Комплексная переработка сырья фосфорного производства

Методы переработки фосфатных руд и фосфоангидрита. Отходы производства термической фосфорной кислоты. Процессы обогащения руд. Выщелачивание серы из фосфогипса с помощью сульфатредуцирующих и других бактерий. Вспучивание расплавленных фосфорных шлаков.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 30.11.2014
Размер файла 31,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РЕФЕРАТ

КОМПЛЕКСНАЯ ПЕРЕРАБОТКА СЫРЬЯ ФОСФОРНОГО ПРОИЗВОДСТВА

Содержание

Введение

Методы переработки фосфатных руд

Процесс переработки фосфоангидрита

Отходы производства термической фосфорной кислоты

Список литературы

Введение

Фосфатные руды представлены 2 основными группами природных образований -- Фосфоритами и апатитами ; гораздо реже алюмо- и железофосфатами. Главным минеральным компонентом фосфатных руд являются разновидности фосфатов группы Апатита: фтор-апатит преимущественно в эндогенных месторождениях. Кроме фосфатных в состав фосфатных руд входят др. минералы; часть из них представляет собой попутные полезные компоненты (нефелин, сфен, титаномагнетит, магнетит, редкометалльные), а также примеси урана и входящие в состав фосфатов фтор и изоморфные примеси -- стронций, редкоземельные элементы. К вредным, или балластным, минералам фосфатных руд, осложняющим их обогащение и технологическую переработку, относятся доломит, кальцит, кварц, халцедон, глауконит, глинистые и слюдистые минералы, пирит, гидрооксиды железа, форстерит и др. Современная задача горнодобывающей промышленности состоит в обнаружении новых и усовершенствовании уже имеющихся способов переработки и комплексного использования фосфоросодержащих руд, а так же наиболее полное извлечение как основного так и попутных компонентов.

Методы переработки фосфатных руд

Основное количество добываемых фосфатных руд служит для производства фосфорсодержащих минеральных удобрений. Наиболее важны апатитовые и фосфоритные руды, содержащие минералы апатитовой группы с общей формулой Са5[PO4]3(F, Cl, ОН). Кроме апатита, фосфатные руды содержат минералы-примеси.

В зависимости от состава руд и ряда других факторов применяют различные методы химической переработки природных фосфатов, причем руду в большинстве случаев предварительно размалывают и подвергают обогащению различными способами. Процессы обогащения руд сопровождаются образованием больших количеств твердых отходов в виде хвостов и пыли, уносимой с воздухом аспирационных систем и с газами сушильных установок.

Концентраты фосфатного сырья перерабатывают химическим путем двумя группами методов. К первой группе относится прямая кислотная или термическая переработка сырья с непосредственным получением готовых продуктов: суперфосфатов, обесфторенных фосфатов и др. Вторая группа -- это разложение фосфатов с получением термической и экстракционной фосфорных кислот, которые служат для производства различных продуктов, в том числе и минеральных удобрений.

Например, при прямой сернокислотной обработке фосфатов получают простой суперфосфат, являющийся низкоконцентрированным фосфорным удобрением, содержание усвояемой Р2О5 в котором обычно не превышает 20%. В этой связи вполне понятно стремление частично или полностью заменить серную кислоту на фосфорную. Последнюю в промышленности получают из фосфатов двумя методами: сернокислотным (экстракционным, или мокрым) и электротермическим.

Отходы производства экстракционной фосфорной кислоты. В качестве твердого отхода производства фосфорной кислоты сернокислотным способом образуется фоефогипс -- сульфат кальция с примесями фосфатов. На 1 т Р2О5 в фосфорной кислоте в зависимости от используемого сырья получают от 3,6 до 6,2 т фосфогипса в пересчете иа сухое вещество (7,5--8,4 т в пересчете на дигидрат). В зависимости от условий получения фосфорной кислоты в осадке образуется дигидрат CaSО4*2H20, полугидрат CaS04-0,5H20 или безводный сульфат кальция, что и обусловливает соответствующие названия продуктов -- фосфо- гипс, фосфополугидрат и фосфоангидрит. Эти отходы представляют собой серый мелкокристаллический комкующийся порошок влажностью до 25--40 % (в зависимости от условий получения фосфорной кислоты). В пересчете на сухое вещество они содержат до 94% CaS04. Основными примесями в них являются не- прореагировавшие фосфаты, полуторные оксиды, соединения фтора и стронция, неотмытая фосфорная кислота, органические вещества. В них присутствуют соединения марганца, молибдена, кобальта, цинка, меди, редкоземельных и некоторых других элементов.

