Динасовые огнеупоры

Понятие динасовых как огнеупорных изделий с содержанием кремнезема и изготовляемые путем обжига сырца, сформованного из размолотых кварцитов на известковой или других связках. Основные свойства огнеупорных материалов. Теплоемкость и электропроводность.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 15.11.2014
Размер файла 489,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки РФ

ФГБОУ ВПО Рыбинский государственный авиационный технологический университет

имени П. А. Соловьёва

Кафедра материаловедения, литья, сварки

РЕФЕРАТ

по дисциплине: «Химия керамики и композитов»

на тему: «Динасовые огнеупоры»

Выполнил студент группы МЛБ-11

Шабров Г.Н.

дата 20.11.12

Преподаватель: Акутин А.А.

Подпись преподавателя

г. Рыбинск 2012

Динасовые огнеупоры

Динасовыми называют огнеупорные изделия с содержанием кремнезема Si02 не менее 94,5%, изготовляемые путем обжига сырца, сформованного из размолотых кварцитов на известковой или других связках.

Кремнезем может существовать в одной аморфной и семи кристаллических модификациях, которые, имея один и тот же химический состав, различаются между собой некоторыми свойствами (формой кристаллов, плотностью, коэффициентом светопреломления и др.). Кристаллические модификации кремнезема называются как кристаллы, встречающиеся в природе: кварц, тридимит и кристобалит с подразделением каждой из главных форм на б, в и г фазу.

В природе наиболее распространен в-кварц. Он встречается самостоятельно под названием «кварц» и в виде составной части многих горных пород: гранитов, гнейсов, песчаников и др.

Также имеет аморфную модификацию -- кварцевое стекло.

При нагреве кремнезем переходит из одной модификации в другую. Превращения SiO2 могут идти двумя путями, существенно отличающимися друг от друга. К первому относятся превращения между различными модификациями внутри главных форм кремнезема: кварца, тридимита и кристобалита (рис.). Превращения эти обратимы и протекают быстро.

Ко второй группе относятся превращения между главными формами кремнезема -- такие превращения совершаются весьма медленно, причем превращения кварца в тридимит или кристобалит практически необратимы.

Схема полиморфных превращений кремнезема при обжиге динаса (рис)

Скорость протекания медленно идущих превращений растет с повышением температуры, увеличением измельченности, а также в присутствии минерализаторов (плавней). При производстве динаса ими служат известь и вещества, содержащие закись железа. В процессе обжига динаса СаО и FeO образуют с кермнеземом легкоплавкие силикаты, которые при высоких температурах растворяют кремнезем. Из пересыщенного раствора кремнезем выкристаллизовывается в виде той модификации, которая менее растворима при температуре кристаллизации.

Так как модификации кермнезема имеют разные плотности, при превращениях изменяются объемы.

О степени перехода кварца в тридимит и кристобалит можно судить по плотности обожженных изделий. Чем меньше плотность, тем полнее переход. При обжиге желательно кварц максимально перевести в тридимит, который имеет меньшее изменение объема при охлаждении. Если выложить печь из слабообожженного кирпича, в котором кварц не перешел в кристобалит или тридимит, то эти превращения произойдут в кладке при разогреве печи. При этом объем кирпичей значительно увеличится, и кладка может разрушиться. Динасовые изделия, в которых при обжиге большая часть кварца перешла в тридимит или кристобалит, называются тридимитизированными или тридимито-кристобалитовыми.

Сырьем для производства динаса служат кварциты, содержащие не менее 95% SiO2. Кварциты состоят из мелких и микроскопических зерен кварца, сцементированного кремнеземом с небольшим количеством примесей других соединений. Огнеупорность кварцитов зависит от их химико-минералогического состава, но не должна быть ниже 1750°С.

После дробления и измельчения на бегунах кварциты просеивают на несколько фракций. Гранулометрический состав шихты зависит от характера сырья, способов его обработки и назначения изделий. Динасовая шихта составляется из зерен кварцита размером от тончайшей муки до 5-6 мм. Для связывания кварцитовых зерен в сырце, а также для ускорения превращения кварца обычно добавляется 1,5-3 % извести в виде известкового молока. Смесь кварцитов с известковым молоком проминают катками бегунов. После формовки на прессах и сушки сырец обжигают в туннельных печах.

