Квантовая химия
Основные представления квантовой химии и квантовой теории атома. Закономерности распределения электронов по слоям вокруг ядра. Рассмотрение молекул как системы атомов. Понятие химической связи и ее типы. Методологические установки неклассической физики.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 18.12.2014 |
Размер файла | 17,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Возникновение и развитие квантовой физики
Основные представления и методы квантовой химии
Историческое значение квантовой механики определяется еще и тем, что она радикально преобразовала систему химического знания, подняла эту систему с уровня эмпирического и полуэмпирического знания, какой она по существу была со времен Лавуазье, на теоретический уровень. Квантовая механика привела к созданию квантовой химии и таким образом выступила в качестве теоретического базиса современной химической картины мира.
Как известно, основные понятия и объекты химии - атом и молекула. Атом -- наименьшая частица химического элемента, являющаяся носителем его свойств. Химический элемент, в свою очередь, можно определить как вид атомов, характеризующийся определенной совокупностью свойств и обозначаемый определенным символом. Соединения атомов с помощью химических связей образуют молекулы. Молекулы -- наименьшая частица вещества, обладающая его основными химическими свойствами.
Атомов известно лишь немногим более 100 видов, т.е. столько, сколько химических элементов. А вот молекул - свыше 18 млн.
Столь богатое разнообразие определяется двумя обстоятельствами. Во-первых, тем, что почти все виды атомов, взаимодействуя друг с другом, способны объединяться в молекулы. И, во-вторых, тем, что молекулы могут содержать разное число атомов. Так, молекулы благородных газов одноатомны, молекулы таких веществ, как водород, азот, - двухатомны, воды - трехатомны и т.д. Молекулы наиболее сложных веществ - высших белков и нуклеиновых кислот - построены из такого количества атомов, которое измеряется сотнями тысяч (макромолекулы). Атомы в молекуле связаны между собой в определенной последовательности и определенным образом расположены в пространстве. Важно и то, что такие последовательности и пространственные расположения при одном и том же составе атомов могут быть различными. Поэтому при сравнительно небольшом числе химических элементов число различных химических веществ очень велико.
Квантовая химия - это область современной химии, в которой принципы и понятия квантовой механики и статистической физики применяются к изучению атомов, молекул и других химических объектов и процессов. Основной метод квантовой химии состоит в применении уравнения Шрёдингера для атомов и молекул.
В последние десятилетия квантовые подходы в химии позволили решить еще более сложные задачи, прежде всего связанные с анализом систем, изменяющихся во времени (в ходе химических реакций, распада, поглощения и испускания света и др.).
квантовый атом молекула неклассический
Основные представления квантовой теории атома
Важным достижением квантовой механики явилось создание квантовой теории строения атома.
Важнейшая характеристика атома -- заряд его ядра; она определяет принадлежность ядра тому или иному химическому элементу. Заряд ядра определяется количеством протонов (имеющих заряд +е) в нем.
Таким образом, ядро атома с порядковым номером N и массовым числом М в периодической системе содержит N протонов, имеющих общий заряд (+eN) и (M--N) нейтронов (всего М нуклонов). Число электронов, вращающихся вокруг ядра, равно числу протонов в ядре, поэтому их суммарный заряд равен (--eN), и в нормальном состоянии атом нейтрален. Потеря одного или нескольких электронов превращает нейтральный атом в положительный ион, а приобретение электронов -- в отрицательный ион. Масса атома определяется в основном массой его ядра, так как масса электрона почти в 2000 раз меньше массы протона (и нейтрона). Впрочем, масса ядра у одного и того же элемента может отличаться за счет изменения числа нейтронов в ядре. Ядра с разным числом нейтронов, а значит и различным массовым числом, называются изотопами.
Являясь микрообъектом, атом подчиняется квантово-механическим закономерностям. Так, его полная энергия принимает лишь дискретные значения, изменяется скачкообразно в ходе квантового перехода из одного стационарного состояния в другое, поглощая или излучая квант света (фотон) определенной частоты (Еi -- Еj= hv). Совокупность частот возможных переходов определяет спектры (поглощения и испускания) атома. В основном состоянии атом может находиться сколь угодно долго, обладая способностью поглощать фотоны.
Поглощение фотонов переводит его в возбужденное состояние, при котором он может или еще поглощать фотоны, или испускать их. Время жизни атома в возбужденном состоянии ограниченно. Так или иначе, но возбужденный атом -- за очень короткое время -- спонтанно испускает фотон и переходит на более низкий энергетический уровень, стремясь к основному состоянию. Получение или приобретение энергии атомом может происходить не только за счет взаимодействия с фотонами, квантами света, но и за счет взаимодействия или столкновения с другими частицами, в том числе электронами (в молекулах, газах, твердых телах и др.).
