Химическая связь и строение молекул
Взаимное сцепление атомов в молекуле и кристаллической решетке в результате действия между атомами электрических сил применения. Создание представления о химической связи и ее электронной природе. Характеристики ковалентной, ионной и металлической связи.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 07.12.2014 |
Размер файла | 109,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
1. Химическая связь и строение молекул
2. Метод молекулярных орбиталей
Список использованной литературы
1. Химическая связь и строение молекул
Химическая связь - это взаимное сцепление атомов в молекуле и кристаллической решетке в результате действия между атомами электрических сил применения.
Появления атомной модели бора, впервые объяснившей строение электронной оболочки атома, способствовало созданию представления о химической связи и ее электронной природе. В 1915 году немецкий физик Коссель дал объяснение химической связи в солях, в 1916 году. Американский физико-химик Льюис предположил трактовку химической связи в молекулах. Коссель и Льюис исходили из представления о том, что атомы элементов обладают тенденцией к достижению электронной конфигурации благородных газов. Атомы благородных газов, кроме элемента первого периода - гелия имеют во внешнем слое, т.е. на высшем энергетическом уровне, устойчивый объект (восемь) электронов; при таком строении способность атомов к вступлению в химические реакции минимальна, например, в противоположность атомам водорода, кислорода, хлора и другим, атомы благородных газов не образуют двухатомных молекул. Представления Косселя и Льюиса получили в истории химии название октетной теории, или электронной теории валентности.
Валентность элементов главных групп Периодической системы зависит от числа электронов, находящихся во внешнем слое электронной оболочке атома. Поэтому эти внешние электроны принято называть валентными. Все изменения, происходящие в электронных оболочках атомов при химических реакциях, касаются только валентных электронов. Для элементов побочных групп в качестве валентных могут выступать как электроны высшего энергетического уровня, так и электроны внутренних незавершенных подуровней.
Развитие квантово-механических представлений о строении атома и создание орбитальной модели атома привели к выработке двух современных научных подходов для объяснения химической связи - метода валентных связей и метода молекулярных орбиталей. Оба метода не взаимо исключают, а дополняют друг друга и позволяют трактовать процесс формирования химической связи и выяснить внутреннее строение веществ.
Различают три основных (модельных) типа химической связи: ковалентную, ионную и металлическую связи. Эти типы химической связи не существуют изолированно друг от друга в реальных веществах, они являются только моделями различных форм химического связывания, которые реализуются в действительности как в промежуточные формы связи.
Значительно более слабые, чем ковалентная, ионная и металлическая связи, межмолекулярные силы, которые обеспечивают взаимное удерживание твердого диоксида углерода, или в жидкостях, например, в воде. Эти силы называются силами Ван-дер-Ваальса.
Ковалентная связь
Химическая связь, возникающая в результате образования общих (связывающих) электронных пар, называется ковалентной или атомной связью.
Простейший пример ковалентной связи - образование молекулы водорода Н 2. Атомы водорода имеют следующую электронную оболочку: 1S1. Внешний энергетический уровень является незавершенным: до завершения не хватает одного электрона. При сближении двух атомов водорода происходит взаимодействие электронов с антипараллельными стенами с формированием общей электронной пары:
Объяснение механизма образования химической связи за счет общих электронных пар лежит в основе метода валентных связей. Схему образования ковалентной связи можно также показать, обозначив неспаренный электрон внешнего энергетического уровня атома одной точкой, а общую электронную пару - двумя точками:
Н + Н Н : Н
Общую электронную пару или ковалентную связь часто обозначают черточкой, например, Н - Н.
Общая электронная пара образуется в результате перекрывания S - орбиталей атомов водорода, на которых находятся электроны с противоположными спиновыми квантовыми числами. При этом в области перекрывания орбиталей создается повышенная электронная плотность.
