Алканы и циклоалканы
Природные источники алканов. Синтетические методы получения. Взаимодействие алкенов или алкинов с водородом. Химические реакции по механизму радикального замещения. Развитие теории цепных свободнорадикальных реакций. Каталитическое окисление бутана.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 05.03.2015 |
Размер файла | 58,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Физические свойства. В обычных условиях первые четыре члена гомологического ряда алканов (С1 -- С4) -- газы. Нормальные алканы от пентана до гептадекана (C5 -- C17) -- жидкости, начиная с С18 и выше -- твердые вещества. По мере увеличения числа атомов углерода в цепи, т.е. с ростом относительной молекулярной массы, возрастают температуры кипения и плавления алканов. При одинаковом числе атомов углерода в молекуле алканы с разветвленным строением имеют более низкие температуры кипения, чем нормальные алканы.
Алканы практически нерастворимы в воде, так как их молекулы малополярны и не взаимодействуют с молекулами воды, они хорошо растворяются в неполярных органических растворителях, таких как бензол, тетрахлорметан и др. Жидкие алканы легко смешиваются друг с другом.
Основные природные источники алканов -- нефть и природный газ. Различные фракции нефти содержат алканы от C5H12 до С30Н62. Природный газ состоит из метана (95%) с примесью этана и пропана.
Из синтетических методов получения алканов можно выделить следующие:
1. Получение из ненасыщенных углеводородов. Взаимодействие алкенов или алкинов с водородом ("гидрирование") происходит в присутствии металлических катализаторов (Ni,Pd) принагревании:
Таблица.
- |
tє. Ni |
- |
|
СН3-СН=СН2 + Н2 |
> |
СН3-СН2-СН3 |
СНз-C?СН + 2Н2 > СН3-СН2-СН3
2. Получение из галогенпротводных. При нагревании моногалогензамещенных алканов с металлическим натрием получают алканы с удвоенным числом атомов углерода (реакция Вюрца):
С2Н5Br + 2Na + Br-C2H5 > C2H5-C2H5 + 2NaBr
Подобную реакцию не проводят с двумя разными галогензамещенными алканами, поскольку при этом получается смесь трех различных алканов
3. Получение из солей карбоновых кислот. При сплавлении безводных солей карбоновых кислот с щелочами получаются алканы, содержащие на один атом углерода меньше по сравнению с углеродной цепью исходных карбоновых кислот:
Таблица.
t° |
|||
CH3COONa + NaOH |
> |
СН4^ + Na2CO3 |
4.Получение метана. В электрической дуге, горящей в атмосфере водорода, образуется значительное количество метана:
С + 2Н2 > СН4
Такая же реакция идет при нагревании углерода в атмосфере водорода до 400-500 °С при повышенном давлении в присутствии катализатора.
В лабораторных условиях метан часто получают из карбида алюминия:
Аl4С3 + 12Н2О = ЗСН4^ + 4Аl(ОН)3
Химические свойства. В обычных условиях алканы химически инертны. Они устойчивы к действию многих реагентов: не взаимодействуют с концентрированными серной и азотной кислотами, с концентрированными и расплавленными щелочами, не окисляются сильными окислителями - перманганатом калия KMnО4 и т.п.
Химическая устойчивость алканов объясняется высокой прочностью s-связей С-С и С-Н, а также их неполярностью. Неполярные связи С-С и С-Н в алканах не склонны к ионному разрыву, но способны расщепляться гомолитически под действием активных свободных радикалов. Поэтому для алканов характерны радикальные реакции, в результате которых получаются соединения, где атомы водорода замещены на другие атомы или группы атомов. Следовательно, алканы вступают в реакции, протекающие по механизму радикального замещения, обозначаемого символом SR (от англ, substitution radicalic). По этому механизму легче всего замещаются атомы водорода у третичных, затем у вторичных и первичных атомов углерода.
1. Галогенирование. При взаимодействии алканов с галогенами (хлором и бромом) под действием УФ-излучения или высокой температуры образуется смесь продуктов от моно- дополигалогензамещенных алканов. Общая схема этой реакции показана на примере метана:
Таблица.
- |
Сl2 |
- |
Сl2 |
- |
Сl2 |
- |
Сl2 |
- |
|
СН4 |
> |
СН3Сl |
> |
СН2Сl2 |
> |
СНСl3 |
> |
ССl4 |
|
- |
HCl |
- |
HCl |
- |
НСl |
- |
HCl |
- |
Реакция образования хлорметана протекает по цепному механизму, который характеризуется следующими стадиями:
а) инициирование цепи:
Таблица.