Атом как квантово-механическая система подчиняется принципу квантово-волнового дуализма. Прежде всего это значит, что движение его электронов можно рассматривать и как движение материальной точки по траектории, и как сложный волновой колебательный процесс.
Одна из важных особенностей многоэлектронных атомов (за исключением атома водорода, имеющего лишь один электрон) состоит в том, что между электронами существуют силы взаимного отталкивания, которые существенно уменьшают прочность связи электронов с ядром. Чем больше электронов в атоме и чем дальше они находятся от ядра, тем меньше у них энергия отрыва от атома, которая приводит к превращению атома в ион.
Важную роль играют закономерности распределения электронов по слоям вокруг ядра, которые подчиняются принципу Паули, гласящему, что в каждом квантовом состоянии (определяемом так называемыми четырьмя квантовыми числами -- главным квантовым числом, орбитальным квантовым числом, магнитным орбитальным квантовым числом, спином) не может находиться больше одного электрона. Иначе говоря, любые два электрона должны различаться хотя бы одним квантовым числом.
Создание квантово-механической теории атома имело не только фундаментальное теоретическое, но и практическое значение. Во-первых, оно придало мощный импульс развитию атомной энергетики (высвобождению атомной энергии, созданию атомных электростанций и энергетических установок). Во-вторых, оно стало стимулом для работ по искусственному расширению человеком границ мира атомов. Эпоха открытия новых элементов периодической системы из их природных соединений закончилась. Ей на смену пришла эпоха искусственного получения новых элементов в лабораторных условиях, в ускорителях элементарных частиц. Так, во времена Менделеева было известно 60 с небольшим элементов. В 1930-е гг. периодическая система заканчивалась ураном (порядковый номер в системе -- 92). В период с 1940 по 1955 г. путем физического синтеза атомных ядер был получен ряд новых элементов: нептуний, плутоний, америций, кюрий, берклий, калифорний, фермий, менделевий и др. Впоследствии было синтезировано еще 7 новых элементов. В настоящее время периодическая система насчитывает 110 элементов. Ядра с зарядом большим, чем +110е, крайне нестабильны. Вместе с тем вопрос об абсолютно полном списке элементов остается открытым. Есть основания для продолжения этого списка: возможно существование «островков стабильности» для элементов с порядковыми номерами свыше 120-ти.
Завершая рассмотрение основных представлений квантовой теории атома, добавим, что современная атомная физика нашла решение проблемы, которая столетиями волновала умы алхимиков -- трансмутации веществ (т.е. химических элементов), и в частности получения золота. Но такая «добыча» золота неизмеримо дороже его обычной добычи из «кладовых природы».
Молекула как система атомов
Понятие химической связи и ее типы. Важная часть квантовой химии -- теория молекулярного строения вещества. Как и атомы, молекулы -- это квантовые системы. Понятие о молекулярном строении вещества утвердилось в химии в середине XIX в. в связи с развитием термодинамики и теории газов, и окончательно было подтверждено экспериментами Ж.Б. Перрена, проводившимися над явлением броуновского движения (беспорядочного движения малых частиц, взвешенных в жидкости или газе, вызванного движением ударов молекул окружающей среды) в 1906 г. Эти эксперименты подтверждали теорию броуновского движения как флуктуаций давления окружающих молекул, разработанную в 1905--1906 гг. А. Эйнштейном и М. Смолуховским.
Молекула -- это сложная, находящаяся в постоянном движении квантовая система. Атомы входят в состав молекулы и в то же время совершают непрерывные колебательные движения. Причем в многоатомной молекуле колебания различных атомов зависят друг от друга, и каждое характеризуется своей частотой. Кроме того, сами молекулы как целое, например в газах, совершают еще и поступательные, и вращательные движения.
Важным понятием квантовой теории молекул является понятие химической связи. Химическая связь -- это та связь между атомами, которая приводит к образованию молекул. Для возникновения химической связи абсолютным является одно условие: образование молекулы из атомов возможно в том случае, когда внутренняя энергия молекулы оказывается ниже суммарной энергии этих атомов в изолированном состоянии. А понижение энергии системы означает повышение ее устойчивости. Химическая связь устанавливается исключительно за счет электромагнитного взаимодействия электронов и ядер, входящих в молекулу атомов.
И, наконец, в металлах преобладает тип химической связи, который называется металлической связью. Она реализуется за счет большой концентрации в кристаллах свободных электронов («электронный газ»), которые удерживают положительные ионы на определенных расстояниях друг от друга, осуществляя коллективное взаимодействие атомов. Такие связи изучают в физике твердого тела.
