Место и роль кислот, каротинов и ферментов в биохимии
Структура и состав нуклеиновых кислот, характеристика пуриновых и пиримидиновых оснований, входящих в их состав. Сущность репликации дезоксирибонуклеиновой кислоты, описание её видов. Строение и биологическая роль каротинов, их содержание в растворах.
Рубрика | Химия |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 02.02.2015 |
Размер файла | 2,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Вопрос№1: Нуклеиновые кислоты. Охарактеризуйте пуриновые и пиримидиновые основания, входящие в состав нуклеиновых кислот
Название нуклеиновых кислот произошло от латинского слова nucleus (ядро) в связи с тем, что эти вещества, обладающие кислым характером, были впервые обнаружены в клеточных ядрах. Нуклеиновые кислоты - высокомолекулярные вещества, молекулярный вес которых во многих случаях превышает молекулярный вес белков. Нуклеиновые кислоты можно расщепить до мононуклеотидов; последние гидролизуются на пиримидиновые или пуриновые основания, рибозу или дезоксирибозу и фосфорную кислоту: Нуклеиновые кислоты, содержащие в молекулах остатки рибозы, называются рибонуклеиновыми кислотами (РНК), а содержащие остатки дезоксирибозы - дезоксирибонуклеиновыми кислотами (ДНК). ДНК содержится преимущественно в ядрах клеток, а РНК преимущественно в таких органоидах клетки, как рибосомы, а также в протоплазме клеток и в малых количествах - в ядре.
Структура нуклеиновых кислот
На схеме показаны различные способы изображения структуры нуклеиновых кислот. N- гликозидная связь в нуклеотидах имеет в - конфигурацию:
Как в ДНК, так и РНК почти все количество пуриновых и пиримидиновых оснований приходится на долю всего лишь четырех оснований, три из которых содержится и в ДНК и РНК, четвертым основанием в ДНК - Тимин, а в РНК- урацил.
Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3'-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5'-углеродом (его называют 5'-концом), другой -- 3'-углеродом (3'-концом).
Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина -- всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином -- три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин -- тимин, гуанин -- цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности. Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина -- тимину («правило Чаргаффа»), но объяснить этот факт он не смог. Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы -- сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» -- комплементарные азотистые основания.Функция ДНК -- хранение и передача наследственной информации.
Пуриновые и пиримидиновые основания являются только частью структуры нуклеиновых кислот. Пуриновые основания включают А - аденин,G - гуанин, X - ксантин. Пиримидиновые основания - это T -тимин, C - цитозин, U - урацил. Аденин - или 6-аминопурин - встречается в природе в виде N-гликозидов рибозы и дезоксирибозы, а также нуклеотидов - АМФ,АДФ,АТФ. Гуанин - 2-амино-6-оксипурин - вместе с аденином содержится в растительных и животных тканях. Гуанин, подобно аденину, в качестве структурного компонента содержится в гуаниновых нуклеозидах (гуанозине) и нуклеотидах (гуанозинтрифосфате -ГТФ). ГТФ является коэнзимом. нуклеиновый кислота каротин пуриновый
Урацил - 2,6-диоксипиримидин - в зависимости от условий может существовать в таутомерных формах:
Цитозин - 2-окси-6-аминопиримидин:
Тимин - 5-метилурацил:
В организмах урацил, цитозин и Тимин встречаются в виде N-гликозидов рибозы или дезоксирибозы
Репликация ДНК -- процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферментов молекула ДНК раскручивается, и около каждой цепи, выступающей в роли матрицы, по принципам комплементарности и антипараллельности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая -- вновь синтезированной. Такой способ синтеза называется полуконсервативным.
«Строительным материалом» и источником энергии для репликации являются дезоксирибонуклеозидтрифосфаты (АТФ, ТТФ, ГТФ, ЦТФ), содержащие три остатка фосфорной кислоты. При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых остатка фосфорной кислоты отщепляются, и освободившаяся энергия используется на образование фосфодиэфирной связи между нуклеотидами.