Обжиг динаса -- самая ответственная операция. Подъем температуры должен быть равномерным и медленным, особенно в точках перехода кварца из одной модификации в другую. При быстром подъеме температуры кварцевые зерна растрескиваются, кирпич сильно увеличивается в объеме и разрыхляется. Кроме того, чем быстрее повышается температура, тем меньше образуется жидкой фазы. При достаточном количестве жидкой фазы она заполняет пространство между рекристаллизующимися зернами кварца и воспринимает возникающие при этом напряжения. При недостаточном количестве жидкой фазы происходит так называемое сухое превращениеб-кварца в б-кристобалит, при этом сырец вследствие сильного увеличения объема разбухает и растрескивается.

Максимальная температура обжига не должна превышать 1460°С, так как при более высокой температуре в б-кристобалит превращается не только б-кварц, но и б-тридимит. Большое количество кристобалита в динасе нежелательно, так как при этом будет сильно изменяться объем при нагревах и охлаждениях. При охлаждении обожженного динаса необходимо также соблюдать осторожность, особенно при переходе кремнезема из одной модификации в другую. Условия обжига динаса нужно соблюдать и при разогреве печей. динасовый огнеупорный кварцит электропроводность

Для динасовых изделий характерны сравнительно невысокая Огнеупорность (1710--1720°С), но высокая температура начала деформации под нагрузкой (1620--1660°С). Тридимито-кристобалитовый динас сохраняет механическую прочность и не меняет формы почти до температуры плавления. Поэтому динасовый кирпич находит широкое применение в металлургии особенно там, где требуется высокая механическая прочность при высоких температурах. Термостойкость динаса очень мала, не более двух теплосмен, однако при медленном разогреве и охлаждении динас способен хорошо переносить многократные теплосмены и при этом не терять механической прочности.

По химической стойкости динас является типично кислым огнеупором. Изменение размеров при нагреве хорошо обожженного, полностью рекристаллизованного динаса незначительно. Но так как при изготовлении кирпичей полного превращения кварца не достигают, некоторого увеличения в объеме при повторных нагревах имеет место. Так, при нагреве до 1450°С изменение линейных размеров достигает 1,6-2,1 %, а последующее расширение может достигать 0,7 %. Это следует учитывать при кладке печи, предусматривая температурные швы.

Динасовые огнеупоры широко применяются для кладки сводов плавильных печей в связи с отсутствием у них дополнительной усадки при длительных сроках службы в условиях высоких температур.

Высокоплотный динас с содержанием не менее 98 % Si02 и кажущейся пористостью около 10 % изготавливается из высококремнеземистых чистых кварцитов, причем сырец до обжига подвергается сильному прессованию. Высокоплотный динас обладает повышенной огнеупорностью (до 1740°С) и термостойкостью. Имея меньшую пористость, он более устойчив к воздействию шлаков. Применяется для футеровки высокотемпературных плавильных печей. Электродинас по характеристикам близок к высокоплотному динасу. Используется для футеровки сводов электроплавильных печей.

Основные свойства огнеупорных материалов

Огнеупорность.

Огнеупорностью называется способность материалов выдерживать высокие температуры, не деформируясь под действием собственного веса. При нагреве огнеупорный материал вначале размягчается вследствие плавления его легкоплавкой составляющей. При дальнейшем нагреве начинает плавиться основная масса, и вязкость материала постепенно уменьшается. Процесс плавления огнеупоров выражается в постепенном переходе из твердого состояния в жидкое, причем температурный интервал от начала размягчения до расплавления иногда достигает нескольких сот градусов. Поэтому для характеристики огнеупорности пользуются температурой размягчения.

Для этой цели при определении огнеупорности материалов используются керамические пироскопы (ПК). Пироскопы представляют собой трехгранные усеченные пирамиды высотой до 6 см с основанием в виде равностороннего треугольника со сторонами, равными 1 см. Каждому пироскопу соответствует определенная температура размягчения, т. е. температура, при которой пироскоп размягчается настолько, что вершина его касается подставки. В маркировке пироскопов указывается его огнеупорность, уменьшенная в десять раз. Для определения огнеупорности материала из него изготавливают пирамидку по размерам пироскопа. Испытуемый образец вместе с несколькими пироскопами разных номеров устанавливают на подставке и помещают в электрическую печь. Испытание на огнеупорность сводится к наблюдению за размягчением (падением) образцов сравнительно с пироскопами при определенных условиях нагрева. Огнеупорность материала обозначается номером того пироскопа, с которым образец упал одновременно.

Деформация под нагрузкой при высоких температурах.

В кладке печи огнеупоры испытывают в основном сжимающее усилие, увеличивающееся при нагреве печи. Для оценки механической прочности огнеупоров обычно определяют зависимость изменения величины деформации от температуры при постоянной нагрузке.