Рассмотрим возникновение ковалентной связи в молекуле фтора. Атом фтора имеет семь электронов на внешнем энергетическом уровне, причем на 2р - подуровне находится один неспаренный электрон:
При сближение двух атомов фтора происходит перекрывание 2р - орбиталей с неспаренными электронами, в результате формируется общая электронная пара:
F+FFFили F - F
У каждого атома фтора в молекуле Р 2 сохраняется три неподеленные электронные пары.
Существуют молекулы, в которых между двумя атомами возникают две или три общие электронные пары. Такие ковалентные связи называются двойными и тройными, а общее их название - кратные связи.
Например, в образовании химических связи в молекуле азота N2 участвуют по три электрона каждого атома азота:
В этом случае образуется три общие электронные пары:
NNилиNN
Таким образом, ковалентной называется связь, осуществляемая одной или несколькими общими электронными парами.
а) Важнейшие характеристики ковалентной связи
Характеристиками химической связи, в том числе ковалентной являются ее полярность, энергия и длина. Особое свойство ковалентной связи - ее направленность.
Если общая электронная пара симметрична относительно атомов, то ковалентная связь называется неполярной. Неполярная ковалентная связь образуется при взаимодействии атомов с одинаковой электроотрицательностью. В рассмотренных выше примерах - молекулах Н 2Р 2 и N2 существует неполярная связь.
Если взаимодействующие атомы имеют различную электроотрицательность, то общая электронная пара смещена к атому с большей электроотрицательностью. В этом случае возникает полярная ковалентная связь. Например, полярной является связь в молекуле фтороводорода НР. При образовании молекулы происходит перекрывание S - орбитами атома фтора. Общая электронная пара расположена несимметрично относительно центров взаимодействующих атомов. Схему образования связи Н-Р можно представить так:
Н+FHF
Полярность связи в молекуле можно показать стрелкой, направленной в сторону атома с большей электроотрицательностью: НF.
В результате смещения электронной пары в молекуле НF возникает диполь. Диполь - это система из двух зарядов, равных по абсолютной величине, но противоположных по знаку. Принимают, что атом, к которому смещена общая электронная пара, приобретает некоторый отрицательный заряд, а другой атом - положительный заряд:
-
Многие молекулы, в которых возникают диполи, являются полярными. Вместе с тем существуют молекулы, которые не являются полярными, несмотря на полярный характер химических связей в них. К таким молекулам относится, например, молекула оксида углерода (IV), имеющая линейное строение:
Две одинаковые полярные связи, направленные под углом 180 и компенсируют электрические моменты друг друга, поэтому молекула является неполярной.
Прочность химической связи характеризуется энергией связи, т.е. энергией необходимой для разрыва связи. Значения энергии разрыва химических связей обычно приводятся в расчете на 1 моль вещества. Так, для молекулы Н 2 энергия связи равна 432,1 КДЖ/моль, Р 2 - 155 КДЖ/моль, НР - 565,7 КДЖ/моль. Длина связи - расстояние между ядрами атомов, образующих связь, например, длина связи в молекуле Н 2 равна 0,074 нм, F2 - 0.142 нм, НР - 0,092 нм. Кратные связи короче простых, что можно проиллюстрировать примером связей углерод-углерод: длина одинарной связи С - С 0,154 нм, двойной С = С 0,134 нм, тройной С С 0,120 нм.
Ковалентная связь имеет направленность. В рассматриваемых выше примерах химической связи в молекулах Н 2, Р 2, НР за направление связи принимается линия, проходящая через центры взаимодействующих атомов.
Рассмотрим направленность ковалентных связей в молекулах воды. Строение электронной оболочки атома кислорода, входящего в состав молекул воды, выражается формулой:
Ковалентные связи атом кислорода образует за счет 2р - орбиталей с неспаренными электронами, которые расположены под углом 90 друг другу. Эти орбитали перекрываются с S-орбиталями атомов водорода. В результате образуется молекула, в которой связи направлены под углом друг к другу за счет взаимного отталкивания электронных пар угол между связями, в молекуле воды (валентный угол) равен 104,5.