В репликации участвуют следующие ферменты:
геликазы («расплетают» ДНК);
дестабилизирующие белки;
ДНК-топоизомеразы (разрезают ДНК);
ДНК-полимеразы (подбирают дезоксирибонуклеозидтрифосфаты и комплементарно присоединяют их к матричной цепи ДНК);
РНК-праймазы (образуют РНК-затравки, праймеры);
ДНК-лигазы (сшивают фрагменты ДНК).
С помощью геликаз в определенных участках ДНК расплетается, одноцепочечные участки ДНК связываются дестабилизирующими белками, образуется репликационная вилка. При расхождении 10 пар нуклеотидов (один виток спирали) молекула ДНК должна совершить полный оборот вокруг своей оси. Чтобы предотвратить это вращение ДНК-топоизомераза разрезает одну цепь ДНК, что дает ей возможность вращаться вокруг второй цепи
ДНК-полимераза может присоединять нуклеотид только к 3'-углероду дезоксирибозы предыдущего нуклеотида, поэтому данный фермент способен передвигаться по матричной ДНК только в одном направлении: от 3'-конца к 5'-концу этой матричной ДНК. Так как в материнской ДНК цепи антипараллельны, то на ее разных цепях сборка дочерних полинуклеотидных цепей происходит по-разному и в противоположных направлениях. На цепи 3'-5' синтез дочерней полинуклеотидной цепи идет без перерывов; эта дочерняя цепь будет называться лидирующей. На цепи 5'-3' -- прерывисто, фрагментами (фрагменты Оказаки), которые после завершения репликации ДНК-лигазами сшиваются в одну цепь; эта дочерняя цепь будет называться запаздывающей (отстающей).
Особенностью ДНК-полимеразы является то, что она может начинать свою работу только с «затравки» (праймера). Роль «затравок» выполняют короткие последовательности РНК, образуемые при участи фермента РНК-праймазы и спаренные с матричной ДНК. РНК-затравки после окончания сборки полинуклеотидных цепочек удаляются.
Репликация протекает сходно у прокариот и эукариот. Скорость синтеза ДНК у прокариот на порядок выше (1000 нуклеотидов в секунду), чем у эукариот (100 нуклеотидов в секунду). Репликация начинается одновременно в нескольких участках молекулы ДНК. Фрагмент ДНК от одной точки начала репликации до другой образует единицу репликации -- репликон.
Репликация происходит перед делением клетки. Благодаря этой способности ДНК осуществляется передача наследственной информации от материнской клетки дочерним.
Репарация («ремонт») Репарацией называется процесс устранения повреждений нуклеотидной последовательности ДНК. Осуществляется особыми ферментными системами клетки (ферменты репарации). В процессе восстановления структуры ДНК можно выделить следующие этапы: 1) ДНК-репарирующие нуклеазы распознают и удаляют поврежденный участок, в результате чего в цепи ДНК образуется брешь; 2) ДНК-полимераза заполняет эту брешь, копируя информацию со второй («хорошей») цепи; 3) ДНК-лигаза «сшивает» нуклеотиды, завершая репарацию.
Наиболее изучены три механизма репарации: 1) фоторепарация, 2) эксцизная, или дорепликативная, репарация, 3) пострепликативная репарация.
Изменения структуры ДНК происходят в клетке постоянно под действием реакционно-способных метаболитов, ультрафиолетового излучения, тяжелых металлов и их солей и др. Поэтому дефекты систем репарации повышают скорость мутационных процессов, являются причиной наследственных заболеваний (пигментная ксеродерма, прогерия и др.).
Строение и функции РНК. РНК -- полимер, мономерами которой являются рибонуклеотиды. В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение -- некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.
Мономер РНК -- нуклеотид (рибонуклеотид) -- состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.
Пиримидиновые основания РНК -- урацил, цитозин, пуриновые основания -- аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.
Выделяют три вида РНК: 1) информационная (матричная) РНК -- иРНК (мРНК), 2) транспортная РНК -- тРНК, 3) рибосомная РНК -- рРНК.
Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.
транспортная РНК
Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса -- 25 000-30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке. Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3'-концу акцепторного стебля. Антикодон -- три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.