Зависимость между деформацией огнеупоров под нагрузкой и температурой: 1- хромит, 2- шамот, 3- магнезит, 4- динас.

Пористость.

Все огнеупорные изделия пористы. Размер пор, их структура и количество весьма разнообразны. Отдельные поры либо соединены между собой и с атмосферой, либо представляют собой замкнутые пространства внутри изделия. Отсюда различают пористость открытую, или кажущуюся, при которой поры сообщаются с атмосферой, пористость закрытую, когда поры не имеют выхода наружу, и пористость истинную, или общую, т. е. суммарную.

Открытую пористость вычисляют на основе данных измерения водопоглощения и объемной массы огнеупорных изделий.

Теплоемкость.

Теплоемкость огнеупоров определяет скорость нагрева и охлаждения футеровки и затраты тепла на нагрев. Это имеет особенно важное значение при работе печей периодического действия. Теплоемкость зависит от химико-минералогического состава огнеупоров. Определяется она калориметрическим методом. Теплоемкость обычно незначительно растет с увеличением температуры. Среднее ее значение лежит в пределах 0,8-1,5 кДж/(кг-К).

Электропроводность.

Электропроводность является определяющим параметром огнеупоров, применяемых для футеровки электрических печей. При нормальных температурах обычно все огнеупорные материалы являются хорошими диэлектриками. При повышении температуры их электропроводность быстро возрастает, и они становятся проводниками. Электропроводность материалов с большой пористостью при высоких температурах уменьшается.

Постоянство формы и объема.

При нагреве огнеупоров в печах происходит изменение их объема под влиянием двух факторов -- термического расширения и усадки (или роста). Термическое расширение большинства огнеупоров невелико. Гораздо значительнее изменение объема огнеупора при высоких температурах за счет происходящих превращений. Так, шамотные изделия дают усадку в результате образования некоторого количества жидкой фазы и уплотнения черепка. Обычно это уменьшение объема бывает больше, чем его термическое расширение, и приводит к увеличению швов. Динасовые изделия увеличивают объем при нагреве вследствие дополнительных процессов перекристаллизации. Рост объема изделия в процессе службы способствует уплотнению швов кладки. Изменение объема огнеупоров оценивают при нагревании точно измеренных образцов в печи.

Термическая стойкость.

Термической стойкостью называется способность огнеупоров не разрушаться при резких изменениях температуры. Это особенно важно для огнеупоров, работающих в печах периодического действия. Термическая стойкость огнеупоров тем выше, чем больше коэффициент теплопроводности материала, его пористость и размер зерен и чем меньше температурный коэффициент линейного расширения, плотность, размеры изделия и изменения объема при аллотропических превращениях.

Для определения термической стойкости используют образец в форме кирпича. Образец нагревают 40 мин при 850.°С, затем охлаждают 8-15 мин. Цикл нагрева и охлаждения называется теплосменой. Охлаждение может быть только на воздухе (воздушные теплосмены) или сначала в воде 3 мин, затем на воздухе 5-10 мин (водяные теплосмены). Нагрев и охлаждение проводятся до тех пор, пока потеря массы образца (из-за откалывания кусков) не достигнет 20%. Термическая стойкость оценивается количеством выдержанных теплосмен.

Химическая стойкость.

Под химической стойкостью огнеупорных материалов понимается способность их противостоять разрушению от химического и физического воздействия образующихся в печи продуктов -- металла, шлаков, пыли, золы, паров и газов. Наибольшее действие на огнеупоры в плавильных печах оказывают шлаки. По отношению к действию шлаков огнеупоры могут быть разделены на три группы -- кислые, основные и нейтральные.

Кислые огнеупоры устойчивы к кислым шлакам, содержащим большое количество SiO2, но разъедаются основными шлаками. Кислым огнеупором является динас. Динас устойчив к действию окислительных и восстановительных газов.

Основные огнеупоры устойчивы к действию основных шлаков, но разъедаются кислыми. К ним относятся огнеупоры, содержащие известь, магнезию и щелочные окислы (доломит, магнезит и др.).

Нейтральные (промежуточные) огнеупоры, в состав которых входят аморфные окислы, реагируют как с кислыми, так и с основными шлаками, но в значительно меньшей степени, чем кислые и основные. К ним относится хромистый железняк, содержащий в качестве основной составляющей FeO-Cr2O3.

Теплопроводность.

В зависимости от целей, для которых используется огнеупор, теплопроводность его должна быть высокой или низкой. Так, материалы, предназначенные для футеровки печей, должны иметь низкую теплопроводность для уменьшения тепловых потерь в окружающее пространство и повышения к. п. д. печи. Однако материалы для изготовления тиглей и муфелей должны иметь высокую теплопроводность, уменьшающую перепад температуры в их стенках.