- |
hv |
||
Сl2 |
> |
2Сl |
б) Рост цепи. Радикал хлора отнимает у молекулы алкана атом водорода:
Cl·+ СН4>НСl + СН3
При этом образуется алкильный радикал, который отнимает атом хлора у молекулы хлора:
СН3· + Сl2>СН3Сl + Сl
Эти реакции повторяются до тех пор, пока не произойдет обрыв цепи по одной из реакций:
Cl· + Cl· > Сl2, СН3· + СН3· > С2Н6, СН3· + Cl· > СН3Сl
Таблица.
Суммарное уравнение реакции:
- |
hv |
- |
|
СН4 + Сl2 |
> |
СН3Сl + НСl. |
Образующийся хлорметан может подвергаться дальнейшему хлорированию, давая смесь продуктов CH2Cl2, CHCl3, ССl4 по схеме (*).
Развитие теории цепных свободнорадикальных реакций тесно связано с именем выдающегося русского ученого, лауреата Нобелевской премии Н.И. Семенова (1896-1986).
2. Нитрование (реакция Коновалова). При действии разбавленной азотной кислоты на алканы при 140°С и небольшом давлении протекает радикальная реакция:
Таблица.
- |
t ° |
- |
|
CH3-CH3 + HNO3 |
> |
CH3-CH2-NO2 + H2O |
При радикальных реакциях (галогенирование, нитрование) в первую очередь замешаются атомы водорода у третичных, затем у вторичных и первичных атомов углерода. Это объясняется тем, что легче всего разрывается гомолитически связь третичного атома углерода с водородом (энергия связи 376 кДж/моль), затем -- вторичного (390 кДж/моль) и только потом -- первичного (415 кДж/моль).
3. Изомеризация. Нормальные алканы при определенных условиях могут превращаться в алканы с разветвленной цепью:
4. Крекинг -- это гемолитический разрыв связей С-С, который протекает при нагревании и под действием катализаторов.При крекинге высших алканов образуются алкены и низшие алканы, при крекинге метана и этана образуются ацетилен:
C8H18 > C4H10 + С4Н8,
2СН4 > С2Н2 + ЗН2,
С2Н6 > С2Н2 + 2Н2.
Эти реакции имеют большое промышленное значение. Таким путем высококипящие фракции нефти (мазут) превращают в бензин, керосин и другие ценные продукты.
5. Окисление. При мягком окислении метана кислородом воздуха в присутствии различных катализаторов могут быть получены метиловый спирт, формальдегид, муравьиная кислота:
Мягкое каталитическое окисление бутана кислородом воздуха - один из промышленных способов получения уксусной кислоты:
t° 2C4H 10 + 5O2 > 4CH3COOH + 2Н2О. Кат
На воздухе алканы сгорают до СО2 и Н2О:
СnН2n+2 + (Зn+1)/2О2 = nСО2 + (n+1)Н2О
Физические свойства. При обычных условиях первые два члена ряда (С3 - С4) -- газы, (С5 - С16) -- жидкости, начиная с C17 -- твердые вещества. Температуры кипения и плавления циклоалканов выше, чем у соответствующих алканов.
Получение.
1. Основной способ получения циклоалканов - отщепление двух атомов галогена от дигалогеналканов:
2. При каталитическом гидрировании ароматических углеводородов образуются циклогексан или его производные:
t°,P,NiC6H6 + 3H2 > C6H12
Химические свойства. По химическим свойствам малые и обычные циклы существенно различаются между собою. Циклопропан и циклобутан склонны к реакциям присоединения, т.е. сходны в этом отношении с алкенами. Циклопентан и циклогексан по своему химическому поведению близки к алканам, так как вступают в реакции замещения.