Рибосомные РНК содержат 3000-5000 нуклеотидов; молекулярная масса -- 1 000 000-1 500 000. На долю рРНК приходится 80-85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы -- органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК: 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.
Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК: 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.
Строение и функции АТФ Аденозинтрифосфорная кислота (АТФ) -- универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2-0,5%) содержится в скелетных мышцах.
АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.
Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты -- в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).
Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).
АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.
Вопрос № 2: Каротины и каротиноиды. Строение и биологическая роль, содержание в растворах
Каротиноиды - природные пигменты (красящие вещества), по строению близкие красному пигменту каротину, содержащемуся в красной моркови и многих растениях, а также в животных жирах. Каротиноиды обычно встречаются в виде сложных примесей. Молекулы каротиноидов характеризуются наличием ряда сопряженных двойных связей, т.е. они относятся к полиенам. Этенильная группа >С=С< является одной из хромофорных групп; наличие многих этенильных групп и обуславливает красную или желтую окраску каротиноидов. К каротиноидам относится свыше 60 веществ, являющихся углеводородами, кето- и окси-производными, эфирами оксипроизводных, а также кислотами. Каротин - полиеновый углеводород С 40Н 56 был выделен впервые из моркови Цветом М.С. Впоследствии оказалось, что каротин представляет собой не индивидуальное вещество, а смесь трех изомеров: б -каротина, в - каротина, г - каротина. в - каротин составляет 85% этой смеси. В в - каротине два триметилциклогексеновых кольца связаны в молекуле длинной цепью из 18 атомов углерода, представляющей единую сопряженную систему с чередующимися одинарными и двойными связями и имеющей ответвления в виде четырех метильных групп:
б -каротин (в смеси ~ 15%) отличается лишь иным положением двойной связи в одном циклогексеновом кольце. г - каротин (0,1%) отличается от в - каротина тем, что имеет лишь одно циклогексеновое кольцо, другое же кольцо в нем разомкнуто. Значение каротинов очень велико, так как из них образуются витамины А; в связи с этим часто каротины называют провитамином А.
Каротиноиды (от лат. carota - морковь и греч. eidos - вид) - желто-оранжевые пигменты, которые синтезируются высшими растениями, а также грибами, бактериями, водорослями. Каротиноиды обеспечивают красную, желтую и пурпурную окраску плодов и цветов. Они являются полиненасыщенными соединениями терпенового ряда, которые содержат в молекуле 40 углеродных атомов. В состав молекулы входят циклогексановые кольца и остатки изопрена.Разделяют на углеводные каротиноиды, С40-ксантофилы, гемо-, апо- и нор-каротиноиды. Каротиноиды выделяют из растений органическими растворителями с последующим разделением методом хроматографии. Среди каротиноидов самое важное значение имеют альфа-, бета-, гамма-каротины. Данные изомеры отличаются строением циклогексановых колец и биологической активностью. Все каротины не растворимы в воде и растворяются в органических растворителях - бензоле, хлороформе, эфире, жирах и маслах. Легко окисляются кислородом воздуха, нестойкие при нагревании в присутствии кислот и щелочей, разрушаются под действием света. Каротины синтезируются в растениях. Каротины являются веществами, из которых образуется витамин А. Поскольку ликопин и каротины содержат 40 углеродных атомов, они могут рассматриваться как образованные восемью остатками изопрена. Все без исключения другие природные каротиноиды - производные четырех указанных выше углеводородов: ликопина и каротинов. Они образуются из этих углеводородов путем введения: гидроксильных, карбонильных или метоксильных групп или же путем частичной гидрогенизации или окисления. В результате введения в молекулу бета-каротина двух оксигрупп образуется каротиноид, содержащийся в зерне кукурузы и называемый цеаксантином. С40Н56О2. Введение двух оксигрупп в молекулу альфа-каротина приводит к образованию лютеина С40Н56О2 (3,3-диокси-альфа-каротин), изомера цеаксантина, содержащегося наряду с каротинами в зеленых частях растений. В результате присоединения к молекуле бета-каротина одного атома кислорода с образованием фураноидной структуры получается каротиноид цитроксантин С40Н56О, содержащийся в кожуре цитрусовых плодов. Продуктами окисления каротиноидов, содержащих в молекуле 40 углеродных атомов, являются кроцетин С20Н2404, биксин С25Н30О4 и бета-цитраурин С30Н40О2. Кроцетин - красящее вещество, содержащееся в рыльцах крокуса в соединении с двумя молекулами дисахарида гентиобиозы в виде гликозида кроцина. Биксин - пигмент красного цвета, содержащийся в плодах тропического растения Bixa orellana; применяется для подкраски масла, маргарина и других пищевых продуктов. В бурых водорослях содержится каротиноид фукоксантин С40Н60О6, который принимает участие в процессе фотосинтеза в качестве так называемого вспомогательного пигмента.
