУ ВПО «СамГМУ Росздрава», 2007. -535c.

7. Попов В.И. и др. Лекарственные растения /В.И. Попов, Д. К, Шапиро, И.К. Данусевич.-- 2-е изд. перераб. и доп.-Мн.: Полымя, 1990.-- 304 с.

8. Тихонов В.Н., Калинкина Г.И., Сальникова E.H., Под редакцией профессора Дмитрука С.Е. Лекарственные растения, сырье и фитопрепараты / Учебное пособие. Часть I. Томск, 2004. - 116 с

9. Тихонов В.Н., Калинкина Г.И., Сальникова E.H., Под редакцией профессора Дмитрука С.Е. Лекарственные растения, сырье и фитопрепараты / Учебное пособие. Часть II. Томск, 2004. - 148 с.

Размещено на Allbest.ru

...

Подобные документы

  • Классификация сапонинов, их физические, химические и биологические свойства, растворимость, присутствие в растениях. Характеристика растительного сырья, его химический состав, заготовка, первичная обработка, сушка, хранение и использование в медицине.

    учебное пособие [480,9 K], добавлен 23.08.2013

  • Жизнь как непрерывный физико-химический процесс. Общая характеристика природных соединений. Классификация низкомолекулярных природных соединений. Основные критерии классификации органических соединений. Виды и свойства связей, взаимное влияние атомов.

    презентация [594,7 K], добавлен 03.02.2014

  • Рассмотрение пособов разделения смесей. Изучение особенностей качественного и количественного анализа. Описание выявления катиона Сu2+. Проведение анализа свойств веществ в предлагаемой смеси, выявление метода очистки и обнаружение предложенного катиона.

    курсовая работа [87,8 K], добавлен 01.03.2015

  • Токсическое действие фенола и формальдегида на живые организмы, методы их качественного определения. Количественное определение фенола в пробах природных вод. Метод для определения минимальных концентраций обнаружения органических токсикантов в воде.

    курсовая работа [3,4 M], добавлен 20.05.2013

  • Общая характеристика кумаринов - природных кислородсодержащих гетероциклических соединений. Классификация и фармакологические свойства производных кумарина. Способы выделения и синтеза кумаринов из растений в лекарственное сырье, методы их анализа.

    курсовая работа [519,5 K], добавлен 21.11.2010

  • Синтез и свойства N,S,О-содержащих макрогетероциклов на основе первичных и ароматических аминов с участием Sm-содержащих катализаторов. Гетероциклические соединения, их применение. Методы идентификации органических соединений ЯМР- и масс-спектроскопией.

    дипломная работа [767,1 K], добавлен 22.12.2014

  • Окислительная димеризация метана. Механизм каталитической активации метана. Получение органических соединений окислительным метилированием. Окислительные превращения органических соединений, содержащих метильную группу, в присутствии катализатора.

    диссертация [990,2 K], добавлен 11.10.2013

  • Современное определение алкалоидов. Рассмотрение свойств разных классов токсичных и лекарственных природных соединений. Изучение особенностей распределения алкалоидов в природе. Ознакомление с правилами применения алкалоидов в современной медицине.

    реферат [128,8 K], добавлен 18.12.2015

  • Физико-химические оценки механизмов поглощения свинца. Почва как полифункциональный сорбент. Методы обнаружения и количественного определения соединений свинца в природных объектах. Пути поступления тяжелых металлов в почву. Реакции с компонентами почвы.

    курсовая работа [484,5 K], добавлен 30.03.2015

  • Рассмотрение реакций, основанных на образовании комплексных соединений металлов и без их участия. Понятие о функционально-аналитической и аналитико-активной группах. Использование органических соединений как индикаторов титриметрических методов.

    курсовая работа [1,5 M], добавлен 01.04.2010

  • Необходимость идентификации вещества и измерение количественной оценки его содержания. Качественный анализ для химической идентификации атомов, молекул, простых или сложных веществ и фаз гетерогенной системы. Классификация методов количественного анализа.

    лекция [76,4 K], добавлен 16.01.2011

  • Понятие количественного и качественного состава в аналитической химии. Влияние количества вещества на род анализа. Химические, физические, физико-химические, биологические методы определения его состава. Методы и основные этапы химического анализа.

    презентация [59,0 K], добавлен 01.09.2016

  • Классификация методов количественного анализа. Химическая посуда и оборудование в гравиметрическом анализе; правила обращения с аналитическими весами. Расчет навески исследуемого вещества и количества осадителя. Способы определения железа в растворах.

    практическая работа [2,2 M], добавлен 22.04.2012

  • Краткая характеристика флавоноидов. Подготовка растительного сырья. Строение, физические и химические свойства природных флавоноидов. Методы их выделения и идентификации. Определение оптимальных условий экстрагирования рутина и кверцетина из сырья.

    дипломная работа [5,7 M], добавлен 03.08.2011

  • Определение конфигураций природных энантимеров как важнейшая задача органической химии. Определение абсолютной конфигурации соединений методом рентгеноструктурного анализа. Определение относительной конфигурации. Дисперсия оптического вращения.

    реферат [139,0 K], добавлен 23.05.2016

  • Ацетилен: история открытия, физические характеристики, структурная формула. Характеристика класса органических соединений. Характерные химические реакции и области применения вещества. Воздействие ацетилена на человеческий организм и окружающую среду.

    контрольная работа [251,6 K], добавлен 15.07.2014

  • Изучение контролируемых свойств и показателей качества природных вод как дисперсных систем. Влияние на них малых концентраций кислот и щелочей. Предельное значение степени гидролиза солей в природных водах. Растворение газов атмосферы и кислорода в воде.

    контрольная работа [273,5 K], добавлен 07.08.2015

  • Группа методов количественного химического анализа, основанных на использовании электролиза (электрохимические методы анализа). Особенности электрогравиметрического метода, его сущность и применение. Основная аппаратура, метод внутреннего электролиза.

    реферат [234,5 K], добавлен 15.11.2014

  • Методы определения хлорат-иона. Титриметрический, спектрофотометрический, хроматографический, потенциометрический, полярографический, амперометрический метод. Чувствительность методики, хлорат-иона в речной воде. Загрязнение хлоратами природных водоёмов.

    курсовая работа [1,1 M], добавлен 16.06.2017

  • Понятие рефракции как меры электронной поляризуемости атомов, молекул, ионов. Оценка показателя преломления для идентификации органических соединений, минералов и лекарственных веществ, их химических параметров, количественного и структурного анализа.

    курсовая работа [564,9 K], добавлен 05.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.