Теория электролитической диссоциации

Способы выражения концентрации растворов. Смешивание растворов с разными концентрациями. Расчет грамм-эквивалента серной кислоты, гидроксида кальция и сульфата алюминия. Использование "правила креста" для облегчения использования правила смешивания.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 14.12.2014
Размер файла 22,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Способы выражения концентрации растворов

Существуют различные способы выражения состава раствора. Наиболее часто используют массовую долю растворённого вещества, молярную и нормальную концентрацию.

Массовая доля растворённого вещества w(B) - это безразмерная величина, равная отношению массы растворённого вещества к общей массе раствора m:

w(B)= m(B) / m

Массовую долю растворённого вещества w(B) обычно выражают в долях единицы или в процентах. Например, массовая доля растворённого вещества - CaCl2 в воде равна 0,06 или 6%. Это означает,что в растворе хлорида кальция массой 100 г содержится хлорид кальция массой 6 г и вода массой 94 г.

Пример. Сколько грамм сульфата натрия и воды нужно для приготовления 300 г 5% раствора?

Решение.

m(Na2SO4) = w(Na2SO4) / 100 = (5 * 300) / 100 = 15 г

где w(Na2SO4) - массовая доля в %,

m - масса раствора в г

m(H2O) = 300 г - 15 г = 285 г.

Таким образом, для приготовления 300 г 5% раствора сульфата натрия надо взять 15 г Na2SO4 и 285 г воды.

Молярная концентрация C(B) показывает, сколько моль растворённого вещества содержится в 1 литре раствора.

C(B) = n(B) / V = m(B) / (M(B) * V),

где М(B) - молярная масса растворенного вещества г/моль.

Молярная концентрация измеряется в моль/л и обозначается "M". Например, 2 M NaOH - двухмолярный раствор гидроксида натрия. Один литр такого раствора содержит 2 моль вещества или 80 г (M(NaOH) = 40 г/моль).

Пример. Какую массу хромата калия K2CrO4 нужно взять для приготовления 1,2 л 0,1 М раствора?

Решение.

M(K2CrO4) = C(K2CrO4) * V * M(K2CrO4) = 0,1 моль/л * 1,2 л * 194 г/моль » 23,3 г.

Концентрацию раствора можно выразить количеством молей растворённого вещества в 1000 г растворителя. Такое выражение концентрации называют молярностью раствора.

Нормальность раствора обозначает число грамм-эквивалентов данного вещества в одном литре раствора или число миллиграмм-эквивалентов в одном миллилитре раствора.

Грамм - эквивалентом вещества называется количество граммов вещества, численно равное его эквиваленту. Для сложных веществ - это количество вещества, соответствующее прямо или косвенно при химических превращениях 1 грамму водорода или 8 граммам кислорода.

Эоснования = Моснования / число замещаемых в реакции гидроксильных групп

Экислоты = Мкислоты / число замещаемых в реакции атомов водорода

Эсоли = Мсоли / произведение числа катионов на его заряд

концентрация раствор смешивание

Пример. Вычислите значение грамм-эквивалента (г-экв.) серной кислоты, гидроксида кальция и сульфата алюминия.

Э H2SO4 = М H2SO4 / 2 = 98 / 2 = 49 г

Э Ca(OH)2 = М Ca(OH)2 / 2 = 74 / 2 = 37 г

Э Al2(SO4)3 = М Al2(SO4)3 / (2 * 3) = 342 / 2= 57 г

Величины нормальности обозначают буквой "Н". Например, децинормальный раствор серной кислоты обозначают "0,1 Н раствор H2SO4". Так как нормальность может быть определена только для данной реакции, то в разных реакциях величина нормальности одного и того же раствора может оказаться неодинаковой. Так, одномолярный раствор H2SO4 будет однонормальным, когда он предназначается для реакции со щёлочью с образованием гидросульфата NaHSO4, и двухнормальным в реакции с образованием Na2SO4.

Пример. Рассчитайте молярность и нормальность 70%-ного раствора H2SO4 (r = 1,615 г/мл).

Решение. Для вычисления молярности и нормальности надо знать число граммов H2SO4 в 1 л раствора. 70% -ный раствор H2SO4 содержит 70 г H2SO4 в 100 г раствора. Это весовое количество раствора занимает объём

V = 100/1,615 = 61,92 мл

Следовательно, в 1 л раствора содержится 70 * 1000 / 61,92 = 1130,49 г H2SO4

Отсюда молярность данного раствора равна: 1130,49 / М (H2SO4) =1130,49 / 98 =11,53 M

Нормальность этого раствора (считая, что кислота используется в реакции в качестве двухосновной) равна 1130,49 / 49 =23,06 H

Пересчет концентраций растворов из одних единиц в другие.