В организме животных и человека каротиноиды играют важную роль в качестве исходных веществ, из которых образуются витамины группы А, а также «зрительный пурпур», участвующий в зрительном акте. В растительном организме каротиноиды играют важную роль в процессе фотосинтеза. Исходя из химического строения каротиноидов, содержащих значительное количество двойных связей, можно предполагать, что они являются в растении переносчиками активного кислорода и принимают участие в окислительно-восстановительных процессах. На это указывает широкое распространение в растениях кислородных производных каротиноидов - эпоксидов, чрезвычайно легко отдающих свой кислород. Каротиноиды легко образуют перекиси, в которых молекула кислорода присоединяется по месту двойной связи и может затем легко окислять различные вещества.Различная биологическая активность каротинов зависит от их строения. В состав бета-каротина входят 2 бета-иононовые циклы, и при гидролизе в организме под действием каротиназы он превращается в 2 молекулы витамина А.
При гидролитическом расщеплении альфа- и гамма-каротинов образуется лишь одна молекула витамина А, поскольку они содержат 1 бета-иононовый цикл, а другой цикл отличается строением. Избирательное накопление бета-каротина может осуществляться жировой тканью. Он частично присутствует в молоке, желтках яиц.
В организме человека каротины повышают иммунный статус, защищают от фотодерматозов, как предшественники витамина А обеспечивают механизм зрения, являются природными антиоксидантами. Каротиноиды применяются в виде природных красителей, для лечения воспалительных процессов кожи и слизистых оболочек.
Каротин содержится во многих плодах, молоке, сливочном масле.
Особенно много каротина содержат зеленые части растений (листья шпината), а также плоды растений, которые имеют оранжевую окраску (морковь, помидоры, перец, шиповник).
Вопрос № 3:Ферменты класса оксидоредуктаз. Оксидазы, полифенолоксидазы
Ферменты (энзимы) - это биокатализаторы, образующиеся в клетке и представляющие собой либо простые белки, либо сложные, содержащие неаминокислотные компоненты. Все процессы жизнедеятельности, как пищеварение, дыхание и т.д. осуществляются при помощи ферментов. Ферменты ускоряют биологические реакции, снижая энергию активации и не изменяя положения равновесия. Существует несколько типов окислительно-восстановительных ферментативных реакций. Ферменты этого типа переносят водород или электроны и катализируют биологическое окисление. В их состав входят специфические коферменты. Такие ферменты называют оксидоредуктазы.
Они подразделяются в соответствии с донором, от которого переносится водород или электрон, или в соответствии с акцептором, к которому идет перенос.
Среди оксидоредуктаз различают дегидрогеназы, оксидазы, пероксидазы. Оксидазы - аэробные дегидрогеназы, передающие водород субстрата непосредственно кислороду. К ним относится полифенолоксидаза катализирующая реакцию окисления полифенолов с образованием темноокрашенных соединений. Действие полифенолоксидазы проявляется в потемнении тканей плодов и овощей, пораженных плесенями. Наличием в растительных клетках полифенолоксидазы объясняется и наблюдаемое потемнение поверхности срезов яблок, клубней картофеля и др. К классу оксидоредуктаз относят и фермент каталазу, осуществляющую расщепление перекиси водорода на воду и молекулярный кислород. Физиологическая роль каталазы состоит, прежде всего, в том, что она предотвращает накопление значительных количеств перекиси водорода, так как последняя ядовита для клеток.