Методологические установки неклассической физики
Создание релятивистской, а затем и квантовой физики привело к необходимости кардинального пересмотра методологических установок классической физики. Представим в систематическом виде методологические установки неклассической физики.
+ Существует объективный физический мир до и независимо от человека и его сознания.
+ В отличие от классической физики, которая рассматривала мир физических элементов как качественно однородное образование, современная физика приходит к выводу о наличии трех качественно различающихся структурных уровней мира физических элементов: микро-, макро- и мегауровней.
+ Явления микромира, микропроцессы обладают чертами целостности, необратимости и неделимости, которые приводят к качественному изменению представлений о характере взаимосвязи объекта и экспериментальных средств исследования.
+ Причинность как один из элементов всеобщей связи и взаимообусловленности вещей, явлений, событий материального мира присуща и микропроцессам. Но характер причинной связи в микромире отличен от механистического детерминизма. В области микроявлений причинность реализуется через многообразие случайностей, поэтому микропроцессам свойственны не динамические, а статистические закономерности.
+ Микроявления принципиально познаваемы. Получение полного и непротиворечивого описания поведения микрочастиц требует выработки нового способа познания и новых методологических установок познания.
+ Основа познания -- эксперимент, непосредственное материальное взаимодействие между средствами исследования субъекта и объектом. Так же, как и в классической физике, исследователь свободен в выборе условий эксперимента.
+ Кардинальные изменения в методологии неклассической физики по сравнению с классической связаны с зависимостью описания поведения физических объектов от условий познания. В релятивистской физике появилась необходимость указания на ту систему отсчета, с позиций которой описывается исследуемая физическая область. В квантовой физике проявилась фундаментальная роль взаимодействия между микрообъектом и измерительным устройством, прибором. Неклассическая физика характеризуется, по сути, изменением познавательного отношения субъекта и объекта. В квантовой физике оно фиксируется принципом дополнительности.
+ Если в классической физике все свойства объекта могут определяться одновременно, то уже в квантовой физике существуют принципиальные ограничения, выражаемые принципом неопределенности.
+ Неклассические способы описания позволяют получать объективное описание природы. Но объективность знания не должна отождествляться с наглядностью. Создание механической наглядной модели вовсе не синоним адекватного физического объяснения исследуемого явления.
+ Физическая теория должна содержать в себе не только средства для описания поведения познаваемых объектов, но и средства для описания условий познания, включая процедуры исследования.
+ В неклассической физике, как и в классической, игнорируется атомная структура экспериментальных устройств.
+ Структура процесса познания не является неизменной. Качественному многообразию природы должно соответствовать и многообразие способов ее познания. На основе развития неклассических способов познания (релятивистского и квантового) со временем должны сформироваться другие способы познания.
Во второй половине XX в. основное внимание физиков обращено на создание теорий, раскрывающих с позиций квантово-релятивистских представлений сущность и основания единства четырех фундаментальных взаимодействий -- электромагнитного, «сильного», «слабого» и гравитационного. Эта задача одновременно является и задачей создания единой теории элементарных частиц (теории структуры материи). В последние десятилетия созданы и получили эмпирическое обоснование квантовая электродинамика, теория электрослабого взаимодействия, квантовая хромодинамика (теория сильного взаимодействия). Есть перспективы создания единой теории электромагнитного, «слабого» и «сильного» взаимодействий. Физики ожидают, что в отдаленной перспективе к ним должно быть присоединено и гравитационное взаимодействие. Таким образом, естествознание в настоящее время находится на пути к реализации великой цели -- созданию единой теории структуры материи.
Размещено на Allbest.ru
...Подобные документы
Пути познания и классификация современных наук, взаимосвязь химии и физики. Строение и свойства вещества как общие вопросы химической науки. Особенности многообразия химических структур и теория квантовой химии. Смеси, эквивалент и количество вещества.
лекция [759,9 K], добавлен 18.10.2013Возникновение неклассических представлений в физике. Эксперимент Дэвиссона и Джермера. Особенности квантово-механического описания микромира. Главные задачи квантовой химии. Электронное строение атомов и молекул. Атомные орбитали Зенера-Слейтера.
лекция [198,0 K], добавлен 15.10.2013Изучение атома и его состава и радиоактивности. Характеристика ядерной модели атома. Зависимость свойств элементов и свойств образуемых им веществ от заряда ядра. Анализ квантовой теории света, фотоэлектрического эффекта, электронной оболочки атома.
реферат [31,3 K], добавлен 18.02.2010Роль физической химии и хронология фундаментальных открытий. Экспериментальные основы квантовой механики. Корпускулярно-волновая природа излучения. Волны материи и простейшие полуклассические модели движений. Квантование энергии частицы и формула Бора.