1. Так, например, циклопропан и циклобутан способны присоединять бром (хотя реакция и идет труднее, чем с пропеном или бутеном):
2. Циклопропан, циклобутан и даже циклопентан могут присоединять водород, давая соответствующие нормальные алканы.Присоединение происходит при нагревании в присутствии никелевого катализатора:
3. В реакцию присоединения с галогеноводородами опять же вступают только малые циклы. Присоединение к гомологам циклопропана происходит по правилу Марковникова:
4. Реакции замещения. Обычные циклы (С6 и выше) устойчивы и вступают только в реакции радикального замещения подобно алканам:
t°С6Н12 + Вr2 > С6Н11Вr + НВr
5. Дегидрирование циклогексана в присутствии никелевого катализатора приводит к образованию бензола:
t° Ni C6H12 > C6H6 + 3H2
6. При действии сильных окислителей (например, 50%-ной азотной кислоты) на циклогексан в присутствии катализатора образуется адипиновая (гександиовая) кислота:
Особенности строения циклоалканов и их химическое поведение. Выше мы продемонстрировали неустойчивость малых циклов и их способность разрываться и вступать в реакции присоединения. Причины этого кроются в строении циклов. Так, циклопропан имеет плоское строение, поэтому атомы водорода у соседних атомов углерода располагаются над и под плоскостью цикла в энергетически невыгодном ("заслоненном") положении. Это -- одна из причин "напряженности" цикла и его неустойчивости.
Исходя из того, что трехчленный цикл является плоским равносторонним треугольником, валентные углы между атомами углерода должны быть равными 60°, т.е. резко отличающимися от величины нормального валентного утла 109,5° для классического случая sp'-гибридизации
Установлено, что образование s-связей между атомами углерода происходит путем перекрывания sp3-гибридных орбиталей не по прямой, соединяющей ядра атомов, а вне ее.
Такое перекрывание не является осевым, характерным для образования s-связей, а несколько приближается к боковому перекрыванию, характерному для образования p-связей. Образовавшиеся s-связи с расположением максимальной электронной плотности вне прямой между ядрами связываемых атомов называют "банановыми". По свойствам они напоминают p-связи. Действительно, циклопропан способен вступать в реакции присоединения (с разрывом цикла).
Обычные циклы, наоборот, очень устойчивы и не склонны к разрыву. Так, молекула циклогексана не является плоским многоугольником и принимает различные конформации.
Среди неплоских конформаций наиболее энергетически выгодной является конформация кресла, так как в ней все валентные углы между атомами углерода равны 109,5°, а атомы водорода у соседних атомов углерода находятся относительно друг друга в заторможенном положении.
а,б алкан химический свободнорадикальный каталитический
Конформации шестичленного цикла: а -- кресло: 6 -- ванна.
Другое возможное для циклогексана расположение атомов соответствует конформации ванны, хотя оно менее устойчиво, чем конформация кресла. Следует отметить, что и в конформации кресла, и в конформации ванны связи вокруг каждого атома углерода имеют тетраэдрическое расположение. Отсюда -- несравнимо большая устойчивость обычных циклов по сравнению с малыми циклами, отсюда -- их возможность вступать в реакции замещения, но не присоединения.
Литература
http://www.himhelp.ru/section25/section18/section105/91.html
http://www.himhelp.ru/section25/section18/section104/89.html
Агрономов А. Е. "Избранные главы органической химии" М.:Химия, 1990издание 2-е
Грандберг И.И. "Органическая химия: Учеб. для студ. вузов, обучающихся по агроном. спец." 4-е изд. М.:Дрофа, 2001
Размещено на Allbest.ru
...Подобные документы
Понятие алканов (насыщенные углеводороды, парафины, алифатические соединения), их систематическая и рациональная номенклатура. Химические свойства алканов, реакции радикального замещения и окисления. Получение и восстановление непредельных углеводородов.
реферат [46,2 K], добавлен 11.01.2011Сущность алканов (насыщенных углеводородов), их основные источники и сферы применения. Строение молекул метана, этана, пропана и бутана. Особенности промышленных и лабораторных методов синтеза алканов. Механизм галогенирования, горения и пиролиза.
курсовая работа [2,8 M], добавлен 19.04.2012Предмет органической химии. Понятие о химических реакциях. Номенклатура органических соединений. Характеристика и способы получения алканов. Ковалентные химические связи в молекуле метана. Химические свойства галогеналканов. Структурная изомерия алкенов.
контрольная работа [1,4 M], добавлен 01.07.2013Альдольная конденсация формальдегида с ацетальдегидом. Прямое каталитическое окисление пропилена. Дегидратация глицерина. Ароматические альдегиды и кетоны, способы их получения и химические свойства. Механизм мономолекулярного нуклеофильного замещения.
реферат [85,5 K], добавлен 21.02.2009Метан - простейший представитель класса алканов. Рациональная и систематическая номенклатура, гомологический ряд и изомерия. Физические, спектральные и химические свойства. Реакции радикального и электрофильного замещения. Нахождение в природе.
