Эмпирический уровень познания. Структура и свойства атома

Эмпирические методы познания: наблюдение, описание, измерение, эксперимент. Роль эксперимента в науке и его особенности. Электронная структура атома и его химические, металлические и неметаллические свойства. Энергия ионизации, и электроотрицательность.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 24.11.2014
Размер файла 22,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

1. Эмпирический уровень познания. Эмпирические методы познания (наблюдение, описание, измерение, эксперимент). Роль эксперимента в науке (примеры). В чем отличие эксперимента от наблюдения? Какие естественные науки основываются главным образом на наблюдении

2. Электронная структура атома и его химические свойства. Что понимают под металлическими и неметаллическими свойствами атомов? Энергия ионизации, энергия сродства к электрону и электроотрицательность. Каковы причины и характер их изменения с увеличением заряда ядер атомов элементов в период или группе

1. Эмпирические методы познания. Эмпирические методы познания (наблюдение, описание, измерение, эксперимент). Роль эксперимента в науке. В чем отличие эксперимента от наблюдения? Какие естественные науки основываются главным образом на наблюдении

В науке различают эмпирический и теоретический уровни исследования. Эмпирическое исследование направлено непосредственно на изучаемый объект и реализуется посредством наблюдения и эксперимента.

Наблюдение - это целенаправленное, организованное и систематическое восприятие внешних свойств предметов и явлений мира. Научное наблюдение отличается следующими характеристиками: 1) опора в основном на такие чувственные способности человека, как ощущение, восприятие и представление; 2) связь с решением определения задачи; 3) планомерный и организованный характер; 4) отсутствие вмешательства в ход исследуемого процесса.

Наблюдение характеризуется невмешательством в ход исследуемого процесса, однако в нем в полной мере реализуется активный характер чел. познания. Активность проявляется: 1) в целенаправленном характере наблюдения, в наличии исходной установки у наблюдателя: что наблюдать и на какие явления обращать особое внимание; 2) в избирательном характере наблюдения; 3) в его теоретичес-кой обусловленности; 4) в отборе исследователем средств описания.

Познавательным итогом наблюдения является описание - фиксация средствами языка исходных сведений об изучаемом объекте. Результаты наблюдения могут также фиксироваться в схемах, графиках, диаграммах, цифровых данных и просто в рисунках.

Особым видом наблюдения, а иногда и его составной частью является измерение.

Измерение - это наблюдение с использованием специальных приборов, позволяющих произвести углубленный количественный анализ изучаемого явления или процесса. Измерение есть процесс определения отношения одной измеряемой величины, характеризующей изучаемый объект, к другой однородной величине, принятой за единицу. Наиболее часто используемым видом измерения является подсчет. Измерительные приборы совершенствуются вместе с практикой и познанием - от простой линейки до современных ЭВМ.

Эксперимент - это активный метод изучения объектов, явлений в точно фиксированных условиях их протекания, который заключается в прямом и целенаправленном вмешательстве исследователя в состояние изучаемого объекта.

Эксперимент -- сердцевина эмпирического исследования. Латинское слово "экспериментум" буквально означает пробу, опыт. Эксперимент и есть апробирование, испытание изучаемых явлений в контролируемых и управляемых условиях. Экспериментатор стремится выделить изучаемое явление в чистом виде, с тем чтобы было как можно меньше препятствий в получении искомой информации. Постановке эксперимента предшествует соответствующая подготовительная работа. Разрабатывается программа эксперимента; если нужно, то изготавливаются специальные приборы, измерительная аппаратура; уточняется теория, которая выступает в качестве необходимого инструментария эксперимента.

При этом, как правило, используются различные приспособления и средства. Эксперимент должен быть локализован в пространстве и времени. Иначе говоря, эксперимент всегда направлен на специально изолированную часть объекта или процесса. Эксперимент позволяет: 1) изолировать изучаемое от побочных, затемняющих его сущность явлений; 2) многократно воспроизводить изучаемый процесс в строго фиксированных условиях; 3) планомерно изменять, варьировать, комбинировать условия в целях получения искомого результата. Эксперимент является связующим звеном между теоретическим и эмпирическим уровнями научного исследования. Вместе с тем метод эксперимента по характеру используемых познав. средств принадлежит к эмпирич. этапу познания. Итогом экспериментального исследования, прежде всего, является фактуальное знание и установление эмпирических закономерностей.