При повышении температуры теплопроводность большинства огнеупоров возрастает. Исключение составляют магнезитовые и карборундовые изделия теплопроводность которых при этому уменьшается. теплопроводность всех огнеупоров уменьшается с увеличением пористости. Однако при высокой температуре (выше 800-900° С) увеличение пористости мало влияет на теплопроводность. Приобретают влияние конфигурация и размер пор, определяющие конвективную теплопередачу внутри пор. Увеличение содержания кристаллической фазы в материале приводит к увеличению теплопроводности.

Зависимость между коэффициентом теплопроводности огнеупоров и температурой:

1 -- магнезит; 2 -- хромомагнезит; 3 -- динас; 4--шамот; 5 -- пеношамот

Шлакоустойчивость.

Шлакоустойчивость зависит от скорости химических реакций огнеупора со шлаком и от вязкости шлака. При вязких шлаках и малой скорости реакций огнеупорное изделие может работать хорошо. С повышением температуры скорость химических реакций увеличивается, а вязкость шлаков уменьшается, поэтому даже небольшое повышение температуры (на 25-30°С) приводит к существенному увеличению коррозии огнеупоров. Пористые изделия с открытыми порами менее шлакоустойчивы, чем более плотные. Наружная гладкая поверхность корки кирпича лучше сопротивляется действию шлаков, чем шероховатая поверхность изломов. Трещины в изделии также понижают его шлакоустойчивость.

Для определения шлакоустойчивости применяют два метода -- статический и динамический. При статическом методе в огнеупорном изделии высверливают цилиндрическое отверстие, в которое насыпают тонкоизмельченный шлак. Изделие нагревают в печи до его рабочей температуры (но не ниже 1450°С) и выдерживают при этой температуре 3-4 часа. О шлакоустойчивости судят качественно по степени растворения изделия в шлаке и глубине его проникновения в изделие. При динамическом методе на испытуемый огнеупорный кирпич, установленный в печи вертикально, при температуре 1450°С в течение 1 ч сыплют порошкообразный шлак (1 кг). Расплавляясь и стекая по поверхности кирпича, шлак проедает в нем борозды. Шлакоразъедаемость определяется по потере объема (в кубических сантиметрах) с учетом дополнительной усадки кирпича.

Газопроницаемость.

Газопроницаемость зависит от природы огнеупора, величины открытой пористости, однородности структуры изделия, температуры и давления газа. С повышением температуры газопроницаемость огнеупоров понижается, так как объем газа при этом возрастает и увеличивается его вязкость. Огнеупоры должны обладать, возможно, меньшей газопроницаемостью, особенно те, которые применяются для изготовления реторт, муфелей, тиглей. Наибольшая газопроницаемость у шамотных изделий, наименьшая у динаса.

Размещено на Allbest.ru

...

Подобные документы

  • Основные и амфотерные солеобразующие оксиды. Особенности разложения карбонатов металлов. Получение оксидов щелочных металлов косвенным путём. Амфотерность оксида бериллия. Использование оксида магния при производстве огнеупорных строительных материалов.

    презентация [218,3 K], добавлен 07.10.2011

  • Определение газа как агрегатного состояния вещества, характеризующегося очень слабыми связями между составляющими их частицами (молекулами, атомами, ионами). Основные свойства газов: давление, теплоемкость, абсолютная температура и скорость его молекул.

    презентация [2,1 M], добавлен 17.01.2012

  • Обобщение данных по образованию NO, NO2 в тепловых агрегатах. Особенности образования азота в процессах производства стали, извести, огнеупорных материалов и стекла. Разработка лабораторных установок для исследования закономерности образования NO, NO2.

    дипломная работа [1,5 M], добавлен 18.10.2011

  • Химический состав и свойства легкоплавких глин. Превращения при обжиге огнеупорных и тугоплавких глин. Изменения, происходящие при нагревании глинистых минералов. Фазовые превращения, происходящие при обжиге глин. Особенности превращения кремнезёма.

    курсовая работа [4,0 M], добавлен 07.03.2010

  • Строение атома кремния, его основные химические и физические свойства. Распространение силикатов и кремнезема в природе, использование кристаллов кварца в промышленности. Методы получения чистого и особо чистого кремния для полупроводниковой техники.