б). Донорно-акцепторный механизм образования ковалентной связи
Ковалентная связь может образоваться при перекрывании полностью свободной орбитали одного атома и орбитали с не поделенной электронной парой другого атома:
В этом случае так же формируется общая электронная пара, только вклад каждого из атомов в химическую связь различен. Атом А, который представляет свободную орбиталь, называется акцептором, атом Д, представляющий электронную пару, является донором. Такой механизм образования ковалентной связи называется донорно-акцепторным.
Ионная связь
Чисто ионной связью называется химически связанное состояние атомов, при котором устойчивое электронное окружение достигается путем полного перехода общей электронной плотности к атому более электроотрицательного элемента.
На практике полный переход электрона от одного атома к другому атому - партнеру по связи не реализуется, поскольку каждый элемент имеет большую или меньшую электроотрицательность, и любая химическая связь будет в некоторой степени ковалентной. Если степень ковалентной связи достаточна высока, то такая химическая связь является полярной ковалентной связью с той или иной степенью ионности. Если же степень ковалентности связей мала, по сравнению со степенью ее ионности, то такая связь считается ионной.
Ионная связь возможна только между атомами электроположительных и электроотрицательных элементов, находящимися в состоянии разноименно заряженных ионов. Процесс образования ионной связи позволяет объяснить электростатическая модель, т.е. рассмотрение химического взаимодействия между отрицательно и положительно заряженными ионами.
Ионы - это электрически заряженные частицы, образующиеся из нейтральных атомов или молекул путем отдачи или приема электронов.
При отдаче или приеме электронов молекулами образуются молекулярные или многоатомные ионы, например, - атион диоксигена, - нитрит-ион.
Одноатомные положительные ионы, или одноатомные отрицательные ионы, или одноатомные анионы, возникают при химической реакции между нейтральными атомами путем взаимопередачи электронов при этом атом, электроположительного элемента, обладающий небольшим числом внешних электронов, переходит в более устойчивое состояние одноатомного катиона путем уменьшения числа этих электронов. Наоборот, атом электроотрицательного элемента, имеющий большое число внешних электронов, переходит в более устойчивое для него состояние одноатомного иона путем увеличения числа электронов. Одноатомные катионы образуются, как правило, металлами, а одноатомные анионы - неметаллами.
При передачи электронов атомы металлических и неметаллических элементов стремятся сформироваться вокруг своих ядер устойчивую конфигурацию электронной оболочки. Атом неметаллического элемента создает вокруг своего остова внешнюю оболочку последующего благородного газа. Тогда как атом металлического элемента после отдачи внешних электронов получает устойчивую октетную конфигурацию предыдущего благородного газа.
Ионные кристаллы
При взаимодействии металлических и неметаллических простых веществ, сопровождающемся отдачей и приемом электронов, образуются соли.
Ионная связь характерна не только для солей производного бескислородных и кислородосодержащих кислот [типа NaCl, AlF3, NaNO3, Al(SO4)3], но и для других классов неорганических веществ - основных оксидов и гидроксидов [типа Na2O и NaOH], бинарных соединений [типа Li3N и CaC2]. Между ионами с противоположными по знаку зарядами проявляются электростатические силы притяжения. Такие силы притяжения изотропны, т.е. действуют одинаково, во всех направлениях. В результате расположение ионов в твердых солях упорядочивается в пространстве определенным образом. Система упорядочено расположенных катионов и анионов называется ионной кристаллической решеткой, а сами твердые вещества (соли, основные оксиды и гидроксиды) - ионными кристаллами.
Все ионные кристаллы имеют солеобразный характер. Под солеобразным характером понимается определенный набор свойств, отличающий ионные кристаллы от кристаллических веществ с другими типами решеток. Конечно, не все ионные решетки характеризуются таким расположением ионов в пространстве, число ионов - соседей с противоположным зарядом может быть и иным, однако чередование катионов и анионов в пространстве является обязательным для кристаллов.