В тех случаях, когда эксперимент невозможен (экономически нецелесообразен, противозаконен или опасен) используют модельный эксперимент, в котором объект заменяют его физической или электронной моделью. К эмпирическим исследованиям относятся только эксперименты с объективно-реальной, а не идеальной моделью. Виды эксперимента: 1) поисковый; 2) проверочный; 3) воспроизводящий; 4) изолирующий; 5) качественный или количественный; 6) физический, химический, биологический, социальный эксперимент.

Роль эксперимента в науке.

Составляющими эксперимента являются: экспериментатор; изучаемое явление; приборы. В случае приборов речь идет не о технических устройствах типа компьютеров, микро- и телескопов, призванных усилить чувственные и рациональные возможности человека, а о приборах-детекторах, приборах-посредниках, фиксирующих данные эксперимента, испытывающих непосредственное влияние изучаемых явлений. Как видим, экспериментатор находится "во всеоружии", на его стороне, кроме всего прочего, профессиональный опыт и, что особенно важно, владение теорией. В современных условиях эксперимент чаще всего проводится группой исследователей, которые действуют согласованно, соизмеряя свои усилия и способности.

Изучаемое явление поставлено в эксперименте в условия, когда оно реагирует на приборы-детекторы (если специальный прибор-детектор отсутствует, то в качестве такового выступают органы чувств самого экспериментатора: его глаза, уши, пальцы). Эта реакция зависит от состояния и характеристик прибора. В силу этого обстоятельства экспериментатор не может получить сведения об изучаемом явлении как таковом, т. е. в изоляции от всех других процессов и объектов. Таким образом, средства наблюдения участвуют в формировании экспериментальных данных. В физике этот феномен вплоть до экспериментов в области квантовой физики оставался неизвестным, и его обнаружение в 20-х -- 30-х годах XX в. было сенсацией. Длительное время разъяснение Н. Бора о том, что средства наблюдения влияют на результаты эксперимента, принималось в штыки. Оппоненты Бора считали, что эксперимент можно очистить от возмущающего влияния прибора, но это оказалось невозможным. Задача исследователя состоит не в том, чтобы представить объект как таковой, а в том, чтобы объяснить его поведение во всевозможных ситуациях.

Следует отметить, что в социальных экспериментах ситуация также не является простой, ибо испытуемые реагируют на чувства, мысли, духовный мир исследователя. Обобщая экспериментальные данные, исследователь должен не абстрагироваться от своего влияния, а именно с учетом его суметь выявить общее, сущностное.

Данные эксперимента так или иначе должны быть доведены до известных рецепторов человека, например, это происходит тогда, когда экспериментатор считывает показания измерительных приборов. Экспериментатор имеет возможность и вместе с тем вынужден задействовать присущие ему (все или некоторые) формы чувственного познания. Однако чувственное познание -- это всего лишь один из моментов сложного познавательного процесса, который осуществляет экспериментатор. Эмпирическое познание неправомерно сводить к чувственному познанию.

В чем отличие эксперимента от наблюдения.

Среди методов эмпирического познания часто называют наблюдение, которое порой даже противопоставляется методу экспериментирования. Имеется в виду не наблюдение как этап любого эксперимента, а наблюдение как особый, целостный способ изучения явлений, наблюдение астрономических, биологических, социальных и других процессов. Различие между экспериментированием и наблюдением в основном сводится к одному пункту: в эксперименте его условиями управляют, а в наблюдении процессы предоставлены естественному ходу событий. С теоретических позиций структура эксперимента и наблюдения одна и та же: изучаемое явление -- прибор -- экспериментатор (или наблюдатель). Поэтому осмысление наблюдения мало чем отличается от осмысления эксперимента. Наблюдение вполне можно считать своеобразным случаем эксперимента.

Какие естественные науки основываются главным образом на наблюдении.