реферат [38,0 K], добавлен 28.01.2009Происхождение термина "химия". Основные периоды развития химической науки. Типы наивысшего развития алхимии. Период зарождения научной химии. Открытие основных законов химии. Системный подход в химии. Современный период развития химической науки.
реферат [30,3 K], добавлен 11.03.2009Графическое представление молекул и их свойств - теория графов в химии. Методы расчета топологических индексов. Кодирование химической информации. Оценка реакционной способности молекул. Анализ связи между топологией молекулы и свойствами соединения.
реферат [313,2 K], добавлен 09.12.2013Развитие модельных представлений в квантовой химии. Метод валентных связей. Основные положения данного метода. Гибридизация атомных орбиталей и условия их образования. Правила выбора канонических форм. Гибридизация атома углерода и гибридных орбиталей.
презентация [284,1 K], добавлен 15.10.2013Химический взгляд на природу, истоки и современное состояние. Предмет познания химической науки и ее структура. Взаимосвязь химии и физики. Взаимосвязь химии и биологии. Химия изучает качественное многообразие материальных носителей химических явлений.
реферат [99,4 K], добавлен 15.03.2004Основные приближения метода потенциалов. Свойства и структура ковалентных кристаллов. Кристаллическая структура металлов. Современные представления физики металлов. Главные недостатки модели свободных электронов. Оценка энергии связи в металлах.
презентация [297,1 K], добавлен 15.10.2013Характеристика строения атома. Определение числа протонов, электронов, нейтронов. Рассмотрение химической связи и полярности молекулы в целом. Уравнения диссоциации и константы диссоциации для слабых электролитов. Окислительно-восстановительные реакции.
контрольная работа [182,3 K], добавлен 09.11.2015История химии как науки. Родоночальники российской химии. М.В.Ломоносов. Математическая химия. Атомная теория - основа химической науки. Атомная теория просто и естественно объясняла любое химическое превращение.
реферат [28,2 K], добавлен 02.12.2002Особенности валентности - образования у атомов определенного числа химических связей. Основные типы химической связи: ионная, ковалентная, водородная, металлическая. Виды кристаллов по типу химической связи: ионные, атомные, металлические, молекулярные.
курсовая работа [241,7 K], добавлен 19.10.2013Основные характеристики атомов. Связь кислотно-основных свойств оксида с электроотрицательностью. Разделение элементов на металлы и неметаллы. Типы химической связи. Схемы образования молекул простых веществ, углекислого газа. Общее понятие о валентности.
лекция [235,5 K], добавлен 22.04.2013Формулировка периодического закона Д. И. Менделеева в свете теории строения атома. Связь периодического закона и периодической системы со строением атомов. Структура периодической Системы Д. И. Менделеева.
реферат [9,1 K], добавлен 16.01.2006Типы химической связи: ковалентная, ионная и металлическая. Донорно-акцепторный механизм образования и характеристики ковалентной связи. Валентность и степень окисления элементов. Молекулы химических соединений. Размеры и масса атомов и молекул.
контрольная работа [45,3 K], добавлен 16.11.2010Химия как наука о веществах, их строении, свойствах и превращениях. Основные понятия химии. Химическая связь как взаимодействие двух атомов, осуществляемое путем обмена электронами. Сущность химических реакций, реакции окисления и восстановления.
реферат [95,3 K], добавлен 05.03.2012Общая характеристика углерода как химического элемента, его основные свойства, особенности строения. Типы химических связей: ковалентная, ионная и водородная. Способы разрыва химической связи. Электронные эффекты. Кислоты и основания, их сравнение.
контрольная работа [180,4 K], добавлен 05.08.2013Развитие модельных представлений в квантовой химии. Метод валентных связей. Особенности описания гибридизации атомных орбиталей. Концепция резонанса. Правила выбора канонических форм. Условия образования молекулярных орбиталей и заполнение их электронами.
презентация [289,6 K], добавлен 22.10.2013Общие тенденции развития современной химии. Основные направления развития химии в ХХI. Компьютерное моделирование молекул (молекулярный дизайн) и химических реакций. Спиновая химия. Нанохимия. Фемтохимия. Синтез фуллеренов и нанотрубок.
курсовая работа [37,4 K], добавлен 05.06.2005Основы квантовой механики атома. Соотношение де Бройля. Уравнение Шредингера. Ионная (гетерополярная) связь. Расчет энергии ионной связи. Теория ковалентной (гомеополярной) связи. Метод валентных связей. Метод молекулярных орбиталей (МО).
курсовая работа [152,7 K], добавлен 17.02.2004