Полифенолоксидаза содержится в высших растениях и в грибах. Массовая доля меди в данном ферменте составляет 0,2-0,3 %. Например, ее молекулярная масса у грибов равна 34500, а у чайного листа - 144000. Полифенолоксидаза участвует в окислении полифенолов и дубильных веществ, ее действием объясняется потемнение плодов и овощей при сушке, потемнение поверхности разрезанных яблок или картофельного клубня.
Окисление органических веществ в клетке осуществляется кислородом. Однако обычный молекулярный кислород О2 химически неактивен; чтобы он смог принимать участие в ОВ-реакциях, его нужно активировать - разорвать молекулу О2 на 2 атома кислорода. В этом и состоит функция оксидаз. Оксидазы, как и денидрогеназы, являются сложными ферментами и состоят из белковой части и простетической группы, которая обязательно содержит металл. По этому признаку выделяют 3 группы оксидаз:
- железосодержащие; к ним относятся каталаза, пероксидаза и многие белки дыхательной цепи - фитохромы
- медьсодержащие; к ним относятся полифенолоксидаза и аскорбатоксидаза
- содержащие и железо, и медь - цитохромоксидаза
Функции оксидаз в клетке очень разнообразны. Цитохромы и цитохромоксидаза входят в состав дыхательной цепи, где принимают участие в активации кислорода и его использовании для окисления водорода дегидрогеназ. Однако многие оксидазы катализируют ОВ-реакции, не связанные с дыханием:
- каталаза разлагает пероксид водорода Н2О2 на воду и кислород:
Н2О2 > 2Н2О + О2
- пероксидаза с помощью О2 окисляет сложные органические вещества (например, фенольные соединения)
- полифенолоксидаза с помощью О2 окисляет полифенолы до хинонов
- аскорбатоксидаза с помощью О2 окисляет аскорбиновую кислоту до дегидроаскорбиновой
Из этого класса ферментов особо следует выделить дегидрогеназы, катализирующие реакции отщепления водорода от одного вещества и перенос его к другому. Первое вещество в данном случае называется донором водорода, а второе - акцептором его. Дегидрогеназы разделяют на флавиновые и пиридиновые.
Пиридиновые дегидрогеназы. Их называют анаэробными, так как они непосредственно кислороду передавать водород не могут.
Коферментами пиридиновых дегидрогеназ являются никотинамидадениндинуклеотид-фосфат (НАДФ) и никотинамидадениндинуклеотид (НАД). НАД представляет собой динуклеотид, состоящий из азотистого основания аденина, амида никотиновой кислоты (витамина РР), двух молекул сахара рибозы и двух остатков фосфорной кислоты. НАДФ отличается от НАД присутствием третьего остатка фосфорной кислоты. Со своим апоферментом они связаны только в момент осуществления реакции дегидрирования. Одни дегидрогеназы содержат только НАДФ, другие - НАД, т.е. эти коферменты не могут замещать друг друга.
Взаимодействуя с субстратом, дегидрогеназы отнимают от него два иона водорода и два электрона. Способностью обратимо присоединять протоны и электроны обладают их коферменты. Например, НАДФ переходит в восстановленную форму НАДФН2, НАД - в НАДН2. Примерами анаэробных дегидрогеназ являются малатдегидрогеназа, катализирующая превращение яблочной кислоты в щавелевоуксусную, и алкогольдегидрогеназа, превращающая этиловый спирт (этанол) в уксусный альдегид.