При пересчете процентной концентрации в молярную и наоборот, необходимо помнить, что процентная концентрация рассчитывается на определенную массу раствора, а молярная и нормальная - на объем, поэтому для пересчета необходимо знать плотность раствора. Если мы обозначим: с - процентная концентрация; M - молярная концентрация; N - нормальная концентрация; э - эквивалентная масса, ? - плотность раствора; m - мольная масса, то формулы для пересчета из процентной концентрации будут следующими:

M = (c * p * 10) / m

N = (c * p * 10) / э

Этими же формулами можно воспользоваться, если нужно пересчитать нормальную или молярную концентрацию на процентную.

Пример.

Какова молярная и нормальная концентрация 12%-ного раствора серной кислоты, плотность которого р = 1,08 г/см3?

Решение. Мольная масса серной кислоты равна 98. Следовательно,

m(H2SO4) = 98 и э(H2SO4) = 98 : 2 = 49.

Подставляя необходимые значения в формулы, получим:

а) Молярная концентрация 12% раствора серной кислоты равна

M = (12 * 1,08 * 10) / 98 = 1,32 M

б) Нормальная концентрация 12% раствора серной кислоты равна

N = (12 * 1,08 * 10) / 49 = 2,64 H.

Иногда в лабораторной практике приходится пересчитывать молярную концентрацию в нормальную и наоборот. Если эквивалентная масса вещества равна мольной массе (Например, для HCl, KCl, KOH), то нормальная концентрация равна молярной концентрации. Так, 1 н. раствор соляной кислоты будет одновременно 1 M раствором. Однако для большинства соединений эквивалентная масса не равна мольной и, следовательно, нормальная концентрация растворов этих веществ не равна молярной концентрации.

Для пересчета из одной концентрации в другую можно использовать формулы:

M = (N * Э) / m

N = (M * m) / Э

Пример. Нормальная концентрация 1 М раствора серной кислоты

N = (1 * 98) / 49 = 2 H.

Пример. Молярная концентрация 0,5 н. Na2CO3

M = (0,5 * 53) / 106 = 0,25 M.

Упаривание, разбавление, концентрирование, смешивание растворов.

Имеется mг исходного раствора с массовой долей растворенного вещества w1 и плотностью r1.

Упаривание раствора.

В результате упаривания исходного раствора его масса уменьшилась на Dm г. Определить массовую долю раствора после упаривания w2

Решение.

Исходя из определения массовой доли, получим выражения для w1 и w2 (w2 > w1):

w1 = m1 / m

(где m1 - масса растворенного вещества в исходном растворе)

m1 = w1 * m

w2 = m1 / (m - Dm) = (w1 * m) / (m - Dm)

Пример. Упарили 60 г 5%-ного раствора сульфата меди до 50 г. Определите массовую долю соли в полученном растворе.

m = 60 г;--Dm = 60 - 50 = 10 г; w1 = 5% (или 0,05)

w2 = (0,05 * 60) / (60 - 10) = 3 / 50 = 0,06 (или 6%-ный)

Концентрирование раствора.

Какую массу вещества (X г) надо дополнительно растворить в исходном растворе, чтобы приготовить раствор с массовой долей растворенного вещества w2?

Решение.

Исходя из определения массовой доли, составим выражение для w1 и w2:

w1 = m1 / m2,

m1 = w1 * m

w2 = (m1+x) / (m + x) = (w1 * m + x) / (m+x)

Решая полученное уравнение относительно х получаем:

w2 * m + w2 * x = w1 * m + x

w2 * m - w1 * m = x - w1 * x

(w2 - w1) * m = (1 - w2) * x

x = ((w2 - w1) * m) / (1 - w2)

Пример. Сколько граммов хлористого калия надо растворить в 90 г 8%-ного раствора этой соли, чтобы полученный раствор стал 10%-ным?

m = 90 г

w1 = 8% (или 0,08), w2 = 10% (или 0,1)

x = ((0,1 - 0,08) * 90) / (1 - 0,1) = (0,02 * 90) / 0,9 = 2 г

Смешивание растворов с разными концентрациями

Смешали m1 граммов раствора №1 c массовой долей вещества w1 и m2 граммов раствора №2 c массовой долей вещества w2. Образовался раствор (№3) с массовой долей растворенного вещества w3. Как относятся друг к другу массы исходных растворов?