реферат [136,9 K], добавлен 20.11.2011Понятие алкинов – алифатических непредельных углеводородов ряда ацетилена, в молекулах которых между углеродными атомами одна тройная связь. Простейшие представители, получение алкинов. Физические и химические свойства. Реакции присоединения и замещения.
презентация [371,4 K], добавлен 12.05.2011Общие представления о алканах и их строение, физические свойства. Содержание алканов в нефтях. Основные методики исследования алканов. Применение алканов в органической геохимии. Образование алканов, приемы их использования при исследовании нефтей.
реферат [255,5 K], добавлен 04.05.2012Общие представления о реакции, типы реакции в бензольном кольце, примеры реакций замещения, протекающих по радикальному механизму. Реакционная способность ароматических субстратов и атакующего радикала, влияние растворителя на реакционную способность.
курсовая работа [190,9 K], добавлен 14.07.2010Критическая температура изменяется нелинейно с изменением числа углеродных атомов в молекуле во всех гомологических группах. При расчете критической температуры для алканов и алкенов используют индексы молекулярной связности Рандича и метод Джобака.
реферат [284,9 K], добавлен 21.01.2009Структура молекулы, связи атомов и свойства ацетиленов как химических веществ. Особенности получения алкинов термолизом метана и гидрированием углерода в промышленности и реакцией элиминирования в лаборатории. Реакции алкинов с участием тройной связи.
контрольная работа [244,8 K], добавлен 05.08.2013Номенклатура и изомерия алкенов. Промышленные и лабораторные способы получения олефинов. Расчет уровня энергии молекулярных орбиталей. Окисление и восстановление алкенов, присоединение к ним электрофильных реагентов, свободных радикалов, карбенов.
контрольная работа [308,8 K], добавлен 05.08.2013Примеры нуклеофильных реакций. Мономолекулярное нуклеофильное замещение и отщепление. Стереохимическое течение реакций нуклеофильного замещения. SN1 и SN2 реакции. Влияние факторов на реакции замещения. Применение реакций нуклеофильного замещения.
реферат [79,5 K], добавлен 16.11.2008Понятие, строение молекул, химические свойства галогеналканов. Особенности реакций замещения и присоединения как способов получения галогеналканов, условия протекания этих процессов. Реакции нуклеофильного замещения при насыщенном атоме углерода.
контрольная работа [288,1 K], добавлен 05.08.2013Понятие и виды сложных реакций. Обратимые реакции различных порядков. Простейший случай двух параллельных необратимых реакций первого порядка. Механизм и стадии последовательных реакций. Особенности и скорость протекания цепных и сопряженных реакций.
лекция [143,1 K], добавлен 28.02.2009Особенности строения предельных углеводородов, их изомерия и номенклатура. Гомологический ряд алканов неразветвленное строения. Получение метана в лабораторных условиях, его физические и химические свойства. Области применения метана как природного газа.
презентация [113,5 K], добавлен 22.12.2013Окисление органических соединений и органический синтез. Превращение, протекающее с увеличением степени окисления атома. Соединения переходных металлов. Реакции окисления алкенов с сохранением углеродного скелета. Окисление циклических соединений.
лекция [2,2 M], добавлен 01.06.2012Классификация, физические и химические свойства фенолов. Изучение строения молекулы. Влияние бензольного кольца на гидроксильную группу. Диссоциация и нитрование фенола. Взаимодействие его с натрием, щелочами. Реакции окисления, замещения и гидрирования.
презентация [1,5 M], добавлен 17.02.2016Гомологический ряд метана. Строение молекулы метана. Углы между всеми связями. Физические свойства алканов. Лабораторные способы получения. Получение из солей карбоновых кислот. Тип гибридизации атомов углерода в алканах. Структурная изомерия алканов.
презентация [1,5 M], добавлен 08.10.2014Реакции основного органического синтеза, превращения олефинов и ацетиленов. Природа химической связи в п-комплексах переходных металлов. Поляризация молекулы олефина в п-комплексе. Реакция с нуклеофильными реагентами. Реакции п-комплекса.
реферат [470,1 K], добавлен 26.01.2009Стадии цепных разветвленных реакций. Стационарный и нестационарный режимы быстрого самоускорения. Зависимость пределов воспламенения от давления, температуры и критических размеров реактора. Кинетика цепных реакций с вырожденным разветвлением цепей.
реферат [182,5 K], добавлен 09.03.2015