Вследствие того, что кулоновские силы притяжения распространяются одинаково по всем направлениям, ионы в узлах кристаллической решетки связаны относительно прочно, хотя каждый из ионов не зафиксирован неподвижно, а непрерывно совершает тепловые колебания вокруг своего положения в решетке. Поступательное же движение ионов вдоль решетки отсутствует, поэтому все вещества с ионными связями при комнатной температуре - твердые (кристаллические). Амплитуда тепловых колебаний может быть увеличена нагреванием ионного кристалла, которое приводит в итоге к разрушению решетки и переходу твердого вещества в жидкое состояние (при температуре плавления). Температура плавления ионных кристаллов относительно высока, а температура кипения, при которой совершается переход жидкого вещества в самое неупорядоченное, газовое состояние, имеет очень большие значения
Многие соли, особенно многоэлементные комплексные, а так же соли органических кислот могут разлагаться при температуре более низких, чем температура кипения и даже температура плавления.
Типичным свойством многих соединений с ионной связью (которые не взаимодействуют с водой или не разлагаются до плавления) является их способность к диссоциации на составляющие ионы; вследствие подвижности ионов водные растворы или расплавы ионных кристаллов проводят электрический ток.
В ионных кристаллах отсутствуют связи между отдельными парами ионов; точнее следует сказать, что все содержащиеся в образце ионного соединения катионы и анионы оказываются связанными.
В ионных кристаллах, построенных из катионов и анионов, молекулы отсутствуют.
Химические формулы ионных веществ передают только соотношение катионов и анионов в кристаллической решетке; в целом образец ионного вещества электронейтрален. Например, в соответствии с формулой ионного кристалла Al2O3 соотношение катионов Al3+ и анионов О 2- в решетке равно 2:3; вещество электронейтрально - шесть положительных зарядов (2 Al3+) нейтрализуется шестью отрицательными зарядами (3 О 2-).
Хотя реальных молекул в ионных кристаллах не существует для единообразия с ковалентными веществами принято с помощью формул типа NaClи Al2O3 передавать состав условных молекул, следовательно, характеризовать ионные вещества определенными значениями относительной молекулярной массы. Это тем более оправдано, поскольку переход от ковалентной связи к ионной происходит постепенно и имеют лишь условную границу с х = 1,7.
Относительная молекулярная масса веществ с ионной связью находится сложением относительных атомных масс соответствующих элементов с учетом числа атомов каждого элемента.
Строение и форма кристаллов являются предметом исследования кристаллографии, а связь свойств кристаллов и их строения изучает кристаллохимия. атом молекула ковалентный химический
Следует отметить, что соединений в которых существует только ионная связь практически нет. Всегда между соседними атомами в кристалле возникают и ковалентные связи.
Металлическая связь
Металлы и сплавы металлов кристаллизируются в форме металлических решеток. Узлы в металлической решетке заняты положительными ионами металлов. Все металлы, за редкими исключениями, кристаллизуются в одном из трех типов решеток. При кубической плотнейшей упаковке атомных остатков формируется гранецентрированная решетка; при гексагональной плотнейшей упаковке - гексагональная решетка. Кристаллы щелочных металлов, бария и некоторых переходных металлов образует объемно центрированную кубическую решетку. Названия решеток соответствуют упаковке атомных остатков в вершинах и серединах граней элементарного куба, в виде гексагональной призмы и в вершинах и геометрическом центре элементарного куба.
Заполнение гранецентрированной кубической и гексагональной решеток атомными остовами является максимально возможным при данных геометрических размерах атомных остатков металлов, поэтому такие виды упаковок атомов называются плотнейшими. Плотнейшим упаковкам атомов соответствует и максимальное координационное число решетки, т.е. число ближайших соседей, окружающих данный атомный остов в пространстве. Для кубической и гексагональной плотнейших упаковок координационное число равно 12; в объемно центрированной кубической решетке координационное число равно 8.
Валентные электроны, отделившиеся от атомов металлов и оставившие в узлах решетки соответствующие атомные остовы (катионы), более или менее свободно перемещаются в пространстве между катионами и обуславливают металлическую электрическую проводимость металлов. По аналогии с молекулами газообразного вещества, совершающими хаотическое движение, подвижные электроны рассматривают как электронный газ в металле.