Критерий непротиворечивости научного знания обеспечивает последовательность мышления, достигаемый соблюдением известных законов классической, или аристотелевской, логики и, прежде всего, закона недопущения противоречия. Решающую роль критерий непротиворечивости играет в таких формальных и абстрактных науках, как математика и логика, где само существование их объектов основывается на этом критерии. Ведь формально противоречивый объект или доказательство не имеет права на существование в науке. Если определение понятия или доказательство теоремы окажется противоречивым, то оно признается неправильным и поэтому должно быть исключено из науки или, по крайней мере, требует исправления. Соблюдение критерия непротиворечивости обязательно не только для математики и логики, но и для любых наук, в том числе, опирающихся на эксперимент или конкретные факты. Такие науки часто называют эмпирическими, поскольку они развиваются и основываются на различных формах опыта, в том числе наблюдениях и экспериментах, результаты которых составляют эмпирический базис науки. К ним относится большая часть естественных и технических наук. В отличие от них экономические, социальные и гуманитарные науки опираются преимущественно на факты, устанавливаемые в ходе наблюдений социальной жизни и практики, и поэтому их часто называют фактуалъными науками. Поскольку те и другие науки опираются, в конечном счете, на опыт, факты и практику, и тем самым отличаются от абстрактных и формальных наук, то в дальнейшем для единства терминологии, мы будем называть их эмпирическими науками. Следует, однако, не забывать, что во всех этих науках познание не ограничивается только наблюдениями и опытом, а широкое использует теоретические методы исследования.

Почему так важен критерий непротиворечивости для эмпирических и теоретических систем? Из логики известно, что два противоречащих суждения не могут быть одновременно истинными, т.е. их конъюнкция дает ложное высказывание. Но по правилу импликации символической логики, лежащей в основе логического вывода, из ложного высказывания можно получить как истину, так и ложь. Поэтому допущение противоречия в рассуждении привело бы к разрушению порядка и последовательности в наших рассуждениях. Чтобы исключить такую возможность, в классической и символической логике вводится особый закон, запрещающий противоречия в рассуждениях (принцип непротиворечивости). С содержательной точки зрения допущение противоречия привело бы к бесплодности науки, ибо противоречивая система не дает никакой конкретной информации об изучаемом мире.

Практический опыт играет важнейшую роль в установлении истины и даже в определении самого объекта исследования. Однако набор установленных фактов не представляет собой ценности без их систематизации и обработки, которая осуществляется благодаря применению разработанных теоретических методов. Только теория позволяет объяснить сложные закономерности и отклонения, дать полное описание явлению на основе ограниченного объёма представленного практического материала.

Главными инструментами эмпирического метода являются наблюдение, сравнение, измерение и эксперимент, а результатом исследования- научный факт, который может подтвердить или опровергнуть ту или иную теорию, частично построенную на допущениях. В то же время, тот или иной факт может привести исследователя к поиску его теоретического объяснения.

Научного познание-это поиск истины в виртуальном мире, созданном самим учёным. Любой из методов научного познания (абстрагирование, идеализация, формализация, аксиоматический метод) требуют от учёного не только базовых знаний, но и более глубинного представления природы вещей на уровне подсознания.

Все охарактеризованные методы в реальном научном исследовании работают в тесной взаимосвязи и взаимодействии. В процессе развития науки обогащается и система ее методов, формируются новые приемы и способы исследовательской деятельности. Любой факт или теория, претендующие на роль научного открытия должны соответствовать требованиям научности, а именно: не должны иметь противоречий и должны быть проверяемы на истинность.

эмпирический электронный атом ионизация

2. Электронная структура атома и его химические свойства. Что понимают под металлическими и неметаллическими свойствами атомов? Энергия ионизации, энергия сродства к электрону и электроотрицательность. Каковы причины и характер их изменения с увеличением заряда ядер атомов элементов в период или группе

Атом - наименьшая частица химического элемента, образующая молекулы простых и сложных веществ.

Амтом (от др. - греч. ?фпмпт - неделимый) - наименьшая химически неделимая часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и окружающего его электронного облака. Ядро атома состоит из положительно заряженных протонов и незаряженных нейтронов, а окружающее его облако состоит из отрицательно заряженных электронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом. Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов - изотопу этого элемента.

Электронная формула атома 1s2 2s2 p6 3s2 p6 4s2 3d6.

Различным элементам соответствуют различные атомы, обозначаемые символом данного элемента (Ag, Fe, Mg).