Коферментами флавuновых дегидрогенах являются флавинадениндинуклеотид (ФАД) и флавинмононуклеотид (ФМН).ФАД и ФМН являются нуклеотидами, содержащими пятиуглеродный спирт D-рибит (рибитол) и азотистое основание рибофлавин (витамин В2), обладающий способностью обратимого при соединения водорода. В составе ФАД находятся два нуклеотида, один из которых содержит остатки D - рибита, фосфорной кислоты и флавина, другой - остатки аденина, рибозы и фосфорной кислоты. Состав ФМН представлен D - рибитом, остатком фосфорной кислоты и флавином. Восстановленная форма ФАД обозначается как ФАД Н2, а ФМН - ФМН Н2. Со своим апоферментом флавиновые коферменты связаны значительно прочнее, чем пиридиновые. Другим отличием флавиновых дегидрогеназ является наличие в составе их апоферментов металлов (железа, марганца, меди, молибдена).
Представителями аэробных дегидрогеназ являются оксидазы, для которых акцептором водорода служит исключительно кислород воздуха. Отщепляя водород от окисляемого вещества АН2 и передавая его кислороду, оксидаза образует воду или перекись водорода. Среди оксидаз в растительном мире широкое распространение получили полифенолоксидаза и аскорбатоксидаза. Обе представлены белком, содержащим в качестве кофермента медь. Первая окисляет дифенолы, вторая превращает аскорбиновую кислоту в дегидроаскорбиновую. Важную роль в жизни растений выполняет цuтохромоксидаза, которая активирует молекулярный кислород, перенося на него электроны от цитохромной системы.
Нельзя не отметить и пероксидазу, осуществляющую окисление органических веществ с помощью перекиси водорода, с которой она образует комплексное соединение и приобретает способность быть акцептором водорода. Пероксидаза широко распространена в мире растений и играет важную роль в превращении полифенолов и ароматических аминов.
Литература
1. Биохимия : учеб. для вузов. Под ред. Е.С. Северина. - 5-е изд., испр. и доп. - М. : ГЭОТАР- Медиа, 2013. - 768 с
2. Т.Т. Березов, Б.Ф. Коровкин. Биологическая химия: Учебник. - 4-е издание - М.: Медицина, 2007.
3. Биохимия и молекулярная биология. Эллиот В. - 2002.
Размещено на Allbest.ru
...Подобные документы
Изучение истории открытия нуклеиновых кислот, которые были названы так потому, что впервые были открыты в ядрах клеток, и из-за наличия в их составе остатков фосфорной кислоты. Нахождение нуклеиновых кислот в природе, их химические свойства и применение.
реферат [312,3 K], добавлен 18.04.2010Диссоциирование кислот на катион водорода (протон) и анион кислотного остатка в водных растворах. Классификация кислот по различным признакам. Характеристика основных химических свойств кислот. Распространение органических и неорганических кислот.
презентация [442,5 K], добавлен 23.11.2010История открытия, строение и виды нуклеиновых кислот. Принцип комплементарности азотистых оснований. Структура нуклеотидов и их соединение. Параметры двойной спирали ДНК. Ее биологические функции. Отличия молекул ДНК и РНК. Свойства генетического кода.
презентация [1,6 M], добавлен 18.05.2015Структура и функция нуклеотидов. Физико-химические показатели и оптические характеристики нуклеиновых кислот. Азотистые основания. Моносахариды: рибоза и дезоксирибоза. Молекулярная масса, содержание и локализация в клетке ДНК и РНК. Правила Чаргаффа.
курсовая работа [1,6 M], добавлен 11.12.2014Состав дождевой воды. Содержание кислот во фруктах, овощах, соусах, приправах и лекарствах. Муравьиная кислота. Вещества, состоящие из атомов водорода и кислотного остатка. История открытия некоторых кислот. Основные свойства и опыты над кислотами.
презентация [98,2 K], добавлен 15.01.2011Изучение строение гетероциклов с конденсированной системой ядер: индол, скатол, пурин и пуриновые основания. Особенности структуры нуклеозидов и нуклеотидов. Строение АТФ и нуклеиновых кислот. Биологическая роль ДНК и РНК, их химическая структура.
реферат [45,6 K], добавлен 22.06.2010Общая характеристика органических кислот, сущность летучих и нелетучих алифатических кислот. Урановые кислоты, образующиеся при окислении спиртовой группы у 6-го углеродного атома гексоз. Применение органических кислот. Процесс заготовки и хранения ягод.