Устойчивость металлической решетки обеспечивается наличием электростатического притяжения между положительно заряженными атомными остовами и отрицательно заряженными подвижными электронами, связывающие кулоновские силы действуют на все соседние атомные оставы равномерно и поэтому они менее прочные, чем силы направленного химического связывания в атомных кристаллических решетках. Вследствие этого большинство металлических простых веществ, в отличие от алмазоподобных веществ, имеют относительно низкие температуры плавления.
Подобно атомам в атомных решетках и ионам в ионных решетках, катионы в металлических решетках, не обладающие поступательным движением, постоянно совершают колебания вокруг положения узлов решетки. Амплитуда этих колебаний при нагревании возрастает, и при достижении температуры плавления металла решетка разрушается. Температура плавления металлов, как правило, возрастает с увеличением числа валентных электронов в их атомах и с уменьшением расстояния между атомами остовами в решетке - параметра решетки а.
Натрий плавится при более высокой температуре, чем калий, вследствие меньшего значения параметра, а кальций плавится при значительно более высокой температуре, чем калий, в основном по причине удвоенного числа валентных электронов.
Уж упаковки кристаллических решеток зависит пластическая деформируемость металлов. Она тем выше, чем больше в металлической решетке плотнейших шаровых слоев и чем меньше пустот, тормозящих скольжение слоев. Наименьшая ковкость у металлов с гексагональной решеткой промежуточная - с объемно-центрированной кубической решеткой и наибольшая - с гранецентрированной кубической решеткой.
Пример. При нагревании железа до 911С низкотемпературная объемно-центрированная кубическая решетка переходит в гранецентрированную кубическую решетку; по этой причине раскаленное железо значительно легче поддается ковке.
При затвердевании металлических расплавов происходит массовая кристаллизация и возникает одновременно множество мелких кристалликов, они называются кристаллитами. Рост кристаллита протекает в окружении подобных мелких кристаллов; при этом исключается значительное увеличение размеров кристаллитов и поэтому они не видны визуально на изломе металла и образец металла кажется монолитным.
Смеси двух или более индивидуальных металлов называются сплавами. В сплавах могут присутствовать в небольших количествах и некоторые неметаллы (С, Si, S). Распространенным методом получения сплавов является совместное нагревание их составных частей до полного расплавления смеси. Однако, есть металлы, которые не сплавляются друг с другом в любых отношениях.
Металлические сплавы можно классифицировать так: твердые растворы внедрения; твердые растворы замещения; смеси индивидуальных кристаллов металлов; смеси кристаллов интерметаллических соединений.
В сплавах, предоставляющих собой твердые растворы внедрения, часть межузельных полостей металлической кристаллической решетки занята атомами другого элемента. Такие примеси часто упрочняют сплав; например, чугун, сталь-железо, содержащее примесные атомы углерода, значительно тверже, чем чистое железо.
В сплавах - твердых растворах замещения часть атомов основного вещества заменена на атомы примесного элемента. Сплавы, состоящие из смеси индивидуальных кристаллических компонентов, образуются при соблюдении строго определенного соотношения; такие сплавы называются так же эвтектическими смесями. Эвтектической смесью является широко известный оловянный припой - третник (64% Sn и 36% Pb) с температурой плавления 181 С.
Сплавляемые металлы могут образовываться между собой химические соединения - интерметаллиды. Например, в бронзе присутствует интерметаллическое соединение состава Си 3 Sn, а в латуни - интерметаллид СиZn3. Важнейшей составной частью стали, является карбит железа Fe3 C (цементит), который так же относится к интерметаллическим соединениям. Состав интерметаллидов обычно не отвечает стехиометрической валентности элементов; интерметаллиды - это нестехометрические соединения, составляющие обширный класс неорганических веществ с нестехиометрическим составом. Многие элементы образуют несколько нестехиаметрических соединений: так железо с фосфором дает фосфиды состава Fe3 P, Fe2 P, FeP, FeP, FeP2. Формулы этих соединений указывают лишь на то, что для кристаллических решеток характерно определенное соотношение компонентов, например, в Fe3 С на каждые три атома Fe приходится один атом С.