Решение. Пусть w1 > w2, тогда w1 > w3 > w2. Масса растворенного вещества в растворе №1 составляет w1 * m1, в растворе №2 - w2 * m2. Масса образовавшегося раствора (№3) - (m1 - m2). Сумма масс растворенного вещества в растворах №1 и №2 равна массе этого вещества в образовавшемся растворе (№3):

w1 * m1 + w2 * m2 = w3 * (m1 + m2)

w1 * m1 + w2 * m2 = w3 * m1 + w3 * m2

w1 * m1 - w3 * m1 = w3 * m2 - w2 * m2

(w1- w3) * m1 = (w3- w2) * m2

m1 / m2 = (w3 - w2 ) / (w1- w3)

Таким образом, массы смешиваемых растворов m1 и m2 обратно пропорциональны разностям массовых долей w1 и w2 смешиваемых растворов и массовой доли смеси w3. (Правило смешивания).

Для облегчения использования правила смешивания применяют правило креста:

m1 / m2 = (w3 - w2) / (w1 - w3)

Для этого по диагонали из большего значения концентрации вычитают меньшую, получают (w1 - w3), w1 > w3 и (w3 - w2), w3 > w2. Затем составляют отношение масс исходных растворов m1 / m2 и вычисляют.

Пример. Определите массы исходных растворов с массовыми долями гидроксида натрия 5% и 40%, если при их смешивании образовался раствор массой 210 г с массовой долей гидроксида натрия 10%.

5 / 30 = m1 / (210 - m1)

1/6 = m1 / (210 - m1)

210 - m1 = 6m1

7m1 = 210

m1 =30 г; m2 = 210 - m1 = 210 - 30 = 180 г

Разбавление раствора. Исходя из определения массовой доли, получим выражения для значений массовых долей растворенного вещества в исходном растворе №1 (w1) и полученном растворе №2 (w2):

w1 = m1 / (r1 * V1) откуда V1= m1 /( w1 * r1)

w2 = m2 / (r2 * V2)

m2 = w2 * r2 * V2

Раствор №2 получают, разбавляя раствор №1, поэтому m1 = m2. В формулу для V1 следует подставить выражение для m2. Тогда

V1= (w2 * r2 * V2) / (w1 * r1)

m2 = w2 * r2 * V2

w1 * r1 * V1 = w2 * r2 * V2

m1(раствор) m2(раствор)

m1(раствор) / m2(раствор) = w2 / w1

При одном и том же количестве растворенного вещества массы растворов и их массовые доли обратно пропорциональны друг другу.

Пример. Определите массу 3%-ного раствора пероксида водорода, который можно получить разбавлением водой 50 г его 3%-ного раствора.

m1(раствор) / m2(раствор) = w2 / w1

50 / x = 3 / 30

3x = 50 * 30 = 1500

x = 500 г

Последнюю задачу можно также решить, используя "правило креста":

3 / 27 = 50 / x

x = 450 г воды

450 г + 50 г = 500 г

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://schoolchemistry.by.ru/

Размещено на Allbest.ru

...

Подобные документы

  • Методы получения и характеристика основных свойств сульфата алюминия. Физико-химические характеристики основных стадий в технологической схеме процесса по производству сульфата алюминия. Расчет теплового и материального баланса производства алюминия.

    курсовая работа [1,6 M], добавлен 25.02.2014

  • Классификация методов титриметрического анализа. Посуда в титриметрическом анализе и техника работы с ней. Способы выражения концентрации растворов. Взаимосвязь различных способов выражения концентрации растворов. Молярная концентрация эквивалента.

    реферат [40,8 K], добавлен 23.02.2011

  • Получение сульфата аммония из аммиака и серной кислоты в лабораторных условиях. Тепловые эффекты, сопровождающие химические реакции. Приготовление и смешивание растворов. Получение сульфата аммония из сернистого газа, мирабилита, гипса и кислорода.

    курсовая работа [994,1 K], добавлен 23.05.2015

  • Отличительные черты взаимодействия концентрированной и разбавленной серной кислоты с металлами. Свойства сухой извести и ее раствора. Понятие электролитической диссоциации и методика измерения ее степени для различных веществ. Обмен между электролитами.

    лабораторная работа [14,9 K], добавлен 02.11.2009

  • Классификация и особенности растворов и растворителей. Участие растворителей в кислотно-основном взаимодействии и их результаты. Протеолитическая теория кислот и оснований. Способы выражения концентрации растворов. Буферные растворы и вычисление их pH.