Основную массу образующегося фосфогипса в настоящее время сбрасывают в отвалы. Транспортирование фосфогипса в отвалы и его хранение связаны с большими капитальными и эксплуатационными затратами, достигающими 40% стоимости сооружения и эксплуатации основного производства, и осложняет работу заводов. В настоящее время на отвалах предприятий СССР находится более 150 млн. т фосфогипса и его количество продолжает увеличиваться ежегодно примерно на 10 млн. т (в пересчете на дигидрат). В этой связи уже давно возникла и продолжает усугубляться необходимость использования этого отхода в народном хозяйстве. Ниже рассмотрены внедренные методы и перспективные пути использования фосфогипса.

По агрохимической значимости для растений сере отводят четвертое место среди питательных элементов. В этой связи фосфогипс, содержащий до 22,1% серы и до 0,5% неотмытой фосфорной кислоты, может быть использован как содержащее серу и фосфор минеральное удобрение. Однако использование такого низкоконцентрированного удобрения экономически оправданно только на сравнительно небольших расстояниях от заводов, не превышающих 500 км.

Утилизация фосфогипса возможна в цементной промышленности (в качестве минерализатора при обжиге и добавки к цементному клинкеру), для химической мелиорации солонцовых почв, для получения сульфата аммония, цемента и серной кислоты, элементной серы и цемента (или извести), извести и серной кислоты, гипсовых вяжущих материалов и изделий из них и по ряду других направлений.

Для использования в цементном производстве фосфогипс гранулируют и подсушивают в барабанных сушилках до содержания гигроскопической влаги около 5%. Применение фосфогипса в этом производстве уменьшает расход топлива, повышает производительность печей и качество цементного клинкера, удлиняет срок службы футеровки печей. Вместе с тем, широкомасштабное потребление фосфогипса в цементной промышленности сдерживается значительным содержанием таких регламентируемых для сырьевых материалов примесей, как водорастворимый P2O5 и соединения фтора. С целью кондиционирования фосфогипса в этой связи разработаны различные приемы его обработки (перед дегидратацией и гранулированием) водой, кислотами, щелочами, частично реализованные в производственной практике как в нашей стране, так и за рубежом. Утилизация фосфогипса в качестве минерализатора при обжиге сырьевых смесей на цементный клинкер обеспечивает экономический эффект по сравнению с использованием природного гипсового камня в размере 1,95 руб/т. Добавка фосфогипса к цементному клинкеру для регулирования сроков схватывания цемента дает эффект, составляющий 1,22 руб/т.

Процесс переработки фосфоангидрита

Процесс переработки фосфоангидрита или природного гипса с получением серной кислоты и цемента осуществлен в промышленном масштабе в ряде стран (Австрия, ГДР, ПНР, ЮАР), значительное внимание его освоению уделяется и в нашей стране. Для получения цементного клинкера и диоксида серы приготовляют шихту, содержащую фосфоан- гидрит, кокс, песок и глину.

Разработанные схемы различаются в основном способом приготовления шихты и некоторыми элементами аппаратурного оформления. Различают три способа приготовления шихты: сухой, мокрый и комбинированный. При сухом способе этот процесс сводится к простому смешиванию компонентов, при мокром процесс ведут в присутствии воды. Комбинированный способ предусматривает мокрое приготовление шихты, а для получения диоксида серы и цементного клинкера используют дегидратированный шлам. В этом случае шихта имеет более однородный состав, что улучшает ее последующую переработку. Кроме того, улучшаются санитарные условия производства.

Технологический процесс включает стадии сушки гипса, размола добавок и подготовки сырья для обжига (сухой способ). В процессе обжига шихты при температуре до 1400--1450 °С. идет восстановление сульфата кальция коксом и образование клинкера. Присутствующие в шихте песок и глина способствуют интенсификации протекающей при обжиге конверсии сульфата кальция. В качестве топлива для обжиговой печи используют мазут, газ или распыленный уголь. Получающийся клинкер размалывают.

Горячий газ, содержащий диоксид серы, очищают в циклонах и электрофильтрах и подают иа сернокислотную установку. На получение 1 т 98%-ной серной кислоты (для типовой установки производительностью 1000 т/сут) расходуется 1,6 т фосфоангидрита, 0,14 т глииы, 0,08 т песка, 0,11 т кокса, 85 м3 воды, 160 кВт-ч электроэнергии и 6,3 ГДж (1,5-30е ккал) топлива.

Реакция разложения CaS04 в присутствии восстановителя протекает в две стадии. На первой стадии образуются сульфид кальция и диоксид углерода (частично и СО):

CaSO4+2C --CaS+2CO2.

Вторая стадия может быть представлена двумя параллельными процессами:

CaS+3CaS04 --> 4Ca0+4S03, CaS+2S02 --> CaS04+S2.