Строение молекул
Молекула - это наименьшая частица химического соединения, обладающая его химическими свойствами.
Это определение молекулы действительно только при учете следующих двух ограничений. Во-первых, в форме молекул могут быть не только соединения, но и простые вещества, молекулы химического соединения, т.е. сложного вещества многоэлементны (H2O, NH3, CO2, H2SO4), молекулы простых веществ - одноэлементны (H2, O2, N2, Cl2, S8, P4и др). Поэтому в приведенном выше определении молекулы речь идет о многоэлементных молекулах.
Радиусы атомов и молекул выражаются очень малыми величинами, и в стомиллионных долях сантиметра и обычно измеряются в ангстремах, 1А равен 10-8 см.
Радиус молекулы СО 2 равен 1,66 10-8 см, что равно 1,66 А.
Диаметр молекулы N2 равен 3,1 10-8 см, а это равно 3,1 А. Длина молекулы натурального каучука равна 20000 А . масса молекулы кислорода равна 53,12 10-24 г. 1 г. водорода содержит около 6,02 1023 атомов. Чем больше масса молекул газа, тем ниже средняя скорость их движения; средние скорости молекул газообразных веществ обратно пропорциональны квадратным корням из чисел, выражающих их массы:
V1 : V2 =
Скорость движения молекул зависит от температуры: чем выше температура газа, тем больше средняя скорость движения его молекул. Эта зависимость выражается следующим уравнением:
V1 : V2 = ,
где Т - абсолютная температура
2. Метод молекулярных орбиталей
Метод молекулярных орбиталей метод, важнейший метод квантовой химии. В основе метода лежит представление о том, что каждый электрон молекулы описывается своей волновой функцией - молекулярной орбиталью (МО). Вследствие невозможности точно решить Шрёдингера уравнение для систем с двумя и более электронами, способ получения выражения для МО неоднозначен. На практике чаще всего каждую МО yi представляют как ЛКАО - линейную комбинацию атомных орбиталей (AO) cр (приближение МО ЛКАО) вида yi = Spcipcp, где i - номер МО, р - номер АО(автономная область), cip - алгебраические коэффициенты, являющиеся мерой вкладов индивидуальных АО(автономная область) в МО.
Это приближение основано на предположении, что в окрестности любого атомного ядра МО yi должна напоминать составляющие её АО(автономная область) cр этого атома. Поскольку при соединении атомов в молекулу изменения состояния электронов по сравнению с исходным можно считать не слишком радикальными, то в рассматриваемом приближении по-прежнему пользуются атомными волновыми функциями (хотя и не обязательно с параметрами свободных атомов). Вместе с тем описание электрона с помощью ЛКАО отображает те качественные изменения, которые произошли в состоянии электрона при образовании молекулы: о любом из электронов молекулы нельзя более утверждать, что он находится у определённого атома. Подобно тому, как в атоме водорода электрон можно с различной вероятностью обнаружить в разных точках околоядерного пространства, так и в молекуле электрон "размазан" по всей молекуле в целом.
В общем случае метод МО рассматривает образование химических связей как результат движения всех электронов в суммарном поле, созданном всеми электронами и всеми ядрами исходных атомов. Однако поскольку основной вклад в образование связей дают электроны наружных (валентных) оболочек, обычно ограничиваются рассмотрением только этих электронов. Полная волновая функция Y молекулы конструируется из одноэлектронных МО yi с учётом требования антисимметрии волновой функции Y (вытекающего из принципа Паули). Функции Y, yi и cp находят при решении уравнения Шрёдингера вариационным методом, обычно по схеме самосогласованного поля (ССП) Хартри - Фока.