    реферат [27,6 K], добавлен 23.01.2009

  • Молибден, кобальт и никель: свойства, области применения. Регенерация катализаторов, утилизация после использования. Способы выделения ценных компонентов из растворов. Выщелачивание молибдена и кобальта. Десорбция молибдена раствором гидроксида натрия.

    дипломная работа [653,7 K], добавлен 27.11.2013

  • Природа растворяемого вещества и растворителя. Способы выражения концентрации растворов. Влияние температуры на растворимость газов, жидкостей и твердых веществ. Факторы, влияющие на расторимость. Связь нормальности и молярности. Законы для растворов.

    лекция [163,9 K], добавлен 22.04.2013

  • Определение растворов, их виды в зависимости от агрегатного состояния растворителя, по величине частиц растворенного вещества. Способы выражения концентрации. Факторы, влияющие на растворимость. Механизм растворения. Закон Рауля и следствие из него.

    презентация [163,9 K], добавлен 11.08.2013

  • Константы и параметры, определяющие качественное (фазовое) состояние, количественные характеристики растворов. Виды растворов и их специфические свойства. Способы получения твердых растворов. Особенности растворов с эвтектикой. Растворы газов в жидкостях.

    реферат [2,5 M], добавлен 06.09.2013

  • Растворимость газов и твердых тел в жидкостях. Коллигативные свойства разбавленных растворов неэлектролитов и в случае диссоциации. Понятие осмотического давления. Совершенные и реальные растворы: характеристика и уравнения. Закон распределения.

    лекция [365,9 K], добавлен 28.02.2009

  • Структурная, химическая формула серной кислоты. Сырьё и основные стадии получения серной кислоты. Схемы производства серной кислоты. Реакции по производству серной кислоты из минерала пирита на катализаторе. Получение серной кислоты из железного купороса.

    презентация [759,6 K], добавлен 27.04.2015

  • Свойство водных растворов солей, кислот и оснований в свете теории электролитической диссоциации. Слабые и сильные электролиты. Константа и степень диссоциации, активность ионов. Диссоциация воды, водородный показатель. Смещение ионных равновесий.

    курсовая работа [157,0 K], добавлен 23.11.2009

  • Характеристика и сущность основных положений теории электролитической диссоциации. Ориентация, гидратация, диссоциация - веществ с ионной связью. История открытия теории электролитической диссоциации. Разложение хлорида меди электрическим током.

    презентация [218,7 K], добавлен 26.12.2011

  • Зависимость температуры кипения водных растворов азотной кислоты от содержания HNO. Влияние состава жидкой фазы бинарной системы на температуру кипения при давлении. Влияние температуры на поверхностное натяжение водных растворов азотной кислоты.

    реферат [3,9 M], добавлен 31.01.2011

  • Предпосылки к созданию теории электролитической диссоциации, этапы данного процесса. Понятие и основные факторы, влияющие на степень электролитической диссоциации, способы определения. Закон разбавления Оствальда. Определение ионного произведения воды.

    презентация [280,8 K], добавлен 22.04.2013

  • Знакомство с законом Авогадро, сущность периодической системы элементов, энергетика химических реакций. Влияние различных факторов на растворимость. Понятие степени электролитической диссоциации. Гидролиз солей, амфотерность оксида и гидроксида алюминия.

    шпаргалка [603,3 K], добавлен 26.07.2012

  • Применение, физические и химические свойства концентрированной и разбавленной серной кислоты. Производство серной кислоты из серы, серного колчедана и сероводорода. Расчет технологических параметров производства серной кислоты, средства автоматизации.

    дипломная работа [1,1 M], добавлен 24.10.2011

  • Едкий натр или гидроксид натрия. Химические способы получения гидроксида натрия. Понятие об электролизе и электрохимических процессах. Сырье для получения гидроксида натрия. Электролиз растворов хлористого натрия в ваннах со стальным катодом.

    реферат [2,4 M], добавлен 13.03.2007

  • Процесс получения ацетилена термоокислительным пиролизом. Зависимость максимально допустимого безопасного давления от концентрации ацетилена в смеси с азотом. Современные способы получения ацетилена. Получение алюминия из отходов переработки ацетилена.

    курсовая работа [116,0 K], добавлен 11.10.2010

  • Свойства, области использования, сырье и технология изготовления серной кислоты, а также характеристика прогрессивных способов и перспектив развития ее производства. Анализ динамики трудозатрат при развитии технологического процесса серной кислоты.

    контрольная работа [228,6 K], добавлен 30.03.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.