Химические свойства атомов определяются конфигурацией электронной оболочки и описываются квантовой механикой. Положение атома в таблице Менделеева определяется электрическим зарядом его ядра (то есть количеством протонов), в то время как количество нейтронов принципиально не влияет на химические свойства; при этом нейтронов в ядре, как правило, больше, чем протонов. Если атом находится в нейтральном состоянии, то количество электронов в нём равно количеству протонов. Основная масса атома сосредоточена в ядре, а массовая доля электронов в общей массе атома незначительна (несколько сотых процента массы ядра).

Массу атома принято измерять в атомных единицах массы, равных 1?12 от массы атома стабильного изотопа углерода 12C.

Что понимают под металлическими и неметаллическими свойствами атомов.

Метамллы - группа элементов, в виде простых веществ, обладающих характерными металлическими свойствами, такими, как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск.

Простые вещества делятся на металлы (цинк), полуметаллы (кремний), неметаллы (азот).

У атомов металлов малых периодов (I--III) на внешнем электронном слое находится от 1 до 3 электронов, а у атомов неметаллов -- от 4 до 8. Исключение составляют атомы водорода -- 1 электрон и бора -- 3 электрона.

Проявление металлических свойств определяется, прежде всего, способностью атомов данного элемента отдавать электроны с внешнего электронного слоя. Именно наличием у металлов свободных электронов обусловлена их высокая электропроводность.

И наоборот, способность атомов данного элемента присоединять электроны определяет неметаллические свойства его простого вещества.

Усиление металлических свойств щелочных металлов с возрастанием атомного номера элемента связано прежде всего с увеличением радиусов их атомов, т. е. с ростом числа электронных слоев. Электрон на внешнем электронном слое у этих атомов все слабее связан с ядром, поэтому легче отрывается. Одновременно усиливаются основные свойства оксидов и гидроксидов этих элементов, поскольку они определяются металлическими свойствами.

В противоположность этому неметаллические свойства элементов группы галогенов ослабевают с увеличением зарядов ядер их атомов, так как растет число электронных слоев. Внешний слой находится все дальше от ядра, поэтому электроны, находящиеся на этом слое, слабее связаны с ядром. Кислотные свойства у оксидов и гидроксидов этих элементов также ослабляются.

Таким образом, в главных группах (группах А) периодической системы с ростом зарядов ядер атомов химических элементов усиливаются металлические свойства их простых веществ и, соответственно, ослабевают неметаллические. Это особенно наглядно проявляется в группе IVA. В ней свойства простых веществ химических элементов изменяются от неметаллических (у углерода и кремния) к металлическим (у олова и свинца).

Размещено на Allbest.ru

...

Подобные документы

  • Эмпирический уровень познания и эмпирические методы познания, роль эксперимента в науке. Электронная система и химические свойства атома, металлические и неметаллические свойства атомов. Энергия ионизации и сродства к электрону, электроотрицательность.

    лабораторная работа [30,1 K], добавлен 29.11.2012

  • Протоны и нейтроны как составляющие атомного ядра. Атомный номер элемента. Изотопы, ядерная и квантово-механическая модели атома. Волновые свойства электрона. Одноэлектронные и многоэлектронные атомы, квантовые числа. Электронная конфигурация атома.

    реферат [1,3 M], добавлен 26.07.2009

  • Свойства молибдена и его соединений. История открытия элемента. Электронная структура атома, его расположение в периодической системе химических элементов Д.И. Менделеева. Химические и физические свойства молибдена, его оксидов и гидроксидов.

    курсовая работа [2,3 M], добавлен 24.06.2008

  • Химические элементы, относящиеся к галогенам: фтор, хлор, бром, йод и астат. Химическая характеристика, порядковые номера элементов, их физические свойства, энергия ионизации и электроотрицательность. Степени окисления галогенов, энергия диссоциации.

    презентация [335,4 K], добавлен 16.12.2013

  • Основные характеристики атомов, расчет их радиуса и энергетических показателей. Энергия ионизации или ионизационный потенциал. Сродство атома к электрону. Электроотрицательность и шкала Полинга. Принципы разделения элементов на металлы и неметаллы.

    презентация [981,5 K], добавлен 22.04.2013

  • История открытия фосфора. Природные соединения, распространение фосфора в природе и его получение. Химические свойства, электронная конфигурация и переход атома фосфора в возбужденное состояние. Взаимодействие с кислородом, галогенами, серой и металлами.