Количественные расчёты многоэлектронных молекул сопряжены с серьёзными математическими и техническими трудностями. Полные неэмпирические расчёты по методу МО с достижением хартри-фоковского предела точности (который к тому же иногда недостаточен для количественного сравнения с экспериментом) осуществлены для молекул с числом электронов порядка 50. Поэтому большинство проводимых расчётов носит полуэмпирический характер и в них используются дополнительные приближения. Существуют многочисленные варианты метода ССП МО ЛКАО (различающиеся полнотой учёта межэлектронного взаимодействия и процедуры самосогласования), эффективность применения которых зависит от изучаемых объектов и их свойств. Существенно, что метод МО в его любой форме, даже в самых упрощённых вариантах, органически связан с пространственной симметрией молекул. Это позволяет получать вполне однозначную качественную информацию о многих свойствах молекул (степени вырождения энергетических уровней, величине магнитного момента, интенсивности спектральных линий и т. д.) вне зависимости от характера выбранного приближения.
Начиная с 1965 всё большее развитие получает новый вариант М. о. м., не использующий приближения МО ЛКАО. В этом варианте объединены статистическая модель атома и некоторые модели теории твёрдого тела. В результате удаётся построить специальные МО, которые удобно определять путём численного (не аналитического) решения уравнения Шрёдингера также по схеме ССП. Расчёты по этому новому методу, почти не уступая по точности неэмпирическим расчётам ССП МО ЛКАО, обычно требуют для своего проведения в 100--1000 раз меньше машинного времени (минуты вместо десятков часов). Указанный метод особенно перспективен для количественных расчётов больших молекул.
В химии метод МО (особенно в форме МО ЛКАО) важен тем, что позволяет получать данные о строении и свойствах молекул, исходя из соответствующих характеристик атомов. Поэтому почти все современные концепции химической связи и химической реакционной способности базируются на представлениях метода МО.
Список использованной литературы
1. Воскресенский П.И., Цветков Л.А. и др. Справочник по химии.- М., 1974.
2. Рудзитис Г.Е. Химия.- М., 1989.
3. Третьяков Ю.Д., Дайненко В.И. и др. Химия. Справочные материалы. -М., 1984.
4. Хомченко И.Г Общая химия..- М., 1987.
5. Дьюар М., Теория молекулярных орбиталей в органической химии, пер.(перевод) с англ.(английский), М., 1972;
6. Шусторович Е.М., Химическая связь, М., 1973
Размещено на Allbest.ru
...Подобные документы
Анализ химической связи как взаимодействия атомов. Свойства ковалентной связи. Механизм образования ионной связи, строение кристаллической решетки. Примеры межмолекулярной водородной связи. Схема образования металлической связи в металлах и сплавах.
презентация [714,0 K], добавлен 08.08.2015Типы химической связи: ковалентная, ионная и металлическая. Донорно-акцепторный механизм образования и характеристики ковалентной связи. Валентность и степень окисления элементов. Молекулы химических соединений. Размеры и масса атомов и молекул.
контрольная работа [45,3 K], добавлен 16.11.2010Понятие химической связи как взаимодействия между атомами, приводящее к образованию устойчивой системы, ее энергия и причины возникновения; относительный характер классификации. Знакомство с способами образования ковалентной, ионной и водородной связи.
презентация [1,3 M], добавлен 27.01.2014Ранние теории ковалентной связи. Правило октета и структуры Льюиса. Характеристики химической связи, корреляция между ними. Концепции электроотрицательности. Модель отталкивания электронных пар валентных оболочек. Квантовые состояния молекулы как целого.
лекция [1,9 M], добавлен 18.10.2013Характеристика ковалентной связи, понятия насыщаемости, направленности и полярности. Гибридизация атомных орбиталей и ионная связь. Межмолекулярные химические связи (вандерваальсовы силы). Типы кристаллических решеток. Молекулярная структура льда.
презентация [1,1 M], добавлен 11.08.2013Правило октета, структуры Льюиса. Особенности геометрии молекул. Адиабатическое приближение, электронные состояния молекул. Анализ метода валентных связей, гибридизация. Метод молекулярных орбиталей. Характеристики химической связи: длина и энергия.