При 900 "С скорости этих процессов близки, а при более высокой температуре преобладает первый из них. Процесс сопровождается побочными реакциями (CO2+C-->-2СО, 3CaS+CaS04--1-4CaO+2S2, S2+C---CS2) и прямим термическим разложением фосфоаигидрита (при 1100 "С достигает 5%). На побочные реакции расходуется углерод, поэтому его берут с избытком по отношению к стехиометрическому количеству согласно суммарной реакции

2CaS04+C -- 2CaO+2S02+C02.

Избыток углерода составляет 20% при переработке фосфоаигидрита, полученного при экстракции кислоты из фосфоритов, и 30% --в случае переработки апатитов. При больших избытках восстановителя получается слишком много сульфида кальция, при недостатке велик процент не разложившегося сульфата кальция.

Процесс очень чувствителен к кислороду: при высоком его содержании в газе выгорает сера (CaS + 202 =CaS04), а образование сульфата кальция приводит к формированию в печи трудноудаляемых наростов, колец, сваров настылей. Поэтому обжиг ведут при содержании в газовой фазе 0,5--0,6% кислорода. При 1200 °С в присутствии 20--30%-го избытка восстановителя получают газ концентрацией 10--13% S02. Остаточное содержание серы в твердой фазе составляет 0,2--0,5%.

Установлено, что присутствие в сульфате кальция фосфатов (до 15% Р2Об) не влияет на процесс его диссоциации, но ухудшает образование и кристаллизацию силикатов кальция в цементном клинкере, Фтор, переходящий в процессе обжига фосфогипса в газовую фазу, отравляет катализатор процесса конверсии S02 в S03. Поэтому, хотя одновременное присутствие фосфатов и фтора способствует стабилизации фазы трехкальциевого силиката 3Ca0-Si02, являющегося основным компонентом цементного клинкера, концентрация фтора и Р206 в фосфогипсе должна ограничиваться соответственно 0,15 и 0,5%.

Технико-экономические расчеты показывают, что себестоимость серной кислоты из фосфогипса в 1,4 раза выше, чем из флотационного колчедана, но может быть снижена при увеличении масштабов производства и его интенсификации.

На ряде зарубежных предприятий налажено производство сульфата аммония из фосфогипса. Процесс основан на взаимодействии фосфогипса и карбоната аммония (или NH4 и СО2) при атмосферном или повышенном давлении. Существуют два способа: жидкостной и газовый. Жидкостной способ имеет ряд преимуществ, так как при его реализации легче обеспечить отвод тепла экзотермических реакций путем циркуляции свежего раствора (МН4)2С03. Кроме того, образующиеся при газовом способе мелкие кристаллы СаС03 плохо отфильтровываются и отмываются.

Раствор (МН4)2С03 проходит серию реакторов, где взаимодействует с размолотым фосфогипсом. Менее растворимый СаСО3, образующийся в результате реакции, выпадает в осадок. Его фильтрованием отделяют от 35-- 40%-го раствора (NH4)2S04, который нейтрализуют серной кислотой (для удаления избытка NH3) и концентрируют в многокорпусной выпарной установке. Полученные выпариванием кристаллы (NH4)2S04 после центрифугирования высушивают. Для получения 1 т сульфата аммония расходуется 1340 кг гипса, 340 кг С02, 60 кг H2S04 и 260 кг NH3. Процесс экономически целесообразен при условии, что суточная производительность установки составляет не менее 300 т сульфата аммония.

Использование аммиака для производства сульфата аммония, получаемого в значительных количествах в качестве побочного продукта в таких крупнотоннажных производствах как коксохимическое, менее экономично, чем для производства более концентрированных и агрохимически Ценных азотных удобрений. Однако проблема использования процесса конверсии фосфогипса в сульфат аммония может быть весьма актуальной в связи с развитием азотно-сернокислотных схем переработки природных фосфатов для получения сложных удобрений. Замена части серной кислоты на сульфат аммония в этих процессах дает определенную экономию и тем самым увеличивает эффективность производства сложных удобрений. Это обстоятельство может быть проиллюстрировано на примере суммарных реакций процесса переработки азотнокислотной вытяжки по сульфатному способу.

При получении из фосфогипса 1 т сульфата аммония выделяется 760 кг высококачественного осажденного мела, который может быть использован в производстве строительных материалов, для известкования почв и ряда других целей.

Переработка фосфогипса в сульфат аммония может быть организована и в более сложном варианте, предусматривающем прокалку осажденного мела с последующим растворением образующегося СаО путем его обработки растворами аммонийных солей (например, NH4C1) и одновременным получением концентрата нерастворимых в них редкоземельных элементов. При этом насыщенный аммиаком раствор СаСЬ карбонизуют газами печей прокалки с целью регенерации NH4C1, а повторно образующийся осадок СаСОз вновь прокаливают с получением очищенного СаО, направляя газы прокалки на стадию карбонизации.