    презентация [408,5 K], добавлен 23.03.2012

  • Изучение атома и его состава и радиоактивности. Характеристика ядерной модели атома. Зависимость свойств элементов и свойств образуемых им веществ от заряда ядра. Анализ квантовой теории света, фотоэлектрического эффекта, электронной оболочки атома.

    реферат [31,3 K], добавлен 18.02.2010

  • Физические и химические свойства и электронное строение атома олова и его соединений с водородом, галогеном, серой, азотом, углеродом и кислородом. Оксиды и гидроксиды олова. Окислительно-восстановительные процессы. Электрохимические свойства металла.

    курсовая работа [149,5 K], добавлен 06.07.2015

  • Многообразие соединений углерода, их распространение в природе и применение. Аллотропные модификации. Физические свойства и строение атома свободного углерода. Химические свойства углерода. Карбонаты и гидрокарбонаты. Структура алмаза и графита.

    реферат [209,8 K], добавлен 23.03.2009

  • Представление о строении метана (молекулярная, электронная и структурная формулы). Физические свойства, нахождение в природе, тип химической связи и пространственное строение молекулы и атома углерода в трёх валентных состояниях, понятие гибридизации.

    дипломная работа [21,6 K], добавлен 31.03.2009

  • Представление об одноатомных насыщенных спиртах на примере этанола. Химические свойства, теплотворная способность; производство и применение спирта. Уравнения химической реакции этанола с металлами. Продукты замещения атома водорода гидроксильной группы.

    разработка урока [28,8 K], добавлен 19.03.2015

  • Строение атома кремния, его основные химические и физические свойства. Распространение силикатов и кремнезема в природе, использование кристаллов кварца в промышленности. Методы получения чистого и особо чистого кремния для полупроводниковой техники.

    реферат [243,5 K], добавлен 25.12.2014

  • Строение атома водорода в периодической системе. Степени окисления. Распространенность в природе. Водород, как простое вещество, молекулы которого состоят из двух атомов, связанных между собой ковалентной неполярной связью. Физико-химические свойства.

    реферат [17,4 K], добавлен 03.01.2011

  • Магний как элемент главной подгруппы второй группы, третьего периода с атомным номером 12, его основные физические и химические свойства, строение атома. Распространенность магния, соединения и сферы их практического применения. Регенерация клеток.

    реферат [475,5 K], добавлен 18.04.2013

  • Рассмотрение положения железа в периодической системе Менделеева. Изучение нахождения в природе; роль в жизнедеятельности разных организмов. Физические и химические свойства металла; строение атома. Оксиды и гидроксиды, основные качественные реакции.

    презентация [4,3 M], добавлен 09.03.2014

  • Основы квантовой механики и строение атома. Корпускулярные и волновые свойства света. Волновые и корпускулярные свойства материи. Волны материи (волны де Бройля). Квантование энергии. Длина волны, волновое число, частота и энергия спектрального перехода.

    реферат [127,5 K], добавлен 29.01.2009

  • Положение водорода в периодической системе химических элементов и особенности строения его атома. Свойства газа, распространенность и нахождение в природе. Химические реакции получения водорода в промышленности и лабораторным путем и способы применения.

    презентация [2,2 M], добавлен 13.02.2011

  • Атом как мельчайшая частица элемента, характеристика его структуры. Сущность и главные этапы развития науки о строении атома. Квантовая теория света. Основные положения современной концепции строения атома. Волновое уравнение Шредингера. Квантовые числа.

    презентация [744,7 K], добавлен 22.04.2013

  • Свойства воды как наиболее распространенного химического соединения. Структура молекулы воды и атома водорода. Анализ изменения свойств воды под воздействием различных факторов. Схема модели гидроксила, иона гидроксония и молекул перекиси водорода.

    реферат [347,0 K], добавлен 06.10.2010

  • Электронное строение атомов элементов периодической системы. Устойчивость электронных конфигураций. Характеристика семейств элементов. Изучение принципа наименьшей энергии и правила Хунда. Порядок заполнения атомных орбиталей в основном состоянии атома.

    презентация [676,5 K], добавлен 22.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.