Биохимические особенности углеродных соединений

Углеводы как органические вещества, содержащие карбонильную группу и несколько гидроксильных групп. Гликоген - главный резервный гомополисахарид человека и высших животных. Анализ особенностей синтеза углеводных компонентов гликозаминопротеогликанов.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 02.12.2014
Размер файла 206,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Введение

Актуальность темы

Углеводы (сахара, сахариды) -- органические вещества, содержащие карбонильную группу и несколько гидроксильных групп. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.

Биологическая роль и применение углеводов:

1. Компонент питания.

- глюкоза - основной источник питания для клеток высших организмов;

- промежуточным продуктом для синтеза других органических соединений, в том числе необходимых для питания.

2. Резерв.

Крахмал и гликоген являются резервными веществами в организме, которые при недостатке пищи могут быть использованы

3. Структурная функция.

Образуют опорные ткани растений, насекомых и грибов;

Входят в состав клеточных мембран.

4. Защитная функция.

Образуют покровные ткани, в том числе механическую защиту;

Применение.

1. Пищевая промышленность.

- сахар;

- хлеба - булочные изделия;

- картофель;

- для диабетического питания;

2. В медицине.

- растворы глюкозы;

- витаминные сиропы;

- оболочка таблеток;

- лекарственные препараты;

3. Сельскохозяйственные корма.

4. Биотехнология и микробиология.

5. Химическая промышленность.

- множество продуктов, в том числе на основе целлюлозы.

6. Строительство.

- древесина;

- клея;

- обои;

- краски.

1. Гликопротеины

Простетические группы этих белков представлены углеводами и ихпроизводными.

Углеводы подразделяются на три группы:

- моносахариды (альдозы, кетозы);

- олигосахариды (дисахариды, трисахариды и т.д.);

- полисахариды (гомополисахариды, гетерополисахариды).

Рис. 1

Гомополисахариды построены из моносахаридов только одного типа, а гетерополисахариды содержат разные мономерные звенья.

Гомополисахариды по функции бывают структурными и резервными.

Крахмал - резервный гомополисахарид растения. Построен из остатков - глюкозы соединенными между собой - гликозидными связями.

Гликоген - главный резервный гомополисахарид человека и высших животных. Построен из остатков - глюкозы. Содержится во всех органах и тканях. Наибольшее его количество обнаружено в печени и мышцах. Его молекула сильно разветвлена.

При гидролизе гликоген расщепляется через ряд промежуточных продуктов до глюкозы. В организме человека содержится 2 типа углеводосодержащих белков - гликопротеины. Они отличаются структурой и функциями.

Гликопротеины содержат от 1 до 30 % углеводов, которые прочно связаны с белковой частью молекулы. Они представлены различными моносахаридами, их ацетил-амино-производными, дезоксисахаридами, нейраминовыми и сиаловыми кислотами. Они могут быть также представлены линейными или разветвленными олигосахаридами.

Функции гликопротеинов:

- большинство белков на внешней поверхности животных клеток (рецепторы);

- большая часть синтезируемых клеточных белков (интерфероны);

- большая часть белков плазмы крови (кроме альбуминов):

- иммуноглобулины;

- групповые вещества крови;

- фибриноген, протромбин;

- гаптоглобин, трансферин;

- церулоплазмин;

- мембранные ферменты;

- гормоны (гонадотропин, кортикотропин).

Связь между углеводными компонентами и белковой частью в гликопротеинах ковалентно-гликозидная, через ОН группы серина, треонина, или NH группу лизина, аспарагина, глутамина.

2. Протеогликаны

Углевод в этих белках составляет основную часть молекулы (до 95 %).Углеводы представлены высокомолекулярными гетерополисахаридами. Их называют гликозаминогликанами - это линейные неразвлетвленные полимеры. Они построены из повторяющихся дисахаридных единиц. Углеводы и белки в молекулах протеогликанов связаны гликозидными связями через гидрокси-группы серина, треонина и NH2-лизина, аспарагина и глутамина.

Рис. 2

Молекулы протеогликанов прекрасно гидратируются благодаря большому количеству функциональных ионизированных групп. Этим объясняется их эластичность, растяжимость, слизистый характер. Они способны также связовать ионы Nа+, поэтому они учавствуют в регуляции водно-солевого обмена.