    реферат [243,5 K], добавлен 25.12.2014

  • Квазикристаллы и их открытие. Модель двумерного кристалла. Формирование икосаэдрической фазы в системе Al-Cu-Fe. Транспортные и термодинамические свойства квазикристаллов: электропроводность, теплопроводность. Микроструктура и фазовый состав образцов.

    дипломная работа [3,0 M], добавлен 26.02.2013

  • Исследование эволюции физико-химических характеристик ионообменных смол и изготовленных из них мембран в процессах переработки амфолит-содержащих модельных растворов и виноматериалов. Электропроводность ионитов, её связь с другими свойствами ионитов.

    дипломная работа [4,6 M], добавлен 18.07.2014

  • Изучение физико-химических свойств меди, арсеназо и полигексаметиленгуанидина. Природа поверхности кремнезема, модифицированные кремнеземы. Методика сорбционного концентрирования меди с использованием кремнезема, нековалентно-модифицированного арсеназо I.

    курсовая работа [282,2 K], добавлен 20.05.2011

  • История и организационная структура ОАО "Каустик". Сущность и химизм технологического процесса. Альтернативный способ получения винилиденхлорида-сырца. Прием регенерированного винилиденхлорида. Мероприятия по подготовке реакторов к газоопасным работам.

    отчет по практике [49,7 K], добавлен 28.11.2013

  • Анализ фильтрата, полученного путем выщелачивания серпентинита двадцатипроцентной соляной кислотой. Определение содержания оксида магния, Fe3+ и кислотности. Анализ полученного кремеземистого остатка. Методика проведения анализа аморфного кремнезема.

    лабораторная работа [19,7 K], добавлен 07.02.2011

  • Определение теплоемкости: средняя, истинная, при постоянном объеме, постоянном давлении. Расчет теплоемкости органических веществ методом Бенсона. Теплоемкость органических веществ, находящихся при повышенных давлениях, в газообразном и жидком состоянии.

    реферат [85,0 K], добавлен 17.01.2009

  • Понятие, назначение и классификация индикаторов. Строение и свойства полианилина. Влияние природы инициатора и полимерной матрицы на структуру и свойства композиционных материалов. Синтез композитных материалов на основе пленки Ф-4СФ и полианилина.

    курсовая работа [2,2 M], добавлен 18.07.2014

  • Особенности технологии изготовления полимерных материалов, основные параметры процессов переработки. Методы формования изделий из ненаполненных и наполненных полимерных материалов. Методы переработки армированных полимеров. Аспекты их применения.

    реферат [36,4 K], добавлен 04.01.2011

  • История открытия хлора как химического элемента, его распространение в природе. Электропроводность жидкого хлора. Применения хлора: в производстве пластикатов, синтетического каучука как отравляющего вещества, для обеззараживания воды, в металлургии.

    презентация [999,0 K], добавлен 23.05.2012

  • Парфюмерия в античности. Классификация семейств духов по запахам, выпущенная французским комитетом по духам. Ректификация путем перегонки спирта-сырца. Сферы применения эфирных масел. Растения служащие сырьем для их получения, способы извлечения из них.

    курсовая работа [5,0 M], добавлен 07.12.2015

  • Металлы как группа элементов, обладающая характерными металлическими свойствами: высокие тепло- и электропроводность, высокая пластичность и металлический блеск. Отличительные особенности металлов от неметаллов. Порядок получения данных элементов.

    презентация [1,1 M], добавлен 24.05.2012

  • Определение понятия и свойств полимеров. Рассмотрение основных видов полимерных композиционных материалов. Характеристика пожарной опасности материалов и изделий. Исследование особенностей снижения их горючести. Проблема токсичности продуктов горения.

    презентация [2,6 M], добавлен 25.06.2015

  • Расчет характеристик смеси. Псевдокритические свойства: температура, давление, объем, ацентрический фактор и коэффициент сжимаемости. Плотность жидкой смеси на линии насыщения. Энтальпия, энтропия, теплоемкость смеси. Вязкость и теплопроводность.

    курсовая работа [220,0 K], добавлен 04.01.2009

  • Зависимость аналитического сигнала от содержания определяемого вещества. Примеры инструментальных методов анализа. Типичные градуировочные графики для инструментальных методов кондуктометрического анализа. Электропроводность растворов электролитов.

    методичка [348,5 K], добавлен 19.03.2012

  • Природа ионной проводимости, транспортные свойства в вольфраматах. Структура и химическая связь в вольфраматах, фазовые диаграммы систем. Определение чисел переноса по методу Тубандта. Измерение электропроводности и удельной поверхности вольфраматов.

    дипломная работа [2,1 M], добавлен 11.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.