доклад [151,8 K], добавлен 24.12.2011Сущность и состав кислот, их классификация по наличию кислорода и по числу атомов водорода. Определение валентности кислотных остатков. Виды и структурные формулы кислот, их физические и химические свойства. Результаты реакции кислот с другими веществами.
презентация [1,7 M], добавлен 17.12.2011Ознакомление с классификацией и разновидностями карбоновых кислот, их главными физическими и химическими свойствами, сферах практического применения. Способы и приемы получения карбоновых кислот, их реакционная способность. Гомологический ряд и гомологи.
разработка урока [17,9 K], добавлен 13.11.2011Карбоновые кислоты — более сильные кислоты, чем спирты. Ковалентный характер молекул и равновесие диссоциации. Формулы карбоновых кислот. Реакции с металлами, их основными гидроксидами и спиртами. Краткая характеристика физических свойств кислот.
презентация [525,6 K], добавлен 06.05.2011Строение и общие свойства аминокислот, их классификация и химические реакции. Строение белковой молекулы. Физико-химические свойства белков. Выделение белков и установление их однородности. Химическая характеристика нуклеиновых кислот. Структура РНК.
курс лекций [156,3 K], добавлен 24.12.2010Содержание пищевых кислот в продуктах питания и методы их определения. Характеристика некоторых из пищевых кислот. Обоснование титрования, определения и расчета количества аскорбиновой кислоты, динамика изменения её содержания при термообработке.
дипломная работа [1,3 M], добавлен 03.07.2015Электронная теория кислот и оснований Льюиса. Теория электролитической диссоциации Аррениуса. Протонная теория, или теория кислот и оснований Бренстеда. Основность и амфотерность органических соединений. Классификация реагентов органических реакций.
презентация [375,0 K], добавлен 10.12.2012Биологическая роль цереброзиидов - природных органических соединений из группы сложных липидов (сфинголипиды), впервые обнаруженых в составе мозга. Галактоцереброзид - один из простейших гликолипидов. Глюкоцереброзид. Место локализации цереброзидов.
реферат [15,2 K], добавлен 18.03.2016Ангидриды карбоновых кислот представляют собой продукты отщепления молекулы воды от двух молекул кислоты. Кетены - внутренние ангидриды монокарбоновых кислот. Способы получение и реакции нитрилов. Цианамид представляет собой амид синильной кислоты.
лекция [152,8 K], добавлен 03.02.2009Ацильные соединения - производные карбоновых кислот, содержащие ацильную группу. Свойства кислот обусловлены наличием в них карбоксильной группы, состоящей из гидроксильной и карбонильной групп. Способы получения и реакции ангидридов карбоновых кислот.
реферат [174,1 K], добавлен 03.02.2009Загальна характеристика і склад нуклеопротеїдів. Нуклеїнові кислоти – природні біополімери. Структурні елементи нуклеїнових кислот: нуклеозид; нуклеотид; нуклеїнова кислота. Класифікація і будова нуклеїнових кислот. Біологічна роль нуклеїнових кислот.
реферат [35,2 K], добавлен 25.02.2009Химическое строение, кислотный и щелочной гидролиз витамина В12, роль в синтезе нуклеиновых кислот. Участие кобаламина в биохимических восстановительных процессах, клиническое применение. Противотоксическое действие витамина В15 (пангамовая кислота).
реферат [62,6 K], добавлен 11.01.2010Краткие исторические сведения о происхождении представлений о кислотах и основаниях. Теория электрической диссоциации Аррениуса-Оствальда. Протолитическая теория кислот и оснований Брёнстеда-Лоури. Бикарбонатная и гемоглобиновая буферная система крови.
презентация [1,0 M], добавлен 17.11.2012Применение 4-кетоноалкановых кислот в производстве смазочных материалов. Получение насыщенных кислот алифатического ряда. Расщепление фуранового цикла фурилкарбинолов. Взаимодействие этиловых эфиров 4-оксоалкановых кислот. Синтез гетероциклических систем.
курсовая работа [167,3 K], добавлен 12.06.2015