Катаболизм гликозаминогликанов с образованием аскорбиновой кислоты у крыс протекает также в глюкуронат-ксилулозном цикле. Поэтому представляется вероятным, что нагрузка этого цикла большим количеством АК должна замедлить катаболизм ГАГ и направить основной предшественник их синтеза УДФ-глюкуроновую кислоту в реакции глюкуронидной конъюгации, обеспечивающие процессы детоксикации в организме и тем самым повысить его неспецифическую резистентность. В качестве уровней однократного воздействия аскорбиновой кислоты нами были выбраны 100, 500 и 1000 мг/кг, превышающие нормальный биосинтез этого метаболита у крыс соответственно в 2, 10 и 20 раз и не вызывающие летальных эффектов, что не противоречит основным фармакологическим принципам испытания биологической активности веществ. В указанной связи следует отметить, что в фармакологических исследованиях часто используются дозы 1/10 - 1/30 от уровня среднесмертельного воздействия, то есть от DL50.

Механизмы действия гликозаминогликанов:

1. Подавление синтеза липидов.

2. Подавление активности протеолитических ферментов.

3. Подавление синергического действия ферментов и кислородных радикалов.

4. Снижение биосинтеза медиаторов воспаления за счет маскирования вторичных антигенных детерминант и подавления хемотаксиса.

5. Подавление апоптоза.

6. Построение коллагеновых волокон.

7. Регуляция пролиферации клеток.

8. Регуляция биосинтеза компонентов межклеточного матрикса.

9. Улучшение процессов микроциркуляции.

10. Перестройки в структурах протеогликанов.

11. Регуляция хондро- и остеогенеза.

3. Представление о синтезе углеводных компонентов гликозаминопротеогликанов

Углеводными компонентами гликозаминопротеогликанов являются гетерополисахариды: гиалуроновая кислота, хондроитинсульфаты, кератансульфат или дерматансульфат, присоединенные к полипептидной части молекулы с помощью О-гликозидной связи через остаток серина. Молекулы этих полимеров имеют неразветвленную структуру. Сама же молекула состоит из связующего блока, состоящего из 4 мономерных единиц (Кси, Гал, Гал и Гл. К), соединенных между собой опять-таки гликозидными связями и основной части, построенной из "n"-ного числа биозных фрагментов, в состав каждого из которых входит остаток ацетилглюкозамина (АцГлАм) и остаток глюкуроновой кислоты (Гл. К) , причем связи внутри блока и между блоками -- О-гликозидные. Число "n" составляет несколько тысяч.

Синтез полипептидной цепи идет на рибосомах с помощью обычного матричного механизма. Далее полипептидная цепь поступает в аппарат Гольджи и уже непосредственно на ней происходит сборка гетерополисахаридной цепи. Синтез носит нематричный характер, поэтому последовательность присоединения мономерных единиц определяется специфичностью участвующих в синтезе ферментов. Эти ферменты носят общее название гликозилтрансферазы. Каждая отдельная гликозилтрансфераза обладает субстратной специфичностью как к присоединяемому ею моносахаридному остатку, так и к структуре надстраиваемого ею полимера.

Пластическим материалом для синтеза служат активированные формы моносахаридов. В частности, при синтезе гиалуроновой кисло - ты используются УДФ-производные ксилозы, галактозы, глюкуроновой кислоты и ацетилглюкозамина.

Вначале под действием первой гликозилтрансферазы (Е1) происходит присоединение остатка ксилозы к радикалу серина полипептидной цепи, затем при участии двух различных гликозилтрансфераз (Е2 и Е3) к строящейся цепи присоединяется 2 остатка галактозы и при действии четвертой галактозилтрансферазы (Е4) завершается формирование связующего олигомерного блока присоединением остатка глюкуроновой кислоты. Дальнейшее наращивание полисахаридной цепи идет путем повторного чередующегося действия двух ферментов, один из которых катализирует присоединение остатка ацетилглюкозамина (Е5), а другой - остатка глюкуроновой кислоты (Е6).

В состав хондроитинсульфатов, кератансульфатов и др. гликозаминогликанов встречаются сульфатированные остатки мономерных единиц. Это сульфатирование происходит после включения соответствующего мономера в полимер и катализируется специальными ферментами. Источником остатков серной кислоты является фосфоаденозинфосфосульфат (ФАФС) активированная форма серной кислоты.

4. Представление о синтезе гетероолигосахаридных компонентов гликопротеидов

углеводный карбонильный гомополисахарид

Углеводные компоненты гликопротеидов могут быть присоединены к белковой части молекулы с помощью О-гликозидной связи через ОН - радикала серина или с помощью N-гликозидной связи через амидный азот радикала аспарагина. Механизмы синтеза этих гетеоролигосахаридных компонентов гликопротеидов имеют существенные различия.