лекция [705,2 K], добавлен 18.10.2013Характеристика ковалентной связи: насыщаемость, направленность, полярность. Гибридизация атомных орбиталей. Ионная, молекулярная, водородная и металлическая химические связи. Вандерваальсовы силы, межмолекулярное взаимодействие; кристаллические решетки.
презентация [1,1 M], добавлен 22.04.2013Определение типа химической связи в соединениях. Особенности изменения электроотрицательности. Смещение электронной плотности химической связи. Понятие мезомерного эффекта. Устойчивость сопряженных систем, их виды. Возникновение циклических соединений.
презентация [1,8 M], добавлен 10.02.2014Основные способы описания химической связи. Основные приближения метода потенциалов. Классификация ионов и свойства ионной связи. Расчет постоянной Маделунга. Определение констант в потенциале Борна-Майера. Ван-дер-ваальсова связь, ее компоненты.
презентация [165,3 K], добавлен 15.10.2013Понятие химической связи, способы ее описания. Свойства ионной связи, аспекты преобразования энергии в ней. Потенциалы отталкивания и притяжения. Признаки и компоненты ван-дер-ваальсового, ориентационного, поляризационного и дисперсионного взаимодействия.
презентация [165,3 K], добавлен 22.10.2013Основные приближения метода потенциалов. Ковалентная связь как вид химической связи, характеризуемый увеличением электронной плотности. Свойства и структура ковалентных кристаллов. Особенности двух- и многоатомных молекул. Оценка энергии связи в металлах.
презентация [297,1 K], добавлен 22.10.2013Возможные виды химических связей элементов. Анализ типов ковалентной связи. Обменный и донорно-акцептовый механизм ее образования. Принцип формирования полярных взаимодействий между атомами неметаллов и расположение связующей их электронной пары.
презентация [136,8 K], добавлен 13.04.2015Сравнительная характеристика органических и неорганических химических соединений: классификация, строение молекулярной кристаллической решетки; наличие и тип химической связи между атомами; относительная молекулярная масса, распространение на планете.
презентация [92,5 K], добавлен 11.05.2014Особенности валентности - образования у атомов определенного числа химических связей. Основные типы химической связи: ионная, ковалентная, водородная, металлическая. Виды кристаллов по типу химической связи: ионные, атомные, металлические, молекулярные.
курсовая работа [241,7 K], добавлен 19.10.2013Основные условия образования химической связи. Потенциал ионизации. Ковалентная связь. Перекрывание атомных орбиталей. Процесс смещения электронной пары к наиболее электроотрицательному атому. Координационная связь. Межмолекулярное взаимодействие.
курс лекций [811,3 K], добавлен 18.03.2009Строение металлов в твердом состоянии. Энергетические условия взаимодействия атомов в кристаллической решетке вещества. Атомно-кристаллическое строение. Кристаллические решетки металлов и схемы упаковки атомов. Полиморфные (аллотропические) превращения.
лекция [1,5 M], добавлен 08.08.2009Основы квантовой механики атома. Соотношение де Бройля. Уравнение Шредингера. Ионная (гетерополярная) связь. Расчет энергии ионной связи. Теория ковалентной (гомеополярной) связи. Метод валентных связей. Метод молекулярных орбиталей (МО).
курсовая работа [152,7 K], добавлен 17.02.2004Основные характеристики атомов. Связь кислотно-основных свойств оксида с электроотрицательностью. Разделение элементов на металлы и неметаллы. Типы химической связи. Схемы образования молекул простых веществ, углекислого газа. Общее понятие о валентности.
лекция [235,5 K], добавлен 22.04.2013Простейшая одноэлектронная двуцентровая связь, иона водорода. Максимальное число возможных в природе различных химических связей между парами атомов. Круг специфических физических явлений, приводящих к образованию химических связей, теории валентности.
реферат [169,5 K], добавлен 29.01.2009Химическое строение - последовательность соединения атомов в молекуле, порядок их взаимосвязи и взаимного влияния. Связь атомов, входящих в состав органических соединений; зависимость свойств веществ от вида атомов, их количества и порядка чередования.
презентация [71,8 K], добавлен 12.12.2010