Большое внимание уделяется процессам переработки фосфогипса в элементную серу и известь, в серную кислоту и известь. Для этого сульфат кальция подвергают восстановлению коксом или продуктами конверсии природного газа:

CaS04+2C = CaS+2C02,

CaS04+4C0 = CaS+4C02,

CaSO4+4H2 = CaS+4H20.

По одной из схем влажный фосфогипс обезвоживают в реакторе , необходимую температуру в котором поддерживают сжиганием углеводородов, содержащихся в газах, поступающих из реактора II. Последний служит для конвертирования во взвешенном слое безводного CaSOt в CaS под действием восстанавливающих агентов, получающихся в результате неполного сгорания топлива при температуре около 850 °С.

Далее CaS обрабатывают в виде водной суспензии газообразным С02 с целью получения H2S:

CaS+H20+C02 = H2S+CaC03

Выделяющийся H2S может быть полностью сожжен до S02 с последующим получением серной кислоты или частично окислен для получения элементной серы по методу Клауса. Такой способ переработки фосфогипса представляет интерес для производственных объединений, включающих производство аммиака методом конверсии природного газа, при котором образуются значительные количества С02.

Определенный практический интерес представляет бактериальное выщелачивание серы из фосфогипса с помощью сульфатредуцирующих и других бактерий.

Ежегодно в мире сбрасывается в отвал около 80--100 млн. т фосфогипса, на что расходуется примерно столько же средств, сколько на добычу природного гипсового камня в таком же количестве. Поэтому очень важной является проблема получения высокопрочных гипсовых вяжущих материалов и строительного гипса на базе фосфогипса. В ряде зарубежных стран (Япония, Франция, Бельгия и др.) фосфогипс достаточно широко используют для этих целей (объем его мирового потребления в этом направлении составляет около 2,5% от производства).

В СССР в опытно-промышленных условиях освоен способ получения высокопрочного вяжущего (а-модификации полугидрата сульфата кальция), при котором фосфогипс обрабатывают в автоклавах с добавлением поверхностно-активных веществ и некоторых водорастворимых неорганических соединений в качестве регуляторов кристаллизации CaS04*0,5H20 при условиях, обеспечивающих переход дигидрата, полученного при переработке апатитового концентрата, в полугидрат. Образующуюся суспензию фильтруют, твердый осадок высушивают, крупные фракции подвергают размолу. Получающийся продукт используют для производства строительных изделий. На базе фосфогипсовых отходов на Воскресенском производственном объединении «Минудобрения» в течение ряда лет действует цех высокопрочного гипсового вяжущего мощностью 360 тыо.т/год, продукцией которого является широкий ассортимент изделий строительного назначения.

Аналогичная переработка фосфогипса, получаемого из фосфоритов Каратау, не требует использования специальных регуляторов кристаллизации CaS04-0,5H20 ввиду присутствия в нем обеспечивающих то же действие примесей. Возможным технологическим вариантом утилизации фосфогипса является его гидротермальная обработка в виде пульпы (Ж:Т=1) в автоклаве в течение 20--40 мин при температуре 140--170 °С с последующим отфильтровыванием образующихся кристаллов полугидрата и их сушкой дымовыми газами с получением готового продукта.

Возможно использование фосфогипса и в ряду других процессов. Исследуются, например, процесс получения из фосфогипса низкотемпературного цемента без разложения фосфогипса, а также процесс получения серной кислоты и цемента с неполным разложением фосфогипса. Основным преимуществом этих способов является то обстоятельство, что присутствующий в фос- фогипсе P2Os не влияет на ход минералообразования и не снижает активности получаемых сульфоминеральных цементов.

Одним из возможных, как уже отмечалось, и важных направлений утилизации фосфогипса является его использование для химической мелиорации солонцовых почв, причем особенно на содовых солонцах, где его мелиоративный эффект является наилучшим. Ассимиляция фосфогипса солонцовыми почвами приводит к образованию легко вымываемого из них сульфата натрия. Доза внесения фосфогипса составляет 6--7 т/га. Потребность в фосфо- гипсе для этой цели составляет более 2,2 млн. т, однако широкое его использование сдерживается необходимостью строительства установок подсушки и грануляции, так как большое содержание влаги в фосфогипсе осложняет работу механизмов для его внесения в почву. Потребление фосфогипса в сельском хозяйстве СССР составляет ежегодно около 1,4 млн. т. Экономические расчеты показывают, что каждый рубль, затраченный на мелиорацию солонцов, окупается двумя-тремя рублями в зависимости от зоны увлажнения, свойств солонцов и используемых приемов мелиорации.

Отходы производства термической фосфорной кислоты

Термическое восстановление трикальцийфосфата проводят при помощи углерода (кокса) в электропечах с введением .в шихту кремнезема в качестве флюса:

Саэ(Р04)3+5С+SiO2= Р2+5С0+СаSiO3

Процесс, сопровождается побочными реакциями.

Термическую фосфорную кислоту можно получать двумя способами: одно- и двухступенчатым. При одноступенчатом (непрерывном) способе печные газы сжигают, затем охлаждают, гидратируют и пропускают через электрофильтры для улавливания тумана образовавшейся фосфорной кислоты. Более совершенным является применяемый в настоящее время двухступенчатый способ, по которому фосфор сначала конденсируют из газов, а затем сжигают с последующей гидратацией образовавшегося P2O5 до фосфорной кислоты.

На I т получаемого фосфора в электропечи образуется до 4000 м3 газа с высоким содержанием оксида углерода, 0,1-- 0,5 т феррофосфора, 0,05--0,35 т пыли и 7,5--11 т силикатного шлака, а также около 50 кг ферросодержащих шламов.

Утилизация шлама, феррофосфора, пыли и газов. Образующийся в конденсаторах жидкий фосфор собирается под слоем воды в сборниках, откуда сифонируется в отстойники. Здесь фосфор расслаивается с образованием шлама (фосфор, пыль, диоксид кремния, сажа), из которого получают фосфорную кислоту.

Образующиеся при восстановлении Са3(Р04)2 и Ре205 фосфиды железа (Fe2P, Fe3P) периодически сливают из печи. При застывании их расплава образуется чугуноподобная масса-- феррофосфор, выход которого зависит от содержания в исходной руде оксидов железа. Его используют в основном в металлургии как присадку в литейном производстве или как раскис- литель, а также в качестве защитного материала от радиоактивного излучения.

Пыль, собирающаяся в электрофильтрах при очистке печных газов, может быть использована как минеральное удобрение, так как она содержит до 22% усвояемого Р2О5 и К20 (иногда до 15%).

Газ покидающий конденсаторы, содержит до 85% (об.) оксида углерода, 0,05% фосфора, 0,2--0,4 % РН-, 0,5 1 % H2S и другие примеси. Его обычно используют как топливо, но целесообразнее после очистки от примесей (РН3, H2S, Р и др.) использовать СО в химических синтезах.

Утилизация шлаков. Электротермическая возгонка фосфора сопровождается образованием больших количеств огненно-жидких шлаковых расплавов, содержащих в среднем 38-- 43% Si02, 2-5% А120з, 44-48% СаО, 0,5-3% Р205, 0,5-1% MgO, 0,5--1 % Ре203 и другие компоненты. Только на Чимкентском производственном объединении «Фосфор» их образуется около 2 млн. т/год. Решение проблемы рациональной утилизации фосфорных шлаков является задачей большой государственной важности. Однако оно осложняется особенностями химического состава таких шкалов. Присутствие в них фтора (примерно до 3,6% в виде Сар2), фосфора (примерно до 3,6% в виде P2Os), серы не дает возможности непосредственно применить для утилизации этих шлаков ряд методов, используемых, в частности, при переработке доменных шлаков. В этой связи в нашей стране были проведены исследования, направленные в основном на переработку фосфорных шлаков в строительные материалы и изделия из них: разработаны процессы получения гранулированных шлаков, шлакового щебня, шлаковой пемзы, минеральной ваты, литых и других строительных изделий и материалов. Использование электротермофосфорных шлаков в стране с этими целями превышает 2 млн. т/год.

Учитывая необходимость утилизации фтора, который в печном процессе в основном переходит в шлак, и применения гранулированного шлака, в ряде случаев целесообразно проводить гидротермическую обработку расплавленных шлаков непосредственно после их получения. Химические реакции, протекающие при взаимодействии расплавленных шлаков с водой или водяным паром, схематично могут быть представлены следующими уравнениями:

CaFs+H20+Si0a --2HF+Ca0-Si02, Ca3P2+3H20+3Si02 --2PH3+2Ca0-Si02, CaS+H2O+SiOa --H2S+Ca0-Si02.

Кроме того, в таких процессах содержащийся в шлаке фосфор образует с кислородом воздуха P2Os, дополнительные количества которого получаются, возможно, еще и при окислении РН3.

Перечисленные процессы протекают, например, при переработке расплавленного фосфорного шлака в шлаковую пемзу с применением струйных вододутьевых аппаратов. Для проведения данного процесса не требуется разработки новой аппаратуры, так как для этой цели можно использовать оборудование, проверенное и применяемое при переработке доменных шлаков.

Вспучивание расплавленных фосфорных шлаков для производства шлаковой пемзы вододутьевым способом может быть организовано на установках, выполненных в различных вариантах. Расплавленный шлак дробят струей воды под давлением в вододутьевом аппарате и дополнительно разрушают при ударе об экран, после чего он попадает на настил пластинчатого конвейера, где вспучивается в результате выделения газов и охлаждается. Застывшие горячие куски шлака конвейером подают в дробилку, где их измельчают примерно до размера 100 мм. После этого шлак охлаждают в чашевом охладителе и транспортером передают на последующую переработку. Выделяющиеся при вспучивании шлака газы отводят из газосборной камеры и галереи через газоотводные трубы,

Наиболее легкую шлаковую пемзу получают при переработке расплавленных шлаков бассейновым способом. Однако сложность герметизации опрокидных бассейнов существующих типов и отвода выделяющихся в них газов и паров заставляет отказаться от их применения для переработки фосфорных шлаков. Для этой дели требуются бассейны иных типов. фосфатный руда сера шлак

Производство шлаковой пемзы бассейновым способом является высокоэффективным процессом переработки фосфорных шлаков. Экономическая эффективность использования 1 т шлаков в виде шлаковой пемзы по сравнению с керамзитом составляет 10 руб. Вододутьевой способ еще эффективнее.

Гранулированные фосфорные шлаки можно использовать как активную минеральную добавку к цементной шихте (до 15%). Их применение в цементной промышленности позволяет снизить расход топлива на 6--7%. Шлакопортландцемент на основе фосфорных шлаков интенсивнее приобретает в изделиях прочность, которая превышает прочность обычных цементов. Экономическая эффективность замены производства 1 т цементного клинкера производством 1 т гранулированного шлака ориентировочно составляет 7,65 руб. Экономически целесообразным являются и производства из фосфорных шлаков шлакового, щебня, минеральной ваты, шлакоситалловых и других изделий.

Использование фосфорных шлаков, таким образом, позволяет повысить рентабельность основного производства и получить дополнительную продукцию без затраты дорогого и дефицитного сырья. При полной утилизации получаемых в стране фосфорных шлаков народному хозяйству может быть обеспечена ежегодная экономия в размере не менее 2 млн. руб.

Возможные пути утилизации фосфорных шлаков нс ограничиваются перечисленными направлениями. В США, например, фосфорные шлаки используют для известкования почв. В связи с важностью извлечения редкоземельных элементов при переработке фосфатного сырья в последние годы, значительное внимание уделяется вопросам химической переработки фосфорных шлаков с получением ряда ценных продуктов и концентратов редкоземельных элементов.

При выщелачивании шлаков электротермического производства фосфора- из апатитового сырья азотной кислотой, например, может быть получен дисперсный диоксид кремния и раствор нитрата кальция, перерабатываемый. » известково-аммиачную селитру, используемую в качестве удобрения, с одновременным получением соединений редкоземельных элементов их экстракцией трибутилфосфатом и реэкстракцией водой с последующим осаждение!* аммиаком в виде гидроксидов. Обработка таких шлаков соляной кислотой обеспечивает возможность получения концентрата редкоземельных элементов наряду с производством высокочистого диоксида кремния и товарного хлорида кальция. Проведенные экономические расчеты указывают иа возможность существенного увеличения эффективности использования в этих случаях исходного фосфатного сырья.

Комплексное использование фосфатного сырья. Выше отмечалось образование больших масс отходов в процессах обогащения фосфатных руд. Например, на 1 т апатитового концентрата в настоящее время получают 0,6--0,7 т нефелинового концентрата. Одним из важнейших путей утилизации таких отходов является их комплексная переработка в соответствии с разработанной в СССР технологией, обеспечивающей получение ряда ценных и дефицитных продуктов: соды, поташа, цемента,., глинозема.

В соответствии с этой технологией нефелиновый концентрат в порошкообразном виде спекают с известняком или мелом при последующем выщелачивании спека водой образовавшиеся алюминаты натрия и калия переходят в раствор. Затем водную пульпу подвергают фильтрованию от нерастворимых силикатов кальция, которые направляют в цементное производство, а фильтрат, содержащий Na2Si03, -- на автоклавное обескремнивание при давлении 0,6--0,7 МПа.

Образующийся осадок после дальнейшего отстаивания пульпы в сгустителе в виде шлама возвращают на спекание, а осветленный раствор подвергают карбонизации газами печей спекания:

Na2О • К2О • А12О3+2СО2+ЗН2О --2А1(ОН)3+Ма2СО32СО3.

Для получения глинозема осадок А1(ОН)3 отфильтровывают и подвергают кальцинации. В фильтрате (карбонатных щелоках) кроме Ма2СОз и К2С03 содержится определенное количество K2S04 и бикарбонатов натрия и калия, что обусловлено присутствием S02 в газах печей спекания и режимом процесса карбонизации. Для предотвращения коррозии аппаратуры кислые соли при помощи гидроксида натрия (каустической соды) переводят в углекислые:

NaHCO3+NaOH =Na2C03+H20;

КНСО3+КОН = К2С03+Н20.

Для получения нужного количества щелочей часть карбонатных щелоков подвергают каустификации:

(Na, К)2С03+Са(0Н)2 = 2(Na, К)0Н+СаС03.

Отфильтрованный и промытый шлам, полученный при каустификации, направляют на спекание. Содержащиеся в карбонатных щелоках соли выделяют затем методом политермического разделения, основанным на их различной растворимости при разных температурах.

Карбонатный телок, нейтрализованный щелочью (для перевода кислых солей в нейтральные), после карбонизации для освобождения от остатков А1203 и выделения осажденного А1(ОН)а подают на I стадию упаривания, где из него выделяется 25--30% соды. После отделения кристаллов соды маточник № 1 смешивают с маточником № 2, получаемым иа II стадии упариваиия, и этот раствор охлаждают до 35 °С. В процессе охлаждения в осадок выпадает K2SO4, который затем отделяют от раствора, поступающего иа И стадию упаривания, в результате которой выделяют остальные 70--75%. имевшейся в карбонатном щелоке соды. Отделенные на обеих стадиях упаривания осадки соды смешивают и обезвоживают.

Часть маточника №2, не пошедшую на смешение с маточником № 1, подают на III стадию упаривания, в результате которой кристаллизуется смесь двойной соли КгСОз-МагСОз, На2С0з и K2SO4. Осадок отделяют от суспензии и передают на растворение, в нейтрализованном карбонатном щелоке,, а жидкую фазу охлаждают для выделения K2CO3•1,5Н2О, который затем отфильтровывают и высушивают. Маточник № 3 возвращают на III стадию- упаривания и частично выводят из системы в виде поташного раствора. («60% К2С03).

Эксплуатационные затраты на получение перечисленных: продуктов по описанной технологии на 10--15% меньше затрат при раздельном их производстве. Кроме того, при определенных условиях может быть исключен сброс производственных сточных вод.

Разработан и безупарочный способ переработки карбонатных щелоков, при котором путем их карбонизации и высаливания аммиаком можно выделить в осадок в виде NaHC03 до 97% Na2C03 и до 85% K2SO4. Кроме того, по этому способу получаестся аммиачная вода, являющаяся жидким удобрением.

Значительный интерес представляет разработка процессов совместной переработки нефелина и фосфогипса. В этом случае наряду с получением глинозема, цемента, соды и поташа может быть выделен S02 с дальнейшим использованием его для получения серной кислоты или серы.

Наряду с этим могут быть получены цемент и сульфаты калия и натрия. Таким образом, замена известняка на фосфогипс в процессе комплексной переработки нефелина может позволить не только комплексно использовать апатитовое сырье, но и способствовать утилизации твердых отходов производства экстракционной фосфорной кислоты.

Список литературы

1. Переработка, обогащение и комплексное использование твердых полезных ископаемых: Учебник для вузов. В 3 т. Т. 2. Технология обогащения полезных ископаемых. Автор: Абрамов А.А.

2. Промышленная экология. Автор: О.А. Федяева. Конспект лекций. - Омск: Изд-во ОмГТУ, 2007. - 145 c.

3. Ф.Н. Капуцкий, В.Ф.Тикавый Пособие по химии для поступающих в вузы. -- Минск: Выш. школа, 1979. -- С. 384.

Размещено на Allbest.ru

...

Подобные документы

  • Физико-химические основы получения, свойства и сферы применение фосфорной кислоты. Специфика производства фосфорной кислоты экстракционным методом. Очистка сточных вод производства данного продукта. Схема переработки карбонатного щелока из нефелина.

    реферат [1,5 M], добавлен 09.01.2013

  • Общие сведения о фосфорной кислоте. Схема производства фосфора. Получение экстракционной фосфорной кислоты. Экстракторы для разложения фосфатного сырья. Сернокислотное разложение фосфатного сырья. Аппараты для разложения и кристаллизации сульфата кальция.

    курсовая работа [648,0 K], добавлен 24.12.2009

  • Ознакомление с историческими фактами открытия и получения фосфорной кислоты. Рассмотрение основных физических и химических свойств фосфорной кислоты. Получение экстракционной фосфорной кислоты в лабораторных условиях, ее значение и примеры применения.

    реферат [638,7 K], добавлен 27.08.2014

  • Полугидратный способ получения фосфорной кислоты. Возможность получения экстракционной фосфорной кислоты и увеличения эффективности стадии фильтрации пульпы в 1,5-2 раза по сравнению с дигидратным способом. Характеристика сырья и готовой продукции.

    курсовая работа [182,8 K], добавлен 05.04.2009

  • Общая схема сернокислотного производства. Сырьевая база для производства серной кислоты. Основные стадии процесса катализа. Производство серной кислоты из серы, из железного колчедана и из сероводорода. Технико-экономические показатели производства.

    курсовая работа [7,1 M], добавлен 24.10.2011

  • Характеристика золотосодержащего сырья и методы его переработки. Технологическая схема переработки сырья и описание основных этапов. Процесс выделения золота из тиомочевинных элюатов. Химизм процесса осаждения золота из тиомочевинных растворов.

    курсовая работа [4,1 M], добавлен 26.03.2008

  • Виды сырья, используемого в производстве, и его классификация. Технологическая схема, химическая, функциональная и структурная система производства серной кислоты контактным способом. Основные физико-химические процессы производства серной кислоты.

    курсовая работа [143,9 K], добавлен 26.12.2011

  • Анализ технологического процесса производства серной кислоты. Получение обжигового газа из серы. Контактное окисление диоксида серы. Материальный баланс для печи сжигания серы. Расчет сушильной башни, моногидратного абсорбера, технологических показателей.

    курсовая работа [1,1 M], добавлен 03.06.2014

  • Изучение физико-химических основ производства соды - Na2CO3. Характеристика ресурсно-сырьевой базы. Анализ технологических схем производства Na2CO3 и технико-экономических показателей. Жидкие и твердые отходы в производстве соды и методы их переработки.

    контрольная работа [1,5 M], добавлен 09.03.2010

  • Технология производства диоксида титана, области применения. Получение диоксида титана из сфенового концентрата. Сернокислотный метод производства диоксида титана из ильменита и титановых шлаков. Производство диоксида титана сульфатным и хлорный методом.

    курсовая работа [595,9 K], добавлен 11.10.2010

  • Первичные и основные способы переработки нефти. Увеличения выхода бензина и других светлых продуктов. Процессы деструктивной переработки нефтяного сырья. Состав продуктов прямой гонки. Виды крекинг-процесса. Технологическая схема установки крекинга.

    курсовая работа [1,8 M], добавлен 29.03.2009

  • Сущность нефтеперерабатывающего производства. Разделение нефтяного сырья на фракции. Переработка фракций путем химических превращений содержащихся в них углеводородов и выработка компонентов товарных нефтепродуктов. Атмосферно-вакуумная перегонка нефти.

    презентация [157,1 K], добавлен 29.04.2014

  • Описание промышленных способов получения серной кислоты. Термодинамический анализ процесса конденсации и окисления диоксида серы. Представление технологической схемы производства кислоты. Расчет материального и теплового баланса химических реакций.

    реферат [125,1 K], добавлен 31.01.2011

  • Технология получения серной кислоты контактным методом. Разработка технологической схемы включающей, сжигания серы, окисления диоксида серы и его абсорбции с получением товарной серной кислоты. Выбор и расчет основного аппарата – контактного аппарата.

    дипломная работа [551,2 K], добавлен 06.02.2013

  • Применение, физические и химические свойства концентрированной и разбавленной серной кислоты. Производство серной кислоты из серы, серного колчедана и сероводорода. Расчет технологических параметров производства серной кислоты, средства автоматизации.

    дипломная работа [1,1 M], добавлен 24.10.2011

  • Значение витамина С для организма человека. Строение и физико-химические свойства аскорбиновой кислоты, химическая схема производства. Характеристика стадий технологической схемы производства аскорбиновой кислоты. Выбор рационального способа производства.

    курсовая работа [2,9 M], добавлен 12.12.2010

  • Характеристика исходного сырья и готового продукта, требования к ним. Физико-химические основы производства, общее описание технологической схемы. Составление материального и теплового баланса печного отделения (для сжигания серы, котла-утилизатора).

    курсовая работа [348,9 K], добавлен 21.02.2016

  • Особенности технологии изготовления полимерных материалов, основные параметры процессов переработки. Методы формования изделий из ненаполненных и наполненных полимерных материалов. Методы переработки армированных полимеров. Аспекты их применения.

    реферат [36,4 K], добавлен 04.01.2011

  • Технология производства меди из окисленных руд методом кучного выщелачивания. Расчет рационального состава окисленной медной руды. Выбор оптимальных параметров переработки руды и минимизация рисков, связанных с недостижением проектных показателей.

    курсовая работа [445,8 K], добавлен 12.04.2015

  • Исследование технологического процесса производства серной кислоты как объекта управления. Физико-химические основы получения продукта, описание схемы производства и выбор обоснования параметров контроля и управления уровня в сборниках кислоты.

    реферат [752,4 K], добавлен 25.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.