Если гетероолигосахаридный блок присоединен к белковой части гликопротеида О-гликозидной связью, то его сборка идет непосредственно на полипептидной цепи, синтезированной на рибосомах. В качестве пластического материала для синтеза используются активированные остатки моносахаридов или их производных, причем используются не только УДФ-производные мономеров, но также и другие варианты, например ГДФ-манноза или ЦДФ-сиаловая кислота. Последовательность присоединения мономеров определяется специфичностью работающих ферментов - гликозилтрансфераз. Если же углеводный компонент гликопротеина присоединен к белковой части молекулы N-гликозидной связью, то предварительная сборка гетероолигосахаридного блока происходит на специальном переносчике долихолфосфате, который встроен в мембрану эндоплазматической сети. Синтезируемый гетероолигосахарид постепенно наращивается на пирофосфатном конце молекулы опять же с участием гликозилтрансфераз, а затем с помощью специальной гликозилтрансферазы гетероолигосахаридный блок целиком переносится на амидную группу полипептидной цепи гликопротеида. Этот гетероолигосахаридный блок может быть полностью сформированным или же он нуждается еще в дополнительной достройке, которая обычно завершается в аппарате Гольджи. Далее готовый гликопротеид транспортируется или в нужную часть клетки, или же секретируется в межклеточную среду - туда, где данный белок выполняет свои функции.

Заключение

Углеводы играют чрезвычайно важную роль в питании человека. Углеводы являются важнейшим источником энергии для организма, которая необходима для обеспечения жизнедеятельности каждой клетки человеческого организма. При биологическом окислении углеводов образуется большое количество энергии. Так, например, при окислении 1г. углеводов, образуется энергия равная 16.7 Кдж или 4 Ккал. Обеспечение организма энергией является главной функцией углеводов, однако, их роль для человека не ограничивается только этой функцией.

Углеводы выполняют разнообразные регуляторные функции, так, например, они препятствуют накоплению кетонов при окислении жиров. При нарушении углеводного обмена (сахарный диабет), у человека могут развиваться различные заболевания, например, ацидоз, когда смещается кислотно-щелочной баланс организма в кислую сторону. Это происходит, когда углеводы не выполняют свою функцию по выводу продуктов окисления органических кислот.

Существуют углеводы, которые выполняют специализированные функции в организме. Например, гиалуроновая кислота препятствует проникновению болезнетворных бактерий через стенки клеток, гепарин предотвращает свертывание крови в сосудах.

Велика роль углеводов для различных защитных реакций, особенно тех, которые протекают в печени. Глюкуроновая кислота может вступать в реакцию с некоторыми токсичными веществами, в результате образуются нетоксичные, растворимые в воде эфиры, которые легко удаляются из организма с мочой.

В организме человека углеводы накапливаются в небольших количествах (1% от массы тела), поэтому они должны поступать с пищей постоянно.

Литература

1. Биохимия с упражнениями и задачами, под редакцией Е.С. Северина, 2008.

2. Т.Т. Березов, Б.Ф. Коровкин, Биологическая химия, Москва 1990.

3. А.Я. Николаев, Биологическая химия, 1989.

Размещено на Allbest.ru

...

Подобные документы

  • Строение молекул, физические свойства и применение альдегидов. Органические соединения, содержащие карбонильную группу. Формулы изомерных карбонильных соединений. Особенности применения формальдегида в промышленности, сельском хозяйстве, фармакологии.

    презентация [145,0 K], добавлен 22.03.2014

  • Химический состав и органические вещества клетки. Общая формула углеводов как группы органических соединений, особенности их получения, классификация, значение и функции, а также специфика их применения. Строение молекул моно-, олиго- и полисахаридов.

    презентация [537,7 K], добавлен 23.05.2010

  • Углеводы как органические вещества, молекулы которых состоят из атомов углерода, водорода и кислорода, знакомство с классификацией: олигосахариды, полисахариды. Характеристика представителей моносахаридов: глюкоза, фруктовый сахар, дезоксирибоза.

    презентация [1,6 M], добавлен 18.03.2013

  • Биохимические свойства аминокислот - органических соединений, в молекулах которых один или несколько атомов водорода углеродной цепи замещены на группу -NH2. Аминокислоты как пищевая добавка. Аминокислотные препараты. Биологическая роль аминокислот.

    презентация [3,0 M], добавлен 27.02.2017

  • Общая формула углеводов, их первостепенное биохимическое значение, распространенность в природе и роль в жизни человека. Виды углеводов по химической структуре: простые и сложные (моно- и полисахариды). Произведение синтеза углеводов из формальдегида.

    контрольная работа [602,6 K], добавлен 24.01.2011

  • Строение молекулы, номенклатура, изомерия, физические, химические свойства, методы получения и сферы применения альдегидов или органических соединений, содержащих карбонильную группу, в которой атом углерода связан с радикалом и одним атомом водорода.

    презентация [331,9 K], добавлен 23.03.2016

  • Полимеры как органические и неорганические, аморфные и кристаллические вещества. Особенности структуры их молекулы. История термина "полимерия" и его значения. Классификация полимерных соединений, примеры их видов. Применение в быту и промышленности.

    презентация [1,5 M], добавлен 10.11.2010

  • Алифатические спирты - соединения, содержащие гидроксильную группу (-ОН), связанную с sp3-гибридизованным атомом углерода. Разделение спиртов на три большие группы: простые спирты, стерины и углеводы. Гидролиз галогеналканов в водных растворах щелочей.

    реферат [152,7 K], добавлен 21.02.2009

  • Изучение состава чая, вещества, образующиеся и накапливающиеся в чайном листе. Применение и свойства кофеина и фенольных соединений. Углеводы - важная группа химических соединений, входящих в состав чайного растения. Содержание и роль минеральных веществ.

    реферат [427,2 K], добавлен 30.07.2010

  • Органические соединения І группы. Натрииорганические соединения - органические соединения, содержащие связь C-Na. Органические производные кальция, стронция, бария и магния. Борорганические соединения. Соединения алюминия. Кремнийорганические соединения.

    реферат [122,8 K], добавлен 10.04.2008

  • Карбоновые кислоты-органические соединения, содержащие карбоксильную группу (карбоксил). Номенклатура и изомерия. Физические свойства. Химические свойства. Уксусная (метанкарбоновая, этановая) кислота СН3-СООН. Применение кислот в прмышленности.

    реферат [73,1 K], добавлен 16.12.2007

  • Углеводы - органические соединения: классификация, распространение; функции регулятора биохимических процессов в клетках живых организмов. Лактоза - молочный сахар: химические и биологические свойства, использование, технология синтеза дисахарида.

    курсовая работа [151,8 K], добавлен 14.06.2011

  • Преимущество электрохимического метода синтеза комплексных соединений. Выбор неводного растворителя. Принципиальная схема синтеза и конструкция электрохимической ячейки. Основные методы исследования состава синтезированных комплексных соединений.

    курсовая работа [1,2 M], добавлен 09.10.2013

  • Свойства ацетатов и ацетатных комплексов d-элементов 6 и 7 групп. Кластерные комплексы и комплексы, не содержащие связи Ме-Ме. Соединения ионного характера (соли). Синтез кластерного комплекса ацетата хрома(II). Физические свойства соединений, получение.

    курсовая работа [3,1 M], добавлен 12.12.2010

  • Органические соединения, содержащие атом гидроксила. Способы получения фенолов, их кислотные свойства. Реакции электрофильного замещения в ароматическом кольце, конденсация фенолов с альдегидами и кетонами, алкилирование, ацилирование по Фриделю-Крафтсу.

    курсовая работа [200,3 K], добавлен 14.05.2012

  • Ацильные соединения - производные карбоновых кислот, содержащие ацильную группу. Свойства кислот обусловлены наличием в них карбоксильной группы, состоящей из гидроксильной и карбонильной групп. Способы получения и реакции ангидридов карбоновых кислот.

    реферат [174,1 K], добавлен 03.02.2009

  • Характеристика некоторых химических соединений на основе хинолина. Особенности синтеза двух азокрасителей ряда 8-гидроксихинолина. Метод синтеза потенциального флюоресцентного индикатора, реагентов для модификации поверхности матрицы металлоиндикаторами.

    курсовая работа [76,3 K], добавлен 03.04.2014

  • Изучение метода синтеза соединений с простой эфирной связью, меркаптанов и аминов. Исследование реакций бимолекулярного нуклеофильного замещения. Анализ условий синтеза меркаптанов из хлорпроизводных. Технология жидкофазного синтеза. Реакционные узлы.

    презентация [137,2 K], добавлен 23.10.2014

  • Разработка методов синтеза хиноксалинопорфиразинов и их металлокомплексов. Особенности комплексных соединений природных и синтетических порфиринов, их строение и спектральные свойства. Основные способы синтеза фталоцианина и его структурных аналогов.

    дипломная работа [416,8 K], добавлен 11.06.2013

  • Белки (протеины) как сложные органические соединения. Формулы аминокислот. Строение молекулы белка, явление денатурации белка. Что такое углеводы, их строение, химическая формула. Самые распространенные моносахариды и полисахариды. Жиры и липоиды.

    реферат [29,4 K], добавлен